

[image: _images/kea-logo-200.png]

Kea Administrator Reference Manual

Kea is an open source implementation of the Dynamic Host Configuration
Protocol (DHCP) servers, developed and maintained by Internet Systems
Consortium (ISC).

This is the reference guide for Kea version 1.7.8-git.
Links to the most up-to-date version of this document (in PDF, HTML,
and plain text formats), along with other documents for
Kea, can be found in ISC’s Knowledgebase [https://kb.isc.org/docs/kea-administrator-reference-manual].

	1. Introduction
	1.1. Supported platforms
	1.1.1. Regularly tested platforms

	1.1.2. Best effort

	1.1.3. Community maintained

	1.1.4. Unsupported platforms

	1.2. Required Software at Run-Time

	1.3. Kea Software

	2. Quick Start
	2.1. Quick Start Guide for using tarball

	2.2. Quick Start Guide using native packages

	2.3. Quick Start Guide for DHCPv4 and DHCPv6 Services

	2.4. Running the Kea Servers Directly

	3. Installation
	3.1. Packages

	3.2. Installation Hierarchy

	3.3. Build Requirements

	3.4. Installation from Source
	3.4.1. Download Tar File

	3.4.2. Retrieve from Git

	3.4.3. Configure Before the Build

	3.4.4. Build

	3.4.5. Install

	3.5. DHCP Database Installation and Configuration
	3.5.1. Building with MySQL Support

	3.5.2. Building with PostgreSQL support

	3.5.3. Building with CQL (Cassandra) Support

	3.6. Hammer Building Tool

	3.7. Running Kea from non-root account on Linux

	4. Kea Database Administration
	4.1. Databases and Database Version Numbers

	4.2. The kea-admin Tool

	4.3. Supported Backends
	4.3.1. Memfile
	4.3.1.1. Upgrading Memfile Lease Files from an Earlier Version of Kea

	4.3.2. MySQL
	4.3.2.1. First-Time Creation of the MySQL Database

	4.3.2.2. Upgrading a MySQL Database from an Earlier Version of Kea

	4.3.2.3. Simple MySQL tweak to gain performance

	4.3.3. PostgreSQL
	4.3.3.1. First-Time Creation of the PostgreSQL Database

	4.3.3.2. Initialize the PostgreSQL Database Using kea-admin

	4.3.3.3. Upgrading a PostgreSQL Database from an Earlier Version of Kea

	4.3.4. Cassandra
	4.3.4.1. First-Time Creation of the Cassandra Database

	4.3.4.2. Upgrading a Cassandra Database from an Earlier Version of Kea

	4.3.5. Using Read-Only Databases with Host Reservations

	4.3.6. Limitations Related to the Use of SQL Databases
	4.3.6.1. Year 2038 Issue

	5. Kea Configuration
	5.1. JSON Configuration
	5.1.1. JSON Syntax

	5.1.2. Comments and User Context

	5.1.3. Simplified Notation

	5.2. Kea Configuration Backend
	5.2.1. Applicability

	5.2.2. CB Capabilities and Limitations

	5.2.3. CB Components

	5.2.4. Configuration Sharing and Server Tags

	6. Managing Kea with keactrl
	6.1. Overview

	6.2. Command Line Options

	6.3. The keactrl Configuration File

	6.4. Commands

	6.5. Overriding the Server Selection

	7. The Kea Control Agent
	7.1. Overview of the Kea Control Agent

	7.2. Configuration

	7.3. Secure Connections

	7.4. Starting the Control Agent

	7.5. Connecting to the Control Agent

	8. The DHCPv4 Server
	8.1. Starting and Stopping the DHCPv4 Server

	8.2. DHCPv4 Server Configuration
	8.2.1. Introduction

	8.2.2. Lease Storage
	8.2.2.1. Memfile - Basic Storage for Leases

	8.2.2.2. Lease Database Configuration

	8.2.2.3. Cassandra-Specific Parameters

	8.2.3. Hosts Storage
	8.2.3.1. DHCPv4 Hosts Database Configuration

	8.2.3.2. Using Read-Only Databases for Host Reservations with DHCPv4

	8.2.4. Interface Configuration

	8.2.5. Issues with Unicast Responses to DHCPINFORM

	8.2.6. IPv4 Subnet Identifier

	8.2.7. IPv4 Subnet Prefix

	8.2.8. Configuration of IPv4 Address Pools

	8.2.9. Sending T1 (Option 58) and T2 (Option 59)

	8.2.10. Standard DHCPv4 Options

	8.2.11. Custom DHCPv4 Options

	8.2.12. DHCPv4 Private Options

	8.2.13. DHCPv4 Vendor-Specific Options

	8.2.14. Nested DHCPv4 Options (Custom Option Spaces)

	8.2.15. Unspecified Parameters for DHCPv4 Option Configuration

	8.2.16. Stateless Configuration of DHCPv4 Clients

	8.2.17. Client Classification in DHCPv4
	8.2.17.1. Setting Fixed Fields in Classification

	8.2.17.2. Using Vendor Class Information in Classification

	8.2.17.3. Defining and Using Custom Classes

	8.2.17.4. Required Classification

	8.2.18. DDNS for DHCPv4
	8.2.18.1. DHCP-DDNS Server Connectivity

	8.2.18.2. When Does the kea-dhcp4 Server Generate a DDNS Request?

	8.2.18.3. kea-dhcp4 Name Generation for DDNS Update Requests

	8.2.18.4. Sanitizing Client Host Name and FQDN Names

	8.2.19. Next Server (siaddr)

	8.2.20. Echoing Client-ID (RFC 6842)

	8.2.21. Using Client Identifier and Hardware Address

	8.2.22. Authoritative DHCPv4 Server Behavior

	8.2.23. DHCPv4-over-DHCPv6: DHCPv4 Side

	8.2.24. Sanity Checks in DHCPv4

	8.2.25. Storing Extended Lease Information

	8.2.26. Multi-threading settings

	8.3. Host Reservation in DHCPv4
	8.3.1. Address Reservation Types

	8.3.2. Conflicts in DHCPv4 Reservations

	8.3.3. Reserving a Hostname

	8.3.4. Including Specific DHCPv4 Options in Reservations

	8.3.5. Reserving Next Server, Server Hostname, and Boot File Name

	8.3.6. Reserving Client Classes in DHCPv4

	8.3.7. Storing Host Reservations in MySQL, PostgreSQL, or Cassandra

	8.3.8. Fine-Tuning DHCPv4 Host Reservation

	8.3.9. Global Reservations in DHCPv4

	8.3.10. Pool Selection with Client Class Reservations

	8.3.11. Subnet Selection with Client Class Reservations

	8.4. Shared Networks in DHCPv4
	8.4.1. Local and Relayed Traffic in Shared Networks

	8.4.2. Client Classification in Shared Networks

	8.4.3. Host Reservations in Shared Networks

	8.5. Server Identifier in DHCPv4

	8.6. How the DHCPv4 Server Selects a Subnet for the Client
	8.6.1. Using a Specific Relay Agent for a Subnet

	8.6.2. Segregating IPv4 Clients in a Cable Network

	8.7. Duplicate Addresses (DHCPDECLINE Support)

	8.8. Statistics in the DHCPv4 Server

	8.9. Management API for the DHCPv4 Server

	8.10. User Contexts in IPv4

	8.11. Supported DHCP Standards

	8.12. DHCPv4 Server Limitations

	8.13. Kea DHCPv4 Server Examples

	8.14. Configuration Backend in DHCPv4
	8.14.1. Supported Parameters

	8.14.2. Enabling Configuration Backend

	9. The DHCPv6 Server
	9.1. Starting and Stopping the DHCPv6 Server

	9.2. DHCPv6 Server Configuration
	9.2.1. Introduction

	9.2.2. Lease Storage
	9.2.2.1. Memfile - Basic Storage for Leases

	9.2.2.2. Lease Database Configuration

	9.2.2.3. Cassandra-Specific Parameters

	9.2.3. Hosts Storage
	9.2.3.1. DHCPv6 Hosts Database Configuration

	9.2.3.2. Using Read-Only Databases for Host Reservations with DHCPv6

	9.2.4. Interface Configuration

	9.2.5. IPv6 Subnet Identifier

	9.2.6. IPv6 Subnet Prefix

	9.2.7. Unicast Traffic Support

	9.2.8. Configuration of IPv6 Address Pools

	9.2.9. Subnet and Prefix Delegation Pools

	9.2.10. Prefix Exclude Option

	9.2.11. Standard DHCPv6 Options

	9.2.12. Common Softwire46 Options
	9.2.12.1. Softwire46 Container Options

	9.2.12.2. S46 Rule Option

	9.2.12.3. S46 BR Option

	9.2.12.4. S46 DMR Option

	9.2.12.5. S46 IPv4/IPv6 Address Binding Option

	9.2.12.6. S46 Port Parameters

	9.2.13. Custom DHCPv6 Options

	9.2.14. DHCPv6 Vendor-Specific Options

	9.2.15. Nested DHCPv6 Options (Custom Option Spaces)

	9.2.16. Unspecified Parameters for DHCPv6 Option Configuration

	9.2.17. Controlling the Values Sent for T1 and T2 Times

	9.2.18. IPv6 Subnet Selection

	9.2.19. Rapid Commit

	9.2.20. DHCPv6 Relays

	9.2.21. Relay-Supplied Options

	9.2.22. Client Classification in DHCPv6
	9.2.22.1. Defining and Using Custom Classes

	9.2.22.2. Required Classification

	9.2.23. DDNS for DHCPv6
	9.2.23.1. DHCP-DDNS Server Connectivity

	9.2.23.2. When Does the kea-dhcp6 Server Generate a DDNS Request?

	9.2.23.3. kea-dhcp6 Name Generation for DDNS Update Requests

	9.2.23.4. Sanitizing Client FQDN Names

	9.2.24. DHCPv4-over-DHCPv6: DHCPv6 Side

	9.2.25. Sanity Checks in DHCPv6

	9.2.26. Storing Extended Lease Information

	9.2.27. Multi-threading settings

	9.3. Host Reservation in DHCPv6
	9.3.1. Address/Prefix Reservation Types

	9.3.2. Conflicts in DHCPv6 Reservations

	9.3.3. Reserving a Hostname

	9.3.4. Including Specific DHCPv6 Options in Reservations

	9.3.5. Reserving Client Classes in DHCPv6

	9.3.6. Storing Host Reservations in MySQL, PostgreSQL, or Cassandra

	9.3.7. Fine-Tuning DHCPv6 Host Reservation

	9.3.8. Global Reservations in DHCPv6

	9.3.9. Pool Selection with Client Class Reservations

	9.3.10. Subnet Selection with Client Class Reservations

	9.4. Shared Networks in DHCPv6
	9.4.1. Local and Relayed Traffic in Shared Networks

	9.4.2. Client Classification in Shared Networks

	9.4.3. Host Reservations in Shared Networks

	9.5. Server Identifier in DHCPv6

	9.6. DHCPv6 data directory

	9.7. Stateless DHCPv6 (Information-Request Message)

	9.8. Support for RFC 7550 (now part of RFC 8415)

	9.9. Using a Specific Relay Agent for a Subnet

	9.10. Segregating IPv6 Clients in a Cable Network

	9.11. MAC/Hardware Addresses in DHCPv6

	9.12. Duplicate Addresses (DECLINE Support)

	9.13. Statistics in the DHCPv6 Server

	9.14. Management API for the DHCPv6 Server

	9.15. User Contexts in IPv6

	9.16. Supported DHCPv6 Standards

	9.17. DHCPv6 Server Limitations

	9.18. Kea DHCPv6 server examples

	9.19. Configuration Backend in DHCPv6
	9.19.1. Supported Parameters

	9.19.2. Enabling Configuration Backend

	10. Lease Expiration
	10.1. Lease Reclamation

	10.2. Lease Reclamation Configuration Parameters

	10.3. Configuring Lease Reclamation

	10.4. Configuring Lease Affinity

	10.5. Reclaiming Expired Leases via Command

	11. Congestion Handling
	11.1. What is Congestion?

	11.2. Configuring Congestion Handling

	12. The DHCP-DDNS Server
	12.1. Overview
	12.1.1. DNS Server Selection

	12.1.2. Conflict Resolution

	12.1.3. Dual-Stack Environments

	12.2. Starting and Stopping the DHCP-DDNS Server

	12.3. Configuring the DHCP-DDNS Server
	12.3.1. Global Server Parameters

	12.3.2. Management API for the D2 Server

	12.3.3. TSIG Key List

	12.3.4. Forward DDNS
	12.3.4.1. Adding Forward DDNS Domains
	12.3.4.1.1. Adding Forward DNS Servers

	12.3.5. Reverse DDNS
	12.3.5.1. Adding Reverse DDNS Domains
	12.3.5.1.1. Adding Reverse DNS Servers

	12.3.6. User Contexts in DDNS

	12.3.7. Example DHCP-DDNS Server Configuration

	12.4. DHCP-DDNS Server Limitations

	12.5. Supported Standards

	13. The LFC Process
	13.1. Overview

	13.2. Command-Line Options

	14. Client Classification
	14.1. Client Classification Overview

	14.2. Built-in Client Classes

	14.3. Using Expressions in Classification
	14.3.1. Logical operators

	14.3.2. Substring

	14.3.3. Concat

	14.3.4. Ifelse

	14.3.5. Hexstring

	14.4. Configuring Classes

	14.5. Using Static Host Reservations In Classification

	14.6. Configuring Subnets With Class Information

	14.7. Configuring Pools With Class Information

	14.8. Using Classes

	14.9. Classes and Hooks

	14.10. Debugging Expressions

	15. Hooks Libraries
	15.1. Introduction

	15.2. Installing Hook Packages

	15.3. Configuring Hooks Libraries

	15.4. Available Hooks Libraries

	15.5. user_chk: Checking User Access

	15.6. legal_log: Forensic Logging Hooks
	15.6.1. Log File Naming

	15.6.2. DHCPv4 Log Entries

	15.6.3. DHCPv6 Log Entries

	15.6.4. Configuring the Forensic Log Hooks

	15.6.5. Database Backend

	15.7. flex_id: Flexible Identifiers for Host Reservations

	15.8. flex_option Flexible Option for Option value settings

	15.9. host_cmds: Host Commands
	15.9.1. The subnet-id Parameter

	15.9.2. The reservation-add Command

	15.9.3. The reservation-get Command

	15.9.4. The reservation-get-all Command

	15.9.5. The reservation-get-page command

	15.9.6. The reservation-get-by-hostname Command

	15.9.7. The reservation-del Command

	15.10. lease_cmds: Lease Commands
	15.10.1. The lease4-add, lease6-add Commands

	15.10.2. The lease6-bulk-apply Command

	15.10.3. The lease4-get, lease6-get Commands

	15.10.4. The lease4-get-all, lease6-get-all Commands

	15.10.5. The lease4-get-page, lease6-get-page Commands

	15.10.6. The lease4-get-by-, lease6-get-by- Commands

	15.10.7. The lease4-del, lease6-del Commands

	15.10.8. The lease4-update, lease6-update Commands

	15.10.9. The lease4-wipe, lease6-wipe Commands

	15.10.10. The lease4-resend-ddns, lease6-resend-ddns Commands

	15.11. subnet_cmds: Subnet Commands
	15.11.1. The subnet4-list Command

	15.11.2. The subnet6-list Command

	15.11.3. The subnet4-get Command

	15.11.4. The subnet6-get Command

	15.11.5. The subnet4-add Command

	15.11.6. The subnet6-add Command

	15.11.7. The subnet4-update Command

	15.11.8. The subnet6-update Command

	15.11.9. The subnet4-del Command

	15.11.10. The subnet6-del Command

	15.11.11. The network4-list, network6-list Commands

	15.11.12. The network4-get, network6-get Commands

	15.11.13. The network4-add, network6-add Commands

	15.11.14. The network4-del, network6-del Commands

	15.11.15. The network4-subnet-add, network6-subnet-add Commands

	15.11.16. The network4-subnet-del, network6-subnet-del Commands

	15.12. BOOTP support
	15.12.1. BOOTP Hooks Limitation

	15.13. class_cmds: Class Commands
	15.13.1. The class-add Command

	15.13.2. The class-update Command

	15.13.3. The class-del Command

	15.13.4. The class-list Command

	15.13.5. The class-get Command

	15.14. cb_cmds: Configuration Backend Commands
	15.14.1. Commands Structure

	15.14.2. Control Commands for DHCP Servers

	15.14.3. Metadata

	15.14.4. remote-server4-del, remote-server6-del commands

	15.14.5. remote-server4-get, remote-server6-get commands

	15.14.6. remote-server4-get-all, remote-server6-get-all commands

	15.14.7. remote-server4-set, remote-server6-set commands

	15.14.8. The remote-global-parameter4-del, remote-global-parameter6-del Commands

	15.14.9. The remote-global-parameter4-get, remote-global-parameter6-get Commands

	15.14.10. The remote-global-parameter4-get-all, remote-global-parameter6-get-all Commands

	15.14.11. The remote-global-parameter4-set, remote-global-parameter6-set Commands

	15.14.12. The remote-network4-del, remote-network6-del Commands

	15.14.13. The remote-network4-get, remote-network6-get Commands

	15.14.14. The remote-network4-list, remote-network6-list Commands

	15.14.15. The remote-network4-set, remote-network6-set Commands

	15.14.16. The remote-option-def4-del, remote-option-def6-del Commands

	15.14.17. The remote-option-def4-get, remote-option-def6-get Commands

	15.14.18. The remote-option-def4-get-all, remote-option-def6-get-all Commands

	15.14.19. The remote-option-def4-set, remote-option-def6-set Commands

	15.14.20. The remote-option4-global-del, remote-option6-global-del Commands

	15.14.21. The remote-option4-global-get, remote-option6-global-get Commands

	15.14.22. The remote-option4-global-get-all, remote-option6-global-get-all Commands

	15.14.23. The remote-option4-global-set, remote-option6-global-set Commands

	15.14.24. The remote-option4-network-del, remote-option6-network-del Commands

	15.14.25. The remote-option4-network-set, remote-option6-network-set Commands

	15.14.26. The remote-option6-pd-pool-del Command

	15.14.27. The remote-option6-pd-pool-set Command

	15.14.28. The remote-option4-pool-del, remote-option6-pool-del Commands

	15.14.29. The remote-option4-pool-set, remote-option6-pool-set Commands

	15.14.30. The remote-option4-subnet-del, remote-option6-subnet-del Commands

	15.14.31. The remote-option4-subnet-set, remote-option6-subnet-set Commands

	15.14.32. The remote-subnet4-del-by-id, remote-subnet6-del-by-id Commands

	15.14.33. The remote-subnet4-del-by-prefix, remote-subnet6-del-by-prefix Commands

	15.14.34. The remote-subnet4-get-by-id, remote-subnet6-get-by-id Commands

	15.14.35. The remote-subnet4-get-by-prefix, remote-subnet6-get-by-prefix Commands

	15.14.36. The remote-subnet4-list, remote-subnet6-list Commands

	15.14.37. The remote-subnet4-set, remote-subnet6-set Commands

	15.15. ha: High Availability
	15.15.1. Supported Configurations

	15.15.2. Clocks on Active Servers

	15.15.3. Server States

	15.15.4. Scope Transition in a Partner-Down Case

	15.15.5. Load-Balancing Configuration

	15.15.6. Load Balancing with Advanced Classification

	15.15.7. Hot-Standby Configuration

	15.15.8. Passive-Backup Configuration

	15.15.9. Lease Information Sharing

	15.15.10. Controlling Lease-Page Size Limit

	15.15.11. Timeouts

	15.15.12. Pausing the HA State Machine

	15.15.13. Control Agent Configuration

	15.15.14. Controlled Shutdown and Maintenance of DHCP servers

	15.15.15. Upgrading from Older HA Versions

	15.15.16. Control Commands for High Availability
	15.15.16.1. The ha-sync Command

	15.15.16.2. The ha-scopes Command

	15.15.16.3. The ha-continue Command

	15.15.16.4. The ha-heartbeat Command

	15.15.16.5. The status-get Command

	15.15.16.6. The ha-maintenance-start Command

	15.15.16.7. The ha-maintenance-cancel Command

	15.15.16.8. The ha-maintenance-notify Command

	15.16. stat_cmds: Supplemental Statistics Commands
	15.16.1. The stat-lease4-get, stat-lease6-get Commands

	15.17. radius: RADIUS Server Support
	15.17.1. Compilation and Installation of the RADIUS Hook

	15.17.2. RADIUS Hook Configuration

	15.18. host_cache: Caching Host Reservations
	15.18.1. The cache-flush Command

	15.18.2. The cache-clear Command

	15.18.3. The cache-size Command

	15.18.4. The cache-write Command

	15.18.5. The cache-load Command

	15.18.6. The cache-get Command

	15.18.7. The cache-get-by-id Command

	15.18.8. The cache-insert Command

	15.18.9. The cache-remove Command

	15.19. lease_query: Leasequery
	15.19.1. DHCPv4 Leasequery

	15.19.2. DHCPv4 Leasequery Configuration

	15.20. User Contexts in Hooks

	16. Statistics
	16.1. Statistics Overview

	16.2. Statistics Lifecycle

	16.3. Commands for Manipulating Statistics
	16.3.1. The statistic-get Command

	16.3.2. The statistic-reset Command

	16.3.3. The statistic-remove Command

	16.3.4. The statistic-get-all Command

	16.3.5. The statistic-reset-all Command

	16.3.6. The statistic-remove-all Command

	16.3.7. The statistic-sample-age-set Command

	16.3.8. The statistic-sample-age-set-all Command

	16.3.9. The statistic-sample-count-set Command

	16.3.10. The statistic-sample-count-set-all Command

	16.4. Time series

	17. Management API
	17.1. Data Syntax

	17.2. Using the Control Channel

	17.3. Commands Supported by Both the DHCPv4 and DHCPv6 Servers
	17.3.1. The build-report Command

	17.3.2. The config-get Command

	17.3.3. The config-reload Command

	17.3.4. The config-test Command

	17.3.5. The config-write Command

	17.3.6. The leases-reclaim Command

	17.3.7. The libreload Command

	17.3.8. The list-commands Command

	17.3.9. The config-set Command

	17.3.10. The shutdown Command

	17.3.11. The dhcp-disable Command

	17.3.12. The dhcp-enable Command

	17.3.13. The status-get Command

	17.3.14. The server-tag-get Command:

	17.3.15. The config-backend-pull Command:

	17.3.16. The version-get Command

	17.4. Commands Supported by the D2 Server

	17.5. Commands Supported by the Control Agent

	18. Logging
	18.1. Logging Configuration
	18.1.1. Loggers
	18.1.1.1. The name (string) Logger

	18.1.1.2. The severity (string) Logger

	18.1.1.3. The debuglevel (integer) Logger

	18.1.1.4. The output_options (list) Logger
	18.1.1.4.1. The output (string) Option

	18.1.1.4.2. The flush (true of false) Option

	18.1.1.4.3. The maxsize (integer) Option

	18.1.1.4.4. The maxver (integer) Option

	18.1.1.4.5. The pattern (string) Option

	18.1.2. Logging Message Format
	18.1.2.1. Example Logger Configurations

	18.1.3. Logging During Kea Startup

	19. The Kea Shell
	19.1. Overview of the Kea Shell

	19.2. Shell Usage

	20. YANG/NETCONF Support
	20.1. Overview

	20.2. Installing NETCONF
	20.2.1. Installing NETCONF on Ubuntu 18.04

	20.2.2. Installing NETCONF on CentOS 7.5

	20.3. Quick Sysrepo Overview

	20.4. Supported YANG Models

	20.5. Using the NETCONF Agent

	20.6. Configuration

	20.7. A kea-netconf Configuration Example

	20.8. Starting and Stopping the NETCONF Agent

	20.9. A Step-by-Step NETCONF Agent Operation Example
	20.9.1. Setup of NETCONF Agent Operation Example

	20.9.2. Error Handling in NETCONF Operation Example

	20.9.3. NETCONF Operation Example with Two Pools

	20.9.4. NETCONF Operation Example with Two Subnets

	20.9.5. NETCONF Operation Example with Logging

	21. Monitoring Kea with Stork
	21.1. Kea statistics in Grafana

Appendices

	API Reference

	Manual Pages

	Kea Messages Manual

	Acknowledgments

Indices and tables

	Index

	Module Index

	Search Page

1. Introduction

Kea is the next generation of DHCP software developed by ISC. It
supports both DHCPv4 and DHCPv6 protocols along with their extensions,
e.g. prefix delegation and dynamic updates to DNS.

This guide covers Kea version 1.7.8-git.

For information about supported platforms see Supported platforms.

1.1. Supported platforms

In general, this version of Kea will build and run on any POSIX-compliant
system with a C++ compiler (with C++11 support), the Botan cryptographic library,
the log4cplus logging library and the Boost system library.

The Kea build has been checked with GCC g++ 4.8.5 and some later versions,
and Clang 800.0.38 and some later versions.

ISC regularly tests Kea on many operating systems and architectures, but
lacks the resources to test all of them. Consequently, ISC is only able to
offer support on a “best effort” basis for some.

1.1.1. Regularly tested platforms

As of January, 2020, Kea is officially supported on CentOS, Fedora, Ubuntu, Debian, and
FreeBSD systems. Kea-1.7.8-git builds have been tested on:

	CentOS Linux — 7, 8

	Fedora — 31, 32

	Ubuntu — 16.04, 18.04, 20.04

	Debian GNU/Linux — 9, 10

There are currently no plans to port Kea to Windows systems.

1.1.2. Best effort

The following are platforms on which Kea is known to build and run.
ISC makes every effort to fix bugs on these platforms, but may be unable to
do so quickly due to lack of hardware, less familiarity on the part of
engineering staff, and other constraints.

	FreeBSD — 11.3, 12.0

	Alpine Linux — 3.10, 3.11

	macOS — 10.13, 10.14

1.1.3. Community maintained

These systems may not all have the required dependencies for building Kea
easily available, although it will be possible in many cases to compile
those directly from source. The community and interested parties may wish
to help with maintenance, and we welcome patch contributions, although we
cannot guarantee that we will accept them. All contributions will be
assessed against the risk of adverse effect on officially supported
platforms.

Platforms past or close to their respective EOL dates, such as:

	Ubuntu 14.04, 18.10, 19.04, 19.10

	Fedora 30

	CentOS 6

	Debian 8 (Jessie)

	FreeBSD 10.x

1.1.4. Unsupported platforms

These are platforms on which Kea 1.7+ is known not to build or run:

	Windows (all versions)

	Windows Server (all versions)

	Any platform with OpenSSL 1.0.1 or earlier, which does not also have Botan as an alternative

	Any platform with log4cplus version 1.0.2 or earlier.

1.2. Required Software at Run-Time

Running Kea uses various extra software packages which may not be
provided in the default installation of some operating systems, nor in
the standard package collections. You may need to install this required
software separately. (For the build requirements, also see Build Requirements.)

	Kea supports two cryptographic libraries: Botan and OpenSSL. Only one
of them is required to be installed during compilation. Kea uses the
Botan library for C++ (https://botan.randombit.net/), version 2.0 or
later. Note that support for Botan versions earlier than 2.0 was
removed in Kea 1.7.0 and later. As an alternative to Botan, Kea can
use the OpenSSL cryptographic library (https://www.openssl.org/),
version 1.0.2 or later.

	Kea uses the log4cplus C++ logging library
(https://sourceforge.net/p/log4cplus/wiki/Home/). It requires log4cplus version
1.0.3 or later.

	Kea requires the Boost system library (https://www.boost.org/).
Building with the header-only version of Boost is no longer
recommended.

Some optional features of Kea have additional dependencies.

	To store lease information in a MySQL database, Kea requires
MySQL headers and libraries. This is an optional dependency;
Kea can be built without MySQL support.

	To store lease information in a PostgreSQL database, Kea
requires PostgreSQL headers and libraries. This is an optional
dependency; Kea can be built without PostgreSQL support.

	To store lease information in a Cassandra database (CQL),
Kea requires Cassandra headers and libraries. This is an optional
dependency; Kea can be built without Cassandra support.

	Integration with RADIUS is provided in Kea via the hooks library
available to our paid support customers. Use of this library requires
the FreeRadius-client library to be present on the system where Kea
is running. This is an optional dependency; Kea can be built
without RADIUS support.

	Kea provides a NETCONF interface with the
kea-netconf agent. This Kea module is built optionally and requires
Sysrepo software when used. Building Kea with NETCONF support
requires many dependencies to be installed, which are described in
more detail in Installing NETCONF.

1.3. Kea Software

Kea is modular. Part of this modularity is accomplished using multiple
cooperating processes which, together, provide the server functionality.
The following software is included with Kea:

	keactrl — This tool starts, stops, reconfigures, and reports status for
the Kea servers.

	kea-dhcp4 — The DHCPv4 server process. This process responds to
DHCPv4 queries from clients.

	kea-dhcp6 — The DHCPv6 server process. This process responds to
DHCPv6 queries from clients.

	kea-dhcp-ddns — The DHCP Dynamic DNS process. This process acts
as an intermediary between the DHCP servers and DNS servers. It
receives name update requests from the DHCP servers and sends DNS
update messages to the DNS servers.

	kea-admin — A useful tool for database backend maintenance
(creating a new database, checking versions, upgrading, etc.).

	kea-lfc — This process removes redundant information from the
files used to provide persistent storage for the memfile database
backend. While it can be run standalone, it is normally run as and
when required by the Kea DHCP servers.

	kea-ctrl-agent — Kea Control Agent (CA) is a daemon that exposes
a RESTful control interface for managing Kea servers.

	kea-netconf - kea-netconf is an agent that provides a
YANG/NETCONF interface for the Kea environment.

	kea-shell — This simple text client uses the REST interface to
connect to the Kea Control Agent.

	perfdhcp — A DHCP benchmarking tool which simulates multiple
clients to test both DHCPv4 and DHCPv6 server performance.

The tools and modules are covered in full detail in this guide. In
addition, manual pages are also provided in the default installation.

Kea also provides C++ libraries and programmer interfaces for DHCP.
These include detailed developer documentation and code examples.

2. Quick Start

This section describes the basic steps needed to get Kea up and running.
For further details, full customizations, and troubleshooting, see the
respective chapters elsewhere in this Kea Administrator Reference Manual (ARM).

2.1. Quick Start Guide for using tarball

	Install required run-time and build dependencies. See
Build Requirements for details.

	Download the Kea source tarball from the ISC.org downloads
page [https://www.isc.org/download/] or the ISC downloads.isc.org [https://downloads.isc.org/isc/kea/].

	Extract the tarball. For example:

$ tar xvzf kea-1.7.8-git.tar.gz

	Go into the source directory and run the configure script:

$ cd kea-1.7.8-git
$./configure [your extra parameters]

	Build it:

$ make

	Install it (by default it will be placed in /usr/local/, so it
is likely that you will need root privileges for this step):

$ make install

2.2. Quick Start Guide using native packages

Starting with Kea 1.6.0, ISC now provides native RPM, deb and APK
packages, which make Kea installation much easier. Unless you want
to tweak specific compilation options, it is usually easier to install
Kea using native packages.

	Go to Kea on cloudsmith.io [https://cloudsmith.io/~isc/repos/]
and choose Kea version and enter repository.

	Use Set Me Up and follow instructions to add repository
on your system.

	Update system repositories. For example:

$ apt-get update

	Kea is split into various packages. You may check the entire list on cloudsmith.io [https://cloudsmith.io/~isc/repos/] or using apt/yum/dnf. For example:

$ apt-cache search isc-kea

	Install specified packages:

$ sudo apt-get install isc-kea-dhcp6-server

or all packages:

$ sudo apt-get install isc-kea*

or all packages with specifying version number:

$ sudo apt-get install isc-kea*=1.6.2-isc0043420200221140216

	All installed packages should be now available directly, for example:

kea-dhcp6 -c /path/to/your/kea6/config/file.json

or using systemd:

systemctl restart isc-kea-dhcp6-server

keactrl is not available in packages as similar functionality is provided by the native systemctl scripts.

2.3. Quick Start Guide for DHCPv4 and DHCPv6 Services

	Edit the Kea configuration files which by default are installed in
the [kea-install-dir]/etc/kea/ directory. These are:
kea-dhcp4.conf, kea-dhcp6.conf, kea-dhcp-ddns.conf and
kea-ctrl-agent.conf, for DHCPv4 server, DHCPv6 server, D2, and
Control Agent, respectively.

	In order to start the DHCPv4 server in the background, run the
following command (as root):

keactrl start -s dhcp4

Or run the following command to start the DHCPv6 server instead:

keactrl start -s dhcp6

Note that it is also possible to start all servers simultaneously:

keactrl start

	Verify that the Kea server(s) is/are running:

keactrl status

A server status of “inactive” may indicate a configuration error.
Please check the log file (by default named
[kea-install-dir]/var/log/kea-dhcp4.log,
[kea-install-dir]/var/log/kea-dhcp6.log,
[kea-install-dir]/var/log/kea-ddns.log or
[kea-install-dir]/var/log/kea-ctrl-agent.log) for the details of
the error.

	If the server has been started successfully, test that it is
responding to DHCP queries and that the client receives a
configuration from the server; for example, use the ISC DHCP
client [https://www.isc.org/download/].

	Stop running the server(s):

keactrl stop

For instructions specific to your system, please read the
system-specific notes [https://kb.isc.org/docs/installing-kea],
available in the Kea section of ISC’s
Knowledgebase [https://kb.isc.org/docs].

The details of keactrl script usage can be found in Managing Kea with keactrl.

Once you have Kea services up and running, you may consider deploying a dashboard solution
that would monitor running services. For more details, see Monitoring Kea with Stork.

2.4. Running the Kea Servers Directly

The Kea servers can be started directly, without the need to use
keactrl or systemctl. To start the DHCPv4 server run the following command:

kea-dhcp4 -c /path/to/your/kea4/config/file.json

Similarly, to start the DHCPv6 server run the following command:

kea-dhcp6 -c /path/to/your/kea6/config/file.json

3. Installation

3.1. Packages

Starting with Kea 1.6.0, ISC now publishes native RPM, deb and APK
packages along with the tarballs with the source code. The packages
are available on Cloudsmith [https://cloudsmith.io/~isc/repos/] at
https://cloudsmith.io/~isc/repos. You can download the native packages
and install them using the system available in your distribution (such
as dpkg or rpm). Also, you can add the Kea repository to your system,
which will make it easier to install updates. For details, please
go to https://cloudsmith.io/~isc/repos, choose the repository of
interest and then click the Set Me Up button for detailed
instructions.

3.2. Installation Hierarchy

The following is the directory layout of the complete Kea installation.
(All directory paths are relative to the installation directory):

	etc/kea/ — configuration files.

	include/ — C++ development header files.

	lib/ — libraries.

	lib/kea/hooks — additional hooks libraries.

	sbin/ — server software and commands used by the system
administrator.

	share/kea/ — configuration specifications and examples.

	share/doc/kea/ — this guide, other supplementary documentation,
and examples.

	share/man/ — manual pages (online documentation).

	var/lib/kea/ — server identification, and lease databases
files.

	var/log/ - log files.

	var/run/kea - pid and logger lock files.

3.3. Build Requirements

In addition to the run-time requirements (listed in
Required Software at Run-Time), building Kea from source code requires
various development include headers and program development tools.

Note

Some operating systems have split their distribution packages into a
run-time and a development package. You will need to install the
development package versions, which include header files and
libraries, to build Kea from the source code.

Building from source code requires the following software installed on
the system:

	Boost C++ libraries (https://www.boost.org/). The oldest Boost version
used for testing is 1.57 (although it may also work with older
versions). The Boost system library must also be installed.
Installing a header-only version of Boost is no longer recommended.

	OpenSSL (at least version 1.0.1) or Botan (at least version 2).
Note that OpenSSL version 1.0.2 or 1.1.0 or later is strongly recommended.

	log4cplus (at least version 1.0.3) development include headers.

	A C++ compiler (with C++11 support) and standard development headers.
The Kea build has been checked with GCC g++ 4.8.5 and some later versions,
and Clang 800.0.38 and some later versions.

	The development tools automake, libtool, and pkg-config.

	The MySQL client and the client development libraries, when using the
–with-mysql configuration flag to build the Kea MySQL database
backend. In this case, an instance of the MySQL server running
locally or on a machine reachable over a network is required. Note
that running the unit tests requires a local MySQL server.

	The PostgreSQL client and the client development libraries, when
using the –with-pgsql configuration flag to build the Kea PostgreSQL
database backend. In this case an instance of the PostgreSQL server
running locally or on some other machine, reachable over the network
from the machine running Kea, is required. Note that running the unit
tests requires a local PostgreSQL server.

	The cpp-driver from DataStax is needed when using the –with-cql
configuration flag to build Kea with the Cassandra database backend.
In this case, an instance of the Cassandra server running locally or
on some other machine, reachable over the network from the machine
running Kea, is required. Note that running the unit tests requires a
local Cassandra server.

	The FreeRADIUS client library is required to connect to a RADIUS
server. (This is specified using the –with-freeradius configuration
switch.)

	Sysrepo (version 0.7.6 or later) and libyang (version 0.16-r2 or
later) are needed to connect to a Sysrepo database. (This is
specified using the –with-sysrepo switch when running “configure”.)

	googletest (version 1.8 or later) is required when using the –with-gtest
configuration option to build the unit tests.

	The documentation generation tools Sphinx [https://www.sphinx-doc.org/],
texlive with its extensions and Doxygen, if using the –enable-generate-docs
configuration option to create the documentation. Particularly,
in case of Fedora: python3-sphinx, texlive and texlive-collection-latexextra;
in case of Ubuntu: python3-sphinx, python3-sphinx-rtd-theme and texlive???

Visit ISC’s Knowledgebase at https://kb.isc.org/docs/installing-kea for
system-specific installation tips.

3.4. Installation from Source

Although Kea may be available in pre-compiled, ready-to-use packages
from operating system vendors, it is open source software written in
C++. As such, it is freely available in source code form from ISC as a
downloadable tar file. The source code can also be obtained from the Kea
Gitlab repository at https://gitlab.isc.org/isc-projects/kea. This
section describes how to build Kea from the source code.

3.4.1. Download Tar File

The Kea release tarballs may be downloaded from:
https://downloads.isc.org/isc/kea/ .

3.4.2. Retrieve from Git

Downloading this “bleeding edge” code is recommended only for developers
or advanced users. Using development code in a production environment is
not recommended.

Note

When building from source code retrieved via git, additional software
will be required: automake (v1.11 or later), libtoolize, and autoconf
(v2.69 or later). These may need to be installed.

The latest development code is available on GitLab (see
https://gitlab.isc.org/isc-projects/kea). The Kea source is public and
development is done in the “master” branch.

The code can be checked out from
https://gitlab.isc.org/isc-projects/kea.git:

$ git clone https://gitlab.isc.org/isc-projects/kea.git

The code checked out from the git repository does not include the
generated configure script, the Makefile.in files, nor their related build
files. They can be created by running autoreconf with the
--install switch. This will run autoconf, aclocal,
libtoolize, autoheader, automake, and related commands.

Write access to the Kea repository is only granted to ISC staff. If you
are a developer planning to contribute to Kea, please check our
Contributor’s
Guide [https://gitlab.isc.org/isc-projects/kea/blob/master/contributors-guide.md].
The Kea Developer’s
Guide [https://jenkins.isc.org/job/Kea_doc/doxygen/] contains more
information about the process, as well as describes the requirements for
contributed code to be accepted by ISC.

3.4.3. Configure Before the Build

Kea uses the GNU Build System to discover build environment details. To
generate the makefiles using the defaults, simply run:

$./configure

Run ./configure with the --help switch to view the different
options. Some commonly used options are:

	--prefix
Define the installation location (the default is /usr/local).

	--with-mysql
Build Kea with code to allow it to store leases and host reservations
in a MySQL database.

	--with-pgsql
Build Kea with code to allow it to store leases and host reservations
in a PostgreSQL database.

	--with-cql
Build Kea with code to allow it to store leases and host reservations
in a Cassandra (CQL) database.

	--with-log4cplus
Define the path to find the Log4cplus headers and libraries. Normally
this is not necessary.

	--with-boost-include
Define the path to find the Boost headers. Normally this is not
necessary.

	--with-botan-config
Specify the path to the botan-config script to build with Botan for
cryptographic functions. It is preferable to use OpenSSL (see below).

	--with-openssl
Replace Botan by the OpenSSL the cryptographic library. By default
configure searches for a valid Botan installation. If one is not
found, it searches for OpenSSL. Normally this is not necessary.

	--enable-shell
Build the optional kea-shell tool (more in The Kea Shell).
The default is to not build it.

	--with-site-packages
Only useful when kea-shell is enabled. It causes the kea-shell
python packages to be installed in specified directory. This is
mostly useful for Debian related distros. While most systems store
python packages in ${prefix}/usr/lib/pythonX/site-packages, Debian
introduced separate directory for packages installed from DEB. Such
python packages are expected to be installed in
/usr/lib/python3/dist-packages.

	--enable-perfdhcp
Build the optional perfdhcp DHCP benchmarking tool. The default
is to not build it.

Note

The --runstatedir in the installation directories is particular.
There are three cases:

	You use autoconf 2.70 or greater which supports this, but this autoconf
version has not been released yet.

	You use autoconf 2.69 patched to add support of this. In this case and the
previous simply use when needed the``–runstatedir`` configure parameter.

	There is no support (the configure parameter is not recognized and configure
directly raises an error). For autoconf 2.69 the runstatedir environment
variable is supported so simply remove the -- before runstatedir
in the configure script call, e.g.: ./configure runstatedir=/opt/run ...

Note

For instructions concerning the installation and configuration of
database backends for Kea, see DHCP Database Installation and Configuration.

There are also many additional options that are typically not necessary for
regular users. However, they may be useful for package maintainers,
developers, or people who want to extend Kea code or send patches:

	--with-gtest, --with-gtest-source
Enable the building of the C++ Unit Tests using the Google Test
framework. This option specifies the path to the gtest source. (If
the framework is not installed on your system, it can be downloaded
from https://github.com/google/googletest.)

	--enable-generate-docs
Enable the rebuilding Kea documentation. ISC publishes Kea
documentation for each release; however, in some cases you may want
to rebuild it. For example, if you want to change something in the
docs, or want to generate new ones from git sources that are not
released yet.

	--enable-generate-parser
Many Kea components have parsers implemented using flex (.ll files)
and bison (.yy files). Kea sources have C++/h files generated out
from them. By default Kea does not use flex or bison to avoid
requiring installation of unnecessary dependencies for users.
However, if you change anything in the parses (such as adding a new
parameter), you will need to use flex and bison to regenerate
parsers. This option lets you do that.

	--enable-generate-messages
Enable the regeneration of messages files from their messages source
files, e.g. regenerate xxx_messages.h and xxx_messages.cc from
xxx_messages.mes using the Kea message compiler. By default Kea is
built using these .h and .cc files from the distribution. However, if
you change anything in a .mes file (such as adding a new message), you
will need to build and use the Kea message compiler. This option lets
you do that.

	--with-benchmark, --with-benchmark-source
Enable the building of the database backend benchmarks using the
Google Benchmark framework. This option specifies the path to the
gtest source. (If the framework is not installed on your system, it
can be downloaded from https://github.com/google/benchmark.)
This support is experimental.

For example, the following command configures Kea to find the Boost
headers in /usr/pkg/include, specifies that PostgreSQL support should be
enabled, and sets the installation location to /opt/kea:

$./configure \
 --with-boost-include=/usr/pkg/include \
 --with-pgsql=/usr/local/bin/pg_config \
 --prefix=/opt/kea

If you have any problems with building Kea using the header-only Boost
code, or you’d like to use the Boost system library (assumed for the
sake of this example to be located in /usr/pkg/lib):

$./configure \
 --with-boost-libs=-lboost_system \
 --with-boost-lib-dir=/usr/pkg/lib

If configure fails, it may be due to missing or old dependencies.

If configure succeeds, it displays a report with the parameters used
to build the code. This report is saved into the file config.report
and is also embedded into the executable binaries, e.g., kea-dhcp4.

3.4.4. Build

After the configure step is complete, build the executables from the C++
code and prepare the Python scripts by running the command:

$ make

3.4.5. Install

To install the Kea executables, support files, and documentation, issue
the command:

$ make install

Do not use any form of parallel or job server options (such as GNU
make’s -j option) when performing this step; doing so may cause
errors.

Note

The install step may require superuser privileges.

If required, run ldconfig as root with /usr/local/lib (or with
prefix/lib if configured with –prefix) in /etc/ld.so.conf (or the
relevant linker cache configuration file for your OS):

$ ldconfig

Note

If you do not run ldconfig where it is required, you may see
errors like the following:

program: error while loading shared libraries: libkea-something.so.1:
cannot open shared object file: No such file or directory

3.5. DHCP Database Installation and Configuration

Kea stores its leases in a lease database. The software has been written
in a way that makes it possible to choose which database product should
be used to store the lease information. Kea supports four
database backends: MySQL, PostgreSQL, Cassandra, and memfile. To limit
external dependencies, MySQL, PostgreSQL, and Cassandra support are
disabled by default and only memfile is available. Support for the
optional external database backend must be explicitly included when Kea
is built. This section covers the building of Kea with one of the
optional backends and the creation of the lease database.

Note

When unit tests are built with Kea (i.e. the –with-gtest configuration
option is specified), the databases must be manually pre-configured
for the unit tests to run. The details of this configuration can be
found in the Kea Developer’s
Guide [https://jenkins.isc.org/job/Kea_doc/doxygen/].

3.5.1. Building with MySQL Support

Install MySQL according to the instructions for your system. The client
development libraries must be installed.

Build and install Kea as described in Installation,
with the following modification. To enable the MySQL database code, at
the “configure” step (see Configure Before the Build),
the –with-mysql switch should be specified:

$./configure [other-options] --with-mysql

If MySQL was not installed in the default location, the location of the
MySQL configuration program “mysql_config” should be included with the
switch, i.e.

$./configure [other-options] --with-mysql=path-to-mysql_config

See First-Time Creation of the MySQL Database for details regarding MySQL
database configuration.

3.5.2. Building with PostgreSQL support

Install PostgreSQL according to the instructions for your system. The
client development libraries must be installed. Client development
libraries are often packaged as “libpq”.

Build and install Kea as described in Installation,
with the following modification. To enable the PostgreSQL database code,
at the “configure” step (see Configure Before the Build), the –with-pgsql switch should be specified:

$./configure [other-options] --with-pgsql

If PostgreSQL was not installed in the default location, the location of
the PostgreSQL configuration program “pg_config” should be included with
the switch, i.e.

$./configure [other-options] --with-pgsql=path-to-pg_config

See First-Time Creation of the PostgreSQL Database for details regarding PostgreSQL
database configuration.

3.5.3. Building with CQL (Cassandra) Support

Install Cassandra according to the instructions for your system. The
Cassandra project website contains useful pointers:
https://cassandra.apache.org.

If you have a cpp-driver package available as binary or as source,
simply install or build and install the package. Then build and install
Kea as described in Installation. To enable the
Cassandra (CQL) database code, at the “configure” step (see Configure Before the Build), enter:

$./configure [other-options] --with-cql=path-to-pkg-config

Note if pkg-config is at its standard location (and thus in the
shell path) you do not need to supply its path. If it does not work
(e.g. no pkg-config, package not available in pkg-config with the
cassandra name), you can still use the cql_config script in tools/
as described below.

Download and compile cpp-driver from DataStax. For details regarding
dependencies for building cpp-driver, see the project homepage
https://github.com/datastax/cpp-driver. In June 2016, the following
commands were used:

$ git clone https://github.com/datastax/cpp-driver
$ cd cpp-driver
$ mkdir build
$ cd build
$ cmake ..
$ make

As of January 2019, cpp-driver does not include cql_config script. Work
is in progress to contribute such a script to the cpp-driver project
but, until that is complete, intermediate steps need to be conducted. A
cql_config script is present in the tools/ directory of the Kea sources.
Before using it, please create a cql_config_defines.sh file in the same
directory (there is an example available in cql_config_define.sh.sample;
you may copy it over to cql_config_defines.sh and edit the path
specified in it) and change the environment variable CPP_DRIVER_PATH to
point to the directory where the cpp-driver sources are located. Make
sure that appropriate access rights are set on this file. It should be
executable by the system user building Kea.

Build and install Kea as described in Installation,
with the following modification. To enable the Cassandra (CQL) database
code, at the “configure” step (see Configure Before the Build), enter:

$./configure [other-options] --with-cql=path-to-cql_config

3.6. Hammer Building Tool

An optional building tool called Hammer was introduced with Kea 1.6.0. It
is a Python 3 script that lets users automate tasks related to building
Kea, such as setting up virtual machines, installing Kea dependencies,
compiling Kea with various options, running unit-tests and more. This
tool was created primarily for internal QA purposes at ISC and it is not
included in the Kea distribution. However, it is available in the Kea
git repository. This tool was developed primarily for internal purposes
and ISC cannot guarantee its proper operation. If you decide to use it,
please do so with care.

Note

Use of this tool is completely optional. Everything it does can be
done manually.

The first-time user is strongly encouraged to look at Hammer’s built-in
help:

$./hammer.py --help

It will list available parameters.

Hammer is able to set up various operating systems running either in LXC
or in VirtualBox. To list of supported systems, use the
supported-systems command:

$./hammer.py supported-systems
fedora:
 - 27: lxc, virtualbox
 - 28: lxc, virtualbox
 - 29: lxc, virtualbox
centos:
 - 7: lxc, virtualbox
rhel:
 - 8: virtualbox
ubuntu:
 - 16.04: lxc, virtualbox
 - 18.04: lxc, virtualbox
 - 18.10: lxc, virtualbox
debian:
 - 8: lxc, virtualbox
 - 9: lxc, virtualbox
freebsd:
 - 11.2: virtualbox
 - 12.0: virtualbox

It is also possible to run the build locally, in the current system (if the OS
is supported).

First, you must install the Hammer dependencies: Vagrant
and either VirtualBox or LXC. To make life easier, Hammer can install
Vagrant and the required Vagrant plugins using the command:

$./hammer.py ensure-hammer-deps

VirtualBox and LXC need to be installed manually.

The basic functions provided by Hammer are to prepare the build environment
and perform the actual build, and to run the unit tests locally in the current
system. This can be achieved by running the command:

$./hammer.py build -p local

The scope of the process can be defined using –with (-w) and –without
(-x) options. By default the build command will build Kea with
documentation, install it locally, and run unit tests.

To exclude the installation and generation of docs, type:

$./hammer.py build -p local -x install docs

The basic scope can be extended by: mysql, pgsql, cql, native-pkg,
radius, shell, and forge.

Note

To build Kea locally, Hammer dependencies like Vagrant are
not needed.

Hammer can be told to set up a new virtual machine with a specified
operating system, without the build:

$./hammer.py prepare-system -p virtualbox -s freebsd -r 12.0

This way we can prepare a system for our own use. To get to such a system
using SSH, invoke:

$./hammer.py ssh -p virtualbox -s freebsd -r 12.0

It is possible to speed up subsequent Hammer builds. To achieve this
Hammer employs ccache [https://ccache.samba.org/]. During
compilation, ccache stores objects in a shared folder. In subsequent runs,
instead of doing an actual compilation, ccache returns the stored earlier
objects. The cache with these objects for reuse needs to be stored outside of VM
or LXC. To indicate the folder, you must indicate the –ccache-dir
parameter for Hammer. In the indicated folder, there are separate stored objects for each target
operating system.

$./hammer.py build -p lxc -s ubuntu -r 18.04 --ccache-dir ~/kea-ccache

Note

ccache is currently only supported for LXC in Hammer; support
for VirtualBox may be added later.

For more information check:

$./hammer.py --help

3.7. Running Kea from non-root account on Linux

Both Kea DHCPv4 and DHCPv6 servers perform operations that in general require root access
privileges. In particular, DHCPv4 opens raw sockets and both DHCPv4 and DHCPv6 open UDP sockets on
privileged ports. However, with some extra system configuration, it is possible to run Kea from
non-root accounts.

First, a regular user account must be created:

useradd admin

Then, change the binaries ownership and group to new user. Note your path may be different. Please
refer to the --prefix parameter passed to the configure script.:

chown -R admin /opt/kea
chgrp -R admin /opt/kea
chown -R admin /var/log/kea-dhcp4.log
chgrp -R admin /var/log/kea-dhcp4.log
chown -R admin /var/log/kea-dhcp6.log
chgrp -R admin /var/log/kea-dhcp6.log

Assuming you are using systemd, you also should modify its service file
(e.g. /etc/systemd/system/kea-dhcp6.service):

User=admin
Group=admin

The most important step is to set capabilities of the binaries. Refer to man capabilities to get
more information.

setcap 'cap_net_bind_service=+ep' /opt/kea/sbin/kea-dhcp4
setcap 'cap_net_raw=+ep' /opt/kea/sbin/kea-dhcp4
setcap 'cap_net_bind_service=+ep' /opt/kea/sbin/kea-dhcp6

After this step is complete, the admin user should be able to run Kea. Note that DHCPv4 server by
default opens raw sockets. If your network is only using relayed traffic, you can instruct Kea to
use regular UDP sockets (refer to dhcp-socket-type parameter in the
Interface Configuration section) and the cap_net_raw capability can be skipped.

Note

An alternative approach to avoiding running Kea with root privileges assumes instructing Kea to
use non-privileged (greater than 1024) posts and redirecting traffic. This, however, will work
only for relayed traffic. This approach in general is considered experimental and not tested
enough for deployment in production environment. Use with caution!

To use this approach, configure the server to listen on other non privileged port (eg: 1547
and 1548) by running the process with -p option in /etc/systemd/system/kea-dhcp4.service:

ExecStart=/opt/kea/sbin/kea-dhcp4 -d -c /etc/kea/kea-dhcp4.conf -p 2067

and /etc/systemd/system/kea-dhcp4.service:

ExecStart=/opt/kea/sbin/kea-dhcp6 -d -c /etc/kea/kea-dhcp6.conf -p 1547

and then configure port redirection with iptables and ip6tables for new ports (eg: 1547
and 1548). Make sure you replace ens4 with your specific interface name.

iptables -t nat -A PREROUTING -i ens4 -p udp --dport 67 -j REDIRECT --to-port 2067
iptables -t nat -A PREROUTING -i ens4 -p udp --dport 2068 -j REDIRECT --to-port 68
ip6tables -t nat -A PREROUTING -i ens4 -p udp --dport 547 -j REDIRECT --to-port 1547
ip6tables -t nat -A PREROUTING -i ens4 -p udp --dport 1548 -j REDIRECT --to-port 548

4. Kea Database Administration

4.1. Databases and Database Version Numbers

Kea may be configured to use a database as a storage for leases or as a
source of servers’ configurations and host reservations (i.e. static
assignments of addresses, prefixes, options, etc.). Kea
updates introduce changes to the database schemas to faciliate new
features and correct discovered issues with the existing schemas.

A given version of Kea expects a particular structure in the backend and
checks for this by examining the version of the database it is using.
Separate version numbers are maintained for backends, independent of the
version of Kea itself. It is possible that the backend version will stay
the same through several Kea revisions; similarly, it is possible that
the version of the backend may go up several revisions during a Kea
upgrade. Versions for each backend are independent, so an increment in
the MySQL backend version does not imply an increment in that of
PostgreSQL.

Backend versions are specified in a major.minor format. The minor number
is increased when there are backwards-compatible changes introduced; for
example, the addition of a new index. It is desirable but not mandatory
to apply such a change; running an older backend version is possible.
(Although, in the example given, running without the new index may
introduce a performance penalty.) On the other hand, the
major number is increased when an incompatible change is introduced; for
example, an extra column is added to a table. If Kea is run on a
backend that is too old (as signified by a mismatched backend major
version number), Kea will refuse to run; administrative action will be
required to upgrade the backend.

4.2. The kea-admin Tool

To manage the databases, Kea provides the kea-admin tool. It is able
to initialize a new backend, check its version number, perform a backend
upgrade, and dump lease data to a text file.

kea-admin takes two mandatory parameters: command and
backend. Additional, non-mandatory options may be specified. The
currently supported commands are:

	db-init — Initializes a new database schema. This is useful
during a new Kea installation. The database is initialized to the
latest version supported by the version of the software being
installed.

	db-version — Reports the database backend version number. This
is not necessarily equal to the Kea version number as each backend
has its own versioning scheme.

	db-upgrade — Conducts a database schema upgrade. This is
useful when upgrading Kea.

	lease-dump — Dumps the contents of the lease database (for MySQL,
PostgreSQL, or CQL backends) to a CSV (comma-separated values) text
file. The first line of the file contains the column names. This is
meant to be used as a diagnostic tool, so it provides a portable,
human-readable form of the lease data.

Note

In previous versions of Kea earlier than 1.6.0 db-init, db-version and
db-upgrade commands were named lease-init, lease-version and
lease-upgrade.

backend specifies the type of backend database. The currently
supported types are:

	memfile — Lease information is stored on disk in a text file.

	mysql — Information is stored in a MySQL relational database.

	pgsql — Information is stored in a PostgreSQL relational
database.

	cql — Information is stored in an Apache Cassandra database.

Additional parameters may be needed, depending on the setup and
specific operation: username, password, and database name or the
directory where specific files are located. See the appropriate manual
page for details (man 8 kea-admin).

4.3. Supported Backends

The following table presents the capabilities of available backends.
Please refer to the specific sections dedicated to each backend to
better understand their capabilities and limitations. Choosing the right
backend may be essential for the success of the deployment.

List of available backends

	Feature

	Memfile

	MySQL

	PostgreSQL

	CQL
(Cassandra)

	Status

	Stable

	Stable

	Stable

	Experimental

	Data format

	CSV file

	SQL RMDB

	SQL RMDB

	NoSQL
database
(Cassandra)

	Leases

	yes

	yes

	yes

	yes

	Host
Reservations

	no

	yes

	yes

	yes

	Options
defined on
per host
basis

	no

	yes

	yes

	yes

	Configuration
Backend

	no

	yes

	no

	no

4.3.1. Memfile

The memfile backend is able to store lease information, but cannot
store host reservation details; these must be stored in the
configuration file. (There are no plans to add a host reservations
storage capability to this backend.)

No special initialization steps are necessary for the memfile backend.
During the first run, both kea-dhcp4 and kea-dhcp6 will create
an empty lease file if one is not present. Necessary disk-write
permission is required.

4.3.1.1. Upgrading Memfile Lease Files from an Earlier Version of Kea

There are no special steps required to upgrade memfile lease files from
an earlier version of Kea to a new version of Kea. During startup the
servers will check the schema version of the lease files against their
own. If there is a mismatch, the servers will automatically launch the
LFC process to convert the files to the server’s schema version. While
this mechanism is primarily meant to ease the process of upgrading to
newer versions of Kea, it can also be used for downgrading should the
need arise. When upgrading, any values not present in the original lease
files will be assigned appropriate default values. When downgrading, any
data present in the files but not in the server’s schema will be
dropped. To convert the files manually prior to starting the
servers, run the LFC process. See The LFC Process for more information.

4.3.2. MySQL

MySQL is able to store leases, host reservations, options defined on a
per-host basis, and a subset of the server configuration parameters
(serving as a configuration backend). This section can be safely ignored
if the data will be stored in other backends.

4.3.2.1. First-Time Creation of the MySQL Database

When setting up the MySQL database for the first time, the
database area must be created within MySQL, and the MySQL user ID under
which Kea will access the database must be set up. This needs to be done manually,
rather than via kea-admin.

To create the database:

	Log into MySQL as “root”:

$ mysql -u root -p
Enter password:
mysql>

	Create the MySQL database:

mysql> CREATE DATABASE database_name;

(database_name is the name chosen for the database.)

	Create the user under which Kea will access the database (and give it
a password), then grant it access to the database tables:

mysql> CREATE USER 'user-name'@'localhost' IDENTIFIED BY 'password';
mysql> GRANT ALL ON database-name.* TO 'user-name'@'localhost';

(user-name and password are the user ID and password being used to
allow Kea access to the MySQL instance. All apostrophes in the
command lines above are required.)

	Create the database.

You’ll need to exit mysql client

mysql> quit
Bye

and then use the kea-admin tool to create the database.

$ kea-admin db-init mysql -u database-user -p database-password -n database-name

While it is possible to create the database from within mysql client, we recommend you
use the kea-admin tool as it performs some necessary validations to ensure Kea can
access the database at runtime. Among those checks is that the schema does not contain
any pre-existing tables. If there are any pre-existing tables they must be removed
manaully. An additional check examines the user’s ability to create functions and
triggers. If you encounter the following error:

ERROR 1419 (HY000) at line 1: You do not have the SUPER privilege and binary logging is
enabled (you *might* want to use the less safe log_bin_trust_function_creators variable)
ERROR/kea-admin: mysql_can_create cannot trigger, check user permissions, mysql status = 1
mysql: [Warning] Using a password on the command line interface can be insecure.
ERROR/kea-admin: Create failed, the user, keatest, has insufficient privileges.

Then user does not have the necessary permissions to create functions or triggers.
The simplest way around this is to set the global MySQL variable, log_bin_trust_function_creators to 1
via mysql client. Note you must do this as a user with SUPER privileges:

mysql> set @@global.log_bin_trust_function_creators = 1;
Query OK, 0 rows affected (0.00 sec)

If you choose to create the database with mysql directly, you may do as as follows:

mysql> CONNECT database-name;
mysql> SOURCE path-to-kea/share/kea/scripts/mysql/dhcpdb_create.mysql

(path-to-kea is the location where Kea is installed.)

The database may also be dropped manually as follows:

mysql> CONNECT database-name;
mysql> SOURCE path-to-kea/share/kea/scripts/mysql/dhcpdb_drop.mysql

(path-to-kea is the location where Kea is installed.)

Warning

Dropping the database will result in the unrecoverable loss of any data it contains.

	Exit MySQL:

mysql> quit
Bye

If the tables were not created in Step 4, run the kea-admin tool
to create them now:

$ kea-admin db-init mysql -u database-user -p database-password -n database-name

Do not do this if the tables were created in Step 4. kea-admin
implements rudimentary checks; it will refuse to initialize a database
that contains any existing tables. To start from scratch,
all must be removed data manually. (This process is a manual operation
on purpose, to avoid possibly irretrievable mistakes by kea-admin.)

4.3.2.2. Upgrading a MySQL Database from an Earlier Version of Kea

Sometimes a new Kea version may use a newer database schema, so the
existing database will need to be upgraded. This can be done using the
kea-admin db-upgrade command.

To check the current version of the database, use the following command:

$ kea-admin db-version mysql -u database-user -p database-password -n database-name

(See Databases and Database Version Numbers
for a discussion about versioning.) If the version does not match the
minimum required for the new version of Kea (as described in the release
notes), the database needs to be upgraded.

Before upgrading, please make sure that the database is backed up. The
upgrade process does not discard any data, but depending on the nature
of the changes, it may be impossible to subsequently downgrade to an
earlier version. To perform an upgrade, issue the following command:

$ kea-admin db-upgrade mysql -u database-user -p database-password -n database-name

Note

To search host reservations by hostname it is critical the collation of
the hostname column in the host table to be case-insensitive. Fortunately
the default collation in MySQL is case-insensitive. You can verify this
on your MySQL installation by:

mysql> SELECT COLLATION('');
+-----------------+
| COLLATION('') |
+-----------------+
| utf8_general_ci |
+-----------------+

According to the naming of collations when the name finishes by _ci
the collation is case-insensitive.

4.3.2.3. Simple MySQL tweak to gain performance

Changing MySQL internal value innodb_flush_log_at_trx_commit from default value
1 to 2 can result with huge gain in Kea performance. It can be set per session for testing:

mysql> SET GLOBAL innodb_flush_log_at_trx_commit=2;
mysql> SHOW SESSION VARIABLES LIKE 'innodb_flush_log%';

or permanently in /etc/mysql/my.cnf:

[mysqld]
innodb_flush_log_at_trx_commit=2

Be aware that changing this value can result with problems during data recovery
after crash, we strongly recommend to check MySQL documentation [https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit].

4.3.3. PostgreSQL

PostgreSQL is able to store leases, host reservations, and options
defined on a per-host basis. This step can be safely ignored if
other database backends will be used.

4.3.3.1. First-Time Creation of the PostgreSQL Database

The first task is to create both the database and the user under
which the servers will access it. A number of steps are required:

	Log into PostgreSQL as “root”:

$ sudo -u postgres psql postgres
Enter password:
postgres=#

	Create the database:

postgres=# CREATE DATABASE database-name;
CREATE DATABASE
postgres=#

(database-name is the name chosen for the database.)

	Create the user under which Kea will access the database (and give it
a password), then grant it access to the database:

postgres=# CREATE USER user-name WITH PASSWORD 'password';
CREATE ROLE
postgres=# GRANT ALL PRIVILEGES ON DATABASE database-name TO user-name;
GRANT
postgres=#

	Exit PostgreSQL:

postgres=# \q
Bye
$

	At this point, create the database tables either
using the kea-admin tool, as explained in the next section
(recommended), or manually. To create the tables manually, enter the
following command. Note that PostgreSQL will prompt the administrator to enter the
new user’s password that was specified in Step 3. When the command
completes, Kea will return to the shell prompt. The
output should be similar to the following:

$ psql -d database-name -U user-name -f path-to-kea/share/kea/scripts/pgsql/dhcpdb_create.pgsql
Password for user user-name:
CREATE TABLE
CREATE INDEX
CREATE INDEX
CREATE TABLE
CREATE INDEX
CREATE TABLE
START TRANSACTION
INSERT 0 1
INSERT 0 1
INSERT 0 1
COMMIT
CREATE TABLE
START TRANSACTION
INSERT 0 1
COMMIT
$

(path-to-kea is the location where Kea is installed.)

If instead an error is encountered, such as:

psql: FATAL: no pg_hba.conf entry for host "[local]", user "user-name", database "database-name", SSL off

… the PostgreSQL configuration will need to be altered. Kea uses
password authentication when connecting to the database and must have
the appropriate entries added to PostgreSQL’s pg_hba.conf file. This
file is normally located in the primary data directory for the
PostgreSQL server. The precise path may vary depending on the
operating system and version, but the default location for PostgreSQL
9.3 on Centos 6.5 is: /var/lib/pgsql/9.3/data/pg_hba.conf.

Assuming Kea is running on the same host as PostgreSQL, adding lines
similar to the following should be sufficient to provide
password-authenticated access to Kea’s database:

local database-name user-name password
host database-name user-name 127.0.0.1/32 password
host database-name user-name ::1/128 password

These edits are primarily intended as a starting point, and are not a
definitive reference on PostgreSQL administration or database
security. Please consult the PostgreSQL user manual before making
these changes, as they may expose other databases that are running. It
may be necessary to restart PostgreSQL in order for the changes to
take effect.

4.3.3.2. Initialize the PostgreSQL Database Using kea-admin

If the tables were not created manually, do so now by
running the kea-admin tool:

$ kea-admin db-init pgsql -u database-user -p database-password -n database-name

Do not do this if the tables were already created manually. kea-admin
implements rudimentary checks; it will refuse to initialize a database
that contains any existing tables. To start from scratch,
all data must be removed manually. (This process is a manual operation
on purpose, to avoid possibly irretrievable mistakes by kea-admin.)

4.3.3.3. Upgrading a PostgreSQL Database from an Earlier Version of Kea

The PostgreSQL database schema can be upgraded using the same tool and
commands as described in Upgrading a MySQL Database from an Earlier Version of Kea, with the exception that the “pgsql”
database backend type must be used in the commands.

Use the following command to check the current schema version:

$ kea-admin db-version pgsql -u database-user -p database-password -n database-name

Use the following command to perform an upgrade:

$ kea-admin db-upgrade pgsql -u database-user -p database-password -n database-name

4.3.4. Cassandra

Cassandra (sometimes for historical reasons referred to in documentation
and commands as CQL) is the newest backend added to Kea; initial
development was contributed by Deutsche Telekom. The Cassandra backend
is able to store leases, host reservations, and options defined on a
per-host basis.

Cassandra must be properly set up if Kea is to store information
in it. This section can be safely ignored if the
data will be stored in other backends.

4.3.4.1. First-Time Creation of the Cassandra Database

When setting up the Cassandra database for the first time,
the keyspace area within it must be created. This needs to be done
manually; it cannot be performed by kea-admin.

To create the database:

	Export CQLSH_HOST environment variable:

$ export CQLSH_HOST=localhost

	Log into CQL:

$ cqlsh
cql>

	Create the CQL keyspace:

cql> CREATE KEYSPACE keyspace-name WITH replication = {'class' : 'SimpleStrategy','replication_factor' : 1};

(keyspace-name is the name chosen for the keyspace.)

	At this point, the database tables can be created.
(It is also possible to exit Cassandra and create the tables using
the kea-admin tool, as explained below.) To do this:

cqslh -k keyspace-name -f path-to-kea/share/kea/scripts/cql/dhcpdb_create.cql

(path-to-kea is the location where Kea is installed.)

If the tables were not created in Step 4, do so now by
running the kea-admin tool:

$ kea-admin db-init cql -n database-name

Do not do this if the tables were created in Step 4. kea-admin
implements rudimentary checks; it will refuse to initialize a database
that contains any existing tables. To start from scratch,
all data must be removed manually. (This process is a manual operation
on purpose, to avoid possibly irretrievable mistakes by kea-admin.)

4.3.4.2. Upgrading a Cassandra Database from an Earlier Version of Kea

Sometimes a new Kea version may use a newer database schema, so the
existing database will need to be upgraded. This can be done using the
kea-admin db-upgrade command.

To check the current version of the database, use the following command:

$ kea-admin db-version cql -n database-name

(See Databases and Database Version Numbers
for a discussion about versioning.) If the version does not match the
minimum required for the new version of Kea (as described in the release
notes), the database needs to be upgraded.

Before upgrading, please make sure that the database is backed up. The
upgrade process does not discard any data, but depending on the nature
of the changes, it may be impossible to subsequently downgrade to an
earlier version. To perform an upgrade, issue the following command:

$ kea-admin db-upgrade cql -n database-name

4.3.5. Using Read-Only Databases with Host Reservations

If a read-only database is used for storing host reservations, Kea must
be explicitly configured to operate on the database in read-only mode.
Sections Using Read-Only Databases for Host Reservations with DHCPv4 and
Using Read-Only Databases for Host Reservations with DHCPv6 describe when such
a configuration may be required, and how to configure Kea to operate in
this way for both DHCPv4 and DHCPv6.

4.3.6. Limitations Related to the Use of SQL Databases

4.3.6.1. Year 2038 Issue

The lease expiration time is stored in the SQL database for each lease
as a timestamp value. Kea developers observed that the MySQL database
doesn’t accept timestamps beyond 2147483647 seconds (the maximum signed
32-bit number) from the beginning of the UNIX epoch (00:00:00 on 1
January 1970). Some versions of PostgreSQL do accept greater values, but
the value is altered when it is read back. For this reason, the lease
database backends put a restriction on the maximum timestamp to be
stored in the database, which is equal to the maximum signed 32-bit
number. This effectively means that the current Kea version cannot store
leases whose expiration time is later than 2147483647 seconds since the
beginning of the epoch (around year 2038). This will be fixed when the
database support for longer timestamps is available.

5. Kea Configuration

Kea uses JSON structures to represent server configurations. The
following sections describe how the configuration structures are
organized.

5.1. JSON Configuration

JSON is the notation used throughout the Kea project. The most obvious
usage is for the configuration file, but JSON is also used for sending
commands over the Management API (see Management API) and for
communicating between DHCP servers and the DDNS update daemon.

Typical usage assumes that the servers are started from the command
line, either directly or using a script, e.g. keactrl. The
configuration file is specified upon startup using the -c parameter.

5.1.1. JSON Syntax

Configuration files for the DHCPv4, DHCPv6, DDNS, Control Agent, and
NETCONF modules are defined in an extended JSON format. Basic JSON is
defined in RFC 7159 [https://tools.ietf.org/html/rfc7159] and ECMA
404 [https://www.ecma-international.org/publications/standards/Ecma-404.htm].
In particular, the only boolean values allowed are true or false (all
lowercase). The capitalized versions (True or False) are not accepted.

Kea components use an extended JSON with additional features allowed:

	shell comments: any text after the hash (#) character is ignored.

	C comments: any text after the double slashes (//) character is
ignored.

	Multiline comments: any text between /* and */ is ignored. This
commenting can span multiple lines.

	File inclusion: JSON files can include other JSON files by using a
statement of the form <?include “file.json”?>.

The configuration file consists of a single object (often colloquially
called a map) started with a curly bracket. It comprises one or more of
the “Dhcp4”, “Dhcp6”, “DhcpDdns”, “Control-agent”, and “Netconf” objects.
It is possible to define additional elements but they will be ignored.

A very simple configuration for DHCPv4 could look like this:

The whole configuration starts here.
{
 # DHCPv4 specific configuration starts here.
 "Dhcp4": {
 "interfaces-config": {
 "interfaces": ["eth0"],
 "dhcp-socket-type": "raw"
 },
 "valid-lifetime": 4000,
 "renew-timer": 1000,
 "rebind-timer": 2000,
 "subnet4": [{
 "pools": [{ "pool": "192.0.2.1-192.0.2.200" }],
 "subnet": "192.0.2.0/24"
 }],

 # Now loggers are inside the DHCPv4 object.
 "loggers": [{
 "name": "*",
 "severity": "DEBUG"
 }]
 }

The whole configuration structure ends here.
}

More examples are available in the installed share/doc/kea/examples
directory.

Note

The “Logging” element is removed in Kea 1.6.0 and its contents (the
“loggers” object) moved inside the configuration objects (maps) for the
respective Kea modules. For example: the “Dhcp4” map contains the
“loggers” object specifying logging configuration for the DHCPv4
server. Backward compatibility is maintained until at least Kea 1.7.0
release; it will be possible to specify the “Logging” object at the top
configuration level and “loggers” objects at the module configuration
level. Ultimately, support for the top-level “Logging” object will be
removed.

The specification of several supported elements (e.g. “Dhcp4”,
“Dhcp6”) in a single configuration file can be confusing and works
badly with the commands that fetch and write new configurations.
Support for it will be removed in a future release of Kea, after
which each component will require its own configuration file.

To avoid repetition of mostly similar structures, examples in the rest
of this guide will showcase only the subset of parameters appropriate
for a given context. For example, when discussing the IPv6 subnets
configuration in DHCPv6, only subnet6 parameters will be mentioned. It
is implied that the remaining elements (the global map that holds Dhcp6
and Logging) are present, but they are omitted for clarity. Usually,
locations where extra parameters may appear are denoted by an ellipsis
(…).

5.1.2. Comments and User Context

You can specify shell, C or C++ style comments in the JSON configuration file if
you use the file locally. This is convenient and works in simple cases where
your configuration is kept statically using local file. However, since comments
are not part of JSON syntax, most JSON tools will detect them as
errors. Another problem with them is once Kea loads its configuration, the
shell, C and C++ style comments are ignored. If you use commands such as
config-get or config-write, those comments will be lost. An example of such
comments has been presented in the previous section.

Historically, to address the problem Kea code allowed to put comment strings
as valid JSON entities. This had the benefit of being retained through various
operations (such as config-get) or allowed processing by JSON tools. An
example JSON comment looks like this:

"Dhcp4": {
 "subnet4": [{
 "subnet": "192.0.2.0/24",
 "pools": [{ "pool": "192.0.2.10 - 192.0.2.20" }],
 "comment": "second floor"
 }]
}

However, users complained that the comment is only a single line and it’s not
possible to add any other information in more structured form. One specific
example was a request to add floor levels and building numbers to subnets. This
was one of the reasons why the concept of user context has been introduced. It
allows adding arbitrary JSON structure to most Kea configuration structures. It
has a number of benefits compared to earlier approaches. First, it is fully
compatible with JSON tools and Kea commands. Second, it allows storing simple
comment strings if you want to, but it can store much more complex data, such as
multiple lines (as string array), extra typed data (such as floor numbers being
actual numbers) and more. Third, the data is exposed to hooks, so it’s possible
to develop third party hooks that take advantage of that extra information. An
example user context would look like this:

"Dhcp4": {
 "subnet4": [{
 "subnet": "192.0.2.0/24",
 "pools": [{ "pool": "192.0.2.10 - 192.0.2.20" }],
 "user-context": {
 "comment": "second floor",
 "floor": 2
 }
 }]
}

User contexts can store an arbitrary data file as long as it has valid JSON
syntax and its top-level element is a map (i.e. the data must be enclosed in
curly brackets). However, some hook libraries may expect specific formatting;
please consult the specific hook library documentation for details.

In a sense the user context mechanism has superseeded the JSON comment
capabilities. ISC would like to encourage people to use user-context in favor of
the older mechanisms and we hope to deprecate JSON comments one day in the
future. To promote this way of storing comments, Kea code is able to understand
JSON comments, but converts them to user context on the fly. For the time being,
the comments entries in user-context are converted back to JSON comments to keep
backward compatibility, but that conversion is expected to go away soon.

The is one side effect, however. If your configuration uses the old JSON
comment, the config-get command will return a slightly modified
configuration. Don’t be surprised if you call config-set followed by a
config-get and receive a slightly different structure. If this bothers you,
the best way to avoid this problem is simply abandon JSON comments and start
using user-context.

For a discussion about user context used in hooks, see User Contexts in Hooks.

5.1.3. Simplified Notation

It is sometimes convenient to refer to a specific element in the
configuration hierarchy. Each hierarchy level is separated by a slash.
If there is an array, a specific instance within that array is
referenced by a number in square brackets (with numbering starting at
zero). For example, in the above configuration the valid-lifetime in the
Dhcp4 component can be referred to as Dhcp4/valid-lifetime and the pool
in the first subnet defined in the DHCPv4 configuration as
Dhcp4/subnet4[0]/pool.

5.2. Kea Configuration Backend

5.2.1. Applicability

Kea Configuration Backend (abbreviated as CB) is a feature first
introduced in the 1.6.0 release, which provides Kea servers with the ability
to manage and fetch their configuration from one or more databases. In
the documentation, the term “Configuration Backend” may also refer to
the particular Kea module providing support to manage and fetch the
configuration information from the particular database type. For
example: MySQL Configuration Backend is the logic implemented within the
“mysql_cb” hooks library which provides a complete set of functions to
manage and fetch the configuration information from the MySQL database.

In small deployments, e.g. those comprising a single DHCP server
instance with limited and infrequently changing number of subnets, it
may be impractical to use the CB as a configuration repository because
it requires additional third-party software to be installed and
configured - in particular the MySQL server and MySQL client. Once the
number of DHCP servers and/or the number of managed subnets in the
network grows, the usefulness of the CB becomes obvious.

A good example of a use case for the CB is a pair of Kea DHCP servers which can be configured
to support High Availability as described in
ha: High Availability. The configurations of both servers
(including the value of the server-tag parameter)
are almost exactly the same. They may differ by the server identifier
and designation of the server as a primary or standby (or secondary).
They may also differ by the interfaces configuration. Typically, the
subnets, shared networks, option definitions, global parameters are the
same for both servers and can be sourced from a single database instance
to both Kea servers.

Using the database as a single source of configuration for subnets
and/or other configuration information supported by the CB has the
advantage that any modifications to the configuration in the database are
automatically applied to both servers.

Another case when the centralized configuration repository is desired is
in deployments including a large number of DHCP servers, possibly
using a common lease database to provide redundancy. New servers can
be added to the pool frequently to fulfill growing scalability
requirements. Adding a new server does not require replicating the
entire configuration to the new server when a common database is used.

Using the database as a configuration repository for Kea servers also
brings other benefits, such as:

	the ability to use database specific tools to access the configuration
information,

	the ability to create customized statistics based on the information
stored in the database, and

	the ability to backup the configuration information using the database’s
built-in replication mechanisms.

5.2.2. CB Capabilities and Limitations

Kea CB, introduced in the 1.6.0 release,
comes with a number of limitations as a result of the overall
complexity of this feature and the development time constraints. This
feature will evolve over time and the new capabilities will be added in
subsequent releases. In this section we present the capabilities and limitations of the
CB in the Kea 1.6.0 release:

	Kea CB is supported for the MySQL database only.

	Kea CB is only supported for DHCPv4 and DHCPv6 servers. Neither the
Control Agent nor the D2 daemon can be configured via the database.

	Potential configurations to be stored for the DHCP servers include: global
parameters, option definitions, global options, shared networks, and
subnets. Other configuration parameters are not stored in the
database and must be configured via the JSON
configuration file.

Note

Kea CB stores data in a MySQL schema that is public. It’s possible to
insert configuration data into the MySQL tables manually, or automatically
using SQL scripts, but this requires a reasonably good knowledge of SQL and the
schema. The supported method for managing the data is through our cb-cmds
hook library which provides management commands for config backends.
It simplifies many typical operations, such as listing, adding, retrieving,
and deleting of global parameters, shared networks, subnets, pools, options,
and option definitions. In addition, it provides essential business logic
that ensures logical integrity of the data. For a complete list, see commands
starting with “remote-” in Appendix A of the Kea Administrator Reference Manual.
The cb_cmds hooks library is available to subscribers only. If you are not a
subscriber and would like to subscribe, please contact info@isc.org and
our sales team will assist you.

The schema creation script can be found here dhcpdb_create.mysql [https://gitlab.isc.org/isc-projects/kea/blob/master/src/share/database/scripts/mysql/dhcpdb_create.mysql] and
we have some related design documents in gitlab CB Design [https://gitlab.isc.org/isc-projects/kea/wikis/designs/configuration-in-db-design].

Note

We strongly recommend against duplication of the configuration information
in the file and the database. For example, when specifying subnets
for the DHCP server, please store them in either the configuration backend
or in the configuration file, not both. Storing some
subnets in the database and others in the file may put you at risk of
potential configuration conflicts. Note that the configuration instructions from
the database take precedence over instructions from the file,
so it is possible that parts of the configuration specified in the
file may be overridden if contradicted by information in the database.

Note

It is recommended that the subnet_cmds hooks library not be used to
manage the subnets when the configuration backend is used as a source
of information about the subnets. The subnet_cmds hooks library
modifies the local subnets configuration in the server’s memory,
not in the database. Use the cb_cmds hooks library to manage the
subnets information in the database instead.

5.2.3. CB Components

In order to use the Kea CB feature, the Kea 1.6.0 version or later is
required. The mysql_cb open source hooks library implementing the
Configuration Backend for MySQL must be compiled and loaded by the DHCP
servers. This hooks library is compiled when the --with-mysql
configuration switch is used during the Kea build. The MySQL C client
libraries must be installed, as explained in
DHCP Database Installation and Configuration.

Note

Any existing MySQL schema must be upgraded to the latest schema
required by the particular Kea version using the kea-admin tool,
as described in The kea-admin Tool.

The cb_cmds premium hooks library, which is available to ISC’s paid support
customers, provides a complete set of commands to manage the
servers’ configuration information within the database. This library can
be attached to both DHCPv4 and DHCPv6 server instances. It is still
possible to manage the configuration information without the cb_cmds
hooks library with commonly available tools, such as MySQL Workbench or
the command-line MySQL client, by directly working with the database.

Refer to cb_cmds: Configuration Backend Commands for the details regarding the
cb_cmds hooks library.

The DHCPv4 and DHCPv6 server-specific configurations of the CB, as well as
the list of supported configuration parameters, can be found in
Configuration Backend in DHCPv4 and Configuration Backend in DHCPv6 respectively.

5.2.4. Configuration Sharing and Server Tags

The configuration database is designed to store the configuration information
for multiple Kea servers. Depending on the use case, the entire configuration
may be shared by all servers, parts of the configuration may be shared by
multiple servers and the rest of the configuration may be different for these
servers or, finally, each server may have its own non-shared configuration.

The configuration elements in the database are associated with the servers
by “server tags”. The server tag is an arbitrary string holding the name
of the Kea server instance. The tags of the DHCPv4 and DHCPv6 servers are
independent in the database, i.e. the same server tag can be created for
the DHCPv4 and the DHCPv6 server respectively. The value is configured
using server-tag parameter in the Dhcp4 or Dhcp6 scope. The current
server-tag can be checked with the server-tag-get command.

The server definition, which consists of the server tag and the server
description, must be stored in the configuration database prior to creating
the dedicated configuration for that server. In cases when all servers use
the same configuration, e.g. a pair of servers running as the High Availability
peers, there is no need to configure the server tags for these
servers in the database. The database by default includes the logical
server all, which is used as a keyword to indicate that
the particular piece of configuration must be shared between all servers
connecting to the database. The all server can’t be
deleted or modified. It is not even returned among other servers
as a result of the remote-server[46]-get-all
commands. Also, slightly different rules may apply to “all” keyword
than to any user defined server when running the commands provided by
the cb_cmds hooks library cb_cmds: Configuration Backend Commands.

In the simplest case there are no server tags defined in the configuration
database and all connecting servers will get the same configuration
regardless of the server tag they are using. The server tag that the
particular Kea instance presents to the database to fetch its configuration
is specified in the Kea configuration file, using the
config-control map (please refer to the Enabling Configuration Backend and
Enabling Configuration Backend for details).

All Kea instances presenting the same server tag to the configuration database
are given the same configuration. It is the administrator’s choice whether
multiple Kea instances use the same server tag or each Kea instance is using
a different sever tag. Also, there is no requirement that the instances
running on the same physical or virtual machine use the same server tag. It is
even possible to configure the Kea server without assigning it a server tag.
In such case the server will be given the configuration specified for “all”
servers.

In order to differentiate the configurations between the Kea servers, a
collection of the server tags used by the servers must be stored in the
database. For the DHCPv4 and DHCPv6 servers, it can be done using the
commands described in remote-server4-set, remote-server6-set commands and
remote-server4-set, remote-server6-set commands. Next, the
server tags can be used to associate the configuration information with
the servers. However, it is important to note that some DHCP
configuration elements may be associated with multiple server tags and
other configuration elements may be associated with exactly one
server tag. The former configuration elements are referred to as
shareable configuration elements and the latter are referred to as
non-shareable configuration elements. The Configuration Backend in DHCPv4
and Configuration Backend in DHCPv6 list the DHCP specific shareable and
non-shareable configuration elements. However, in this section we
want to briefly explain the difference between them.

The shareable configuration element is the one having some unique
property identifying it and which instance may appear only once in
the database. An example of the shareable DHCP element is a subnet
instance. The subnet is a part of the network topology and we assume
that the particular subnet may have only one definition within this
network. The subnet has two unique identifiers: subnet id and the
subnet prefix. The subnet identifier is used in Kea to uniquely
identify the subnet and to connect it with other configuration elements,
e.g. in host reservations. The subnet identifier uniquely identifies
the subnet within the network. Some commands provided by the
cb_cmds hooks library allow for accessing the subnet
information by subnet identifier (or prefix) and explicitly prohibit
using the server tag to access the subnet. This is because, in a
general case, the subnet definition is associated with multiple servers
rather than single server. In fact, it may even be associated
with no servers (unassigned). Still, the unassigned subnet has an
identifier and prefix which can be used to access the subnet.

A shareable configuration element may be associated with multiple
servers, one server or no servers. Deletion of the server which is
associated with the shareable element does not cause the deletion of
the shareable element. It merely deletes the association of the
deleted server with the element.

Unlike the shareable element, the non-shareable element must not be
explicitly associated with more than one server and must not exist
after the server is deleted (must not remain unassigned). The
non-shareable element only exists within the context of the server.
An example of the non-shareable element in DHCP is a global
parameter, e.g. renew-timer. The renew timer
is the value to be used by the particular server and only this
server. Other servers may have their respective renew timers
set to the same or different value. The renew timer is the
parameter which has no unique identifier by which it could be
accessed, modified or otherwise used. The global parameters like
the renew timer can be accessed by the parameter name and the
tag of the server for which they are configured. For example:
the commands described in The remote-global-parameter4-get, remote-global-parameter6-get Commands allow for
fetching the value of the global parameter by the parameter name and
the server name. Getting the global parameter only by its name (without
specifying the server tag) is not possible because there may be many
global parameters with the given name in the database.

When the server associated with a non-shareable configuration element
is deleted, the configuration element is automatically deleted from
the database along with the server because the non-shareable element
must be always assigned to some server (or the logical server “all”).

The terms “shareable” and “non-shareable” only apply to the associations
with user defined servers. All configuration elements associated with
the logical server “all” are by definition shareable. For example: the
renew-timer associated with “all” servers is used
by all servers connecting to the database which don’t have their specific
renew timers defined. In the special case, when none of the configuration
elements are associated with user defined servers, the entire
configuration in the database is shareable because all its pieces
belong to “all” servers.

Note

Be very careful when associating the configuration elements with
different server tags. The configuration backend doesn’t protect you
against some possible misconfigurations that may arise from the
wrong server tags’ assignments. For example: if you assign a shared
network to one server and the subnets belonging to this shared network
to another server, the servers will fail upon trying to fetch and
use this configuration. The server fetching the subnets will be
aware that the subnets are associated with the shared network but
the shared network will not be found by this server as it doesn’t
belong to it. In such case, both the shared network and the subnets
should be assigned to the same set of servers.

6. Managing Kea with keactrl

6.1. Overview

keactrl is a shell script which controls the startup, shutdown, and
reconfiguration of the Kea servers (kea-dhcp4, kea-dhcp6,
kea-dhcp-ddns, kea-ctrl-agent, and kea-netconf). It also
provides the means for checking the current status of the servers and
determining the configuration files in use.

6.2. Command Line Options

keactrl is run as follows:

keactrl <command> [-c keactrl-config-file] [-s server[,server,...]]

<command> is one of the commands described in Commands.

The optional -c keactrl-config-file switch allows specification of
an alternate keactrl configuration file. (--ctrl-config is a
synonym for -c.) In the absence of -c, keactrl will use the
default configuration file [kea-install-dir]/etc/kea/keactrl.conf.

The optional -s server[,server,...] switch selects the servers to
which the command is issued. (--server is a synonym for -s.) If
absent, the command is sent to all servers enabled in the keactrl
configuration file. If multiple servers are specified, they should be
separated by commas with no intervening spaces.

6.3. The keactrl Configuration File

Depending on requirements, not all of the available servers need to be
run. The keactrl configuration file sets which servers are enabled and
which are disabled. The default configuration file is
[kea-install-dir]/etc/kea/keactrl.conf, but this can be overridden
on a per-command basis using the -c switch.

The contents of keactrl.conf are:

This is a configuration file for keactrl script which controls
the startup, shutdown, reconfiguration and gathering the status
of the Kea's processes.

prefix holds the location where the Kea is installed.
prefix=@prefix@

Location of Kea configuration file.
kea_dhcp4_config_file=@sysconfdir@/@PACKAGE@/kea-dhcp4.conf
kea_dhcp6_config_file=@sysconfdir@/@PACKAGE@/kea-dhcp6.conf
kea_dhcp_ddns_config_file=@sysconfdir@/@PACKAGE@/kea-dhcp-ddns.conf
kea_ctrl_agent_config_file=@sysconfdir@/@PACKAGE@/kea-ctrl-agent.conf
kea_netconf_config_file=@sysconfdir@/@PACKAGE@/kea-netconf.conf

Location of Kea binaries.
exec_prefix=@exec_prefix@
dhcp4_srv=@sbindir@/kea-dhcp4
dhcp6_srv=@sbindir@/kea-dhcp6
dhcp_ddns_srv=@sbindir@/kea-dhcp-ddns
ctrl_agent_srv=@sbindir@/kea-ctrl-agent
netconf_srv=@sbindir@/kea-netconf

Start DHCPv4 server?
dhcp4=yes

Start DHCPv6 server?
dhcp6=yes

Start DHCP DDNS server?
dhcp_ddns=no

Start Control Agent?
ctrl_agent=yes

Start Netconf?
netconf=no

Be verbose?
kea_verbose=no

Note

In the example above, strings of the form @something@ are replaced by
the appropriate values when Kea is installed.

The dhcp4, dhcp6, dhcp_ddns, ctrl_agent, and netconf
parameters set to “yes” will configure keactrl to manage (start,
reconfigure) all servers, i.e. kea-dhcp4, kea-dhcp6,
kea-dhcp-ddns, kea-ctrl-agent, and kea-netconf. When any of
these parameters is set to “no”, the keactrl will ignore the
corresponding server when starting or reconfiguring Kea. Some daemons
(ddns and netconf) are disabled by default.

By default, Kea servers managed by keactrl are located in
[kea-install-dir]/sbin. This should work for most installations. If
the default location needs to be altered for any reason, the paths
specified with the dhcp4_srv, dhcp6_srv, dhcp_ddns_srv,
ctrl_agent_srv, and netconf_srv parameters should be modified.

The kea_verbose parameter specifies the verbosity of the servers
being started. When kea_verbose is set to “yes” the logging level of
the server is set to DEBUG. Modification of the logging severity in a
configuration file, as described in Logging, will have no
effect as long as the kea_verbose is set to “yes.” Setting it to
“no” will cause the server to use the logging levels specified in the
Kea configuration file. If no logging configuration is specified, the
default settings will be used.

Note

The verbosity for the server is set when it is started. Once started,
the verbosity can be only changed by stopping the server and starting
it again with the new value of the kea_verbose parameter.

6.4. Commands

The following commands are supported by keactrl:

	start - starts selected servers.

	stop - stops all running servers.

	reload - triggers reconfiguration of the selected servers by
sending the SIGHUP signal to them.

	status - returns the status of the servers (active or inactive)
and the names of the configuration files in use.

	version - prints out the version of the keactrl tool itself,
together with the versions of the Kea daemons.

Typical output from keactrl when starting the servers looks similar
to the following:

$ keactrl start
INFO/keactrl: Starting kea-dhcp4 -c /usr/local/etc/kea/kea-dhcp4.conf -d
INFO/keactrl: Starting kea-dhcp6 -c /usr/local/etc/kea/kea-dhcp6.conf -d
INFO/keactrl: Starting kea-dhcp-ddns -c /usr/local/etc/kea/kea-dhcp-ddns.conf -d
INFO/keactrl: Starting kea-ctrl-agent -c /usr/local/etc/kea/kea-ctrl-agent.conf -d
INFO/keactrl: Starting kea-netconf -c /usr/local/etc/kea/kea-netconf.conf -d

Kea’s servers create PID files upon startup. These files are used by
keactrl to determine whether a given server is running. If one or more
servers are running when the start command is issued, the output will
look similar to the following:

$ keactrl start
INFO/keactrl: kea-dhcp4 appears to be running, see: PID 10918, PID file: /usr/local/var/run/kea/kea.kea-dhcp4.pid.
INFO/keactrl: kea-dhcp6 appears to be running, see: PID 10924, PID file: /usr/local/var/run/kea/kea.kea-dhcp6.pid.
INFO/keactrl: kea-dhcp-ddns appears to be running, see: PID 10930, PID file: /usr/local/var/run/kea/kea.kea-dhcp-ddns.pid.
INFO/keactrl: kea-ctrl-agent appears to be running, see: PID 10931, PID file: /usr/local/var/run/kea/kea.kea-ctrl-agent.pid.
INFO/keactrl: kea-netconf appears to be running, see: PID 10123, PID file: /usr/local/var/run/kea/kea.kea-netconf.pid.

During normal shutdowns these PID files are deleted. They may, however,
be left over as remnants following a system crash. It is possible,
though highly unlikely, that upon system restart the PIDs they contain
may actually refer to processes unrelated to Kea. This condition will
cause keactrl to decide that the servers are running, when in fact they
are not. In such a case the PID files listed in the keactrl output
must be manually deleted.

The following command stops all servers:

$ keactrl stop
INFO/keactrl: Stopping kea-dhcp4...
INFO/keactrl: Stopping kea-dhcp6...
INFO/keactrl: Stopping kea-dhcp-ddns...
INFO/keactrl: Stopping kea-ctrl-agent...
INFO/keactrl: Stopping kea-netconf...

Note that the stop command will attempt to stop all servers
regardless of whether they are “enabled” in keactrl.conf. If any
of the servers are not running, an informational message is displayed as
in the stop command output below.

$ keactrl stop
INFO/keactrl: kea-dhcp4 isn't running.
INFO/keactrl: kea-dhcp6 isn't running.
INFO/keactrl: kea-dhcp-ddns isn't running.
INFO/keactrl: kea-ctrl-agent isn't running.
INFO/keactrl: kea-netconf isn't running.

As already mentioned, the reconfiguration of each Kea server is
triggered by the SIGHUP signal. The reload command sends the SIGHUP
signal to any servers that are enabled in the keactrl configuration
file and that are currently running. When a server receives the SIGHUP signal
it re-reads its configuration file and, if the new configuration is
valid, uses the new configuration. A reload is executed as follows:

$ keactrl reload
INFO/keactrl: Reloading kea-dhcp4...
INFO/keactrl: Reloading kea-dhcp6...
INFO/keactrl: Reloading kea-dhcp-ddns...
INFO/keactrl: Reloading kea-ctrl-agent...

If any of the servers are not running, an informational message is
displayed as in the reload command output below. Note that as of
version 1.5.0, kea-netconf does not support the SIGHUP signal. If its
configuration has changed, please stop and restart it for the change to
take effect. This limitation will be removed in a future release.

$ keactrl stop
INFO/keactrl: kea-dhcp4 isn't running.
INFO/keactrl: kea-dhcp6 isn't running.
INFO/keactrl: kea-dhcp-ddns isn't running.
INFO/keactrl: kea-ctrl-agent isn't running.
INFO/keactrl: kea-netconf isn't running.

Note

NETCONF is an optional feature that is disabled by default and can be
enabled during compilation. If Kea was compiled without NETCONF
support, keactrl will do its best to not bother the user with
information about it. The NETCONF entries will still be present in
the keactrl.conf file, but NETCONF status will not be shown and other
commands will ignore it.

Note

Currently keactrl does not report configuration failures when the
server is started or reconfigured. To check if the server’s
configuration succeeded, the Kea log must be examined for errors. By
default, this is written to the syslog file.

Sometimes it is useful to check which servers are running. The
status command reports this, with typical output that looks like:

$ keactrl status
DHCPv4 server: active
DHCPv6 server: inactive
DHCP DDNS: active
Control Agent: active
Netconf agent: inactive
Kea configuration file: /usr/local/etc/kea/kea.conf
Kea DHCPv4 configuration file: /usr/local/etc/kea/kea-dhcp4.conf
Kea DHCPv6 configuration file: /usr/local/etc/kea/kea-dhcp6.conf
Kea DHCP DDNS configuration file: /usr/local/etc/kea/kea-dhcp-ddns.conf
Kea Control Agent configuration file: /usr/local/etc/kea/kea-ctrl-agent.conf
Kea Netconf configuration file: /usr/local/etc/kea/kea-netconf.conf
keactrl configuration file: /usr/local/etc/kea/keactrl.conf

keactrl status reporting capabilities are rather basic. If you need more extensive insight
into the Kea health and status, you may consider deploying Stork. For details, see Monitoring Kea with Stork.

6.5. Overriding the Server Selection

The optional -s switch allows the selection of the server(s) to which
the keactrl command is issued. For example, the following instructs
keactrl to stop the kea-dhcp4 and kea-dhcp6 servers and
leave the kea-dhcp-ddns and kea-ctrl-agent running:

$ keactrl stop -s dhcp4,dhcp6

Similarly, the following will start only the kea-dhcp4 and
kea-dhcp-ddns servers, but not kea-dhcp6 or kea-ctrl-agent.

$ keactrl start -s dhcp4,dhcp_ddns

Note that the behavior of the -s switch with the start and
reload commands is different from its behavior with the stop
command. On start and reload, keactrl will check if the
servers given as parameters to the -s switch are enabled in the
keactrl configuration file; if not, the server will be ignored. For
stop, however, this check is not made; the command is applied to all
listed servers, regardless of whether they have been enabled in the
file.

The following keywords can be used with the -s command line option:

	dhcp4 for kea-dhcp4.

	dhcp6 for kea-dhcp6.

	dhcp_ddns for kea-dhcp-ddns.

	ctrl_agent for kea-ctrl-agent.

	netconf for kea-netconf.

	all for all servers (default).

7. The Kea Control Agent

7.1. Overview of the Kea Control Agent

The Kea Control Agent (CA) is a daemon which exposes a RESTful control
interface for managing Kea servers. The daemon can receive control
commands over HTTP and either forward these commands to the respective
Kea servers or handle these commands on its own. The determination
whether the command should be handled by the CA or forwarded is made by
checking the value of the “service” parameter, which may be included in
the command from the controlling client. The details of the supported
commands, as well as their structures, are provided in
Management API.

The CA can use hook libraries to provide support for additional commands
or custom behavior of existing commands. Such hook libraries must
implement callouts for the “control_command_receive” hook point. Details
about creating new hook libraries and supported hook points can be found
in the Kea Developer’s
Guide [https://jenkins.isc.org/job/Kea_doc/doxygen/].

The CA processes received commands according to the following algorithm:

	Pass command into any installed hooks (regardless of service
value(s)). If the command is handled by a hook, return the response.

	If the service specifies one more or services, forward the command to
the specified services and return the accumulated responses.

	If the service is not specified or is an empty list, handle the
command if the CA supports it.

7.2. Configuration

The following example demonstrates the basic CA configuration.

{
 "Control-agent": {
 "http-host": "10.20.30.40",
 "http-port": 8000,

 "control-sockets": {
 "dhcp4": {
 "comment": "main server",
 "socket-type": "unix",
 "socket-name": "/path/to/the/unix/socket-v4"
 },
 "dhcp6": {
 "socket-type": "unix",
 "socket-name": "/path/to/the/unix/socket-v6",
 "user-context": { "version": 3 }
 },
 "d2": {
 "socket-type": "unix",
 "socket-name": "/path/to/the/unix/socket-d2"
 },
 },

 "hooks-libraries": [
 {
 "library": "/opt/local/control-agent-commands.so",
 "parameters": {
 "param1": "foo"
 }
 }],

 "loggers": [{
 "name": "kea-ctrl-agent",
 "severity": "INFO"
 }]
 }
}

The http-host and http-port parameters specify an IP address and
port to which HTTP service will be bound. In the example configuration
provided above, the RESTful service will be available under the URL of
http://10.20.30.40:8000/. If these parameters are not specified, the
default URL is http://127.0.0.1:8000/.

As mentioned in Overview of the Kea Control Agent, the CA can forward
received commands to the Kea servers for processing. For example,
config-get is sent to retrieve the configuration of one of the Kea
services. When the CA receives this command, including a service
parameter indicating that the client wishes to retrieve the
configuration of the DHCPv4 server, the CA forwards the command to that
server and passes the received response back to the client. More about
the service parameter and the general structure of commands can be
found in Management API.

The CA uses UNIX domain sockets to forward control commands and receive
responses from other Kea services. The dhcp4, dhcp6, and d2
maps specify the files to which UNIX domain sockets are bound. In the
configuration above, the CA will connect to the DHCPv4 server via
/path/to/the/unix/socket-v4 to forward the commands to it.
Obviously, the DHCPv4 server must be configured to listen to connections
via this same socket. In other words, the command socket configuration
for the DHCPv4 server and the CA (for this server) must match. Consult
Management API for the DHCPv4 Server, Management API for the DHCPv6 Server and
Management API for the D2 Server to learn how the socket configuration is
specified for the DHCPv4, DHCPv6, and D2 services.

Warning

“dhcp4-server”, “dhcp6-server”, and “d2-server” were renamed to
“dhcp4”, “dhcp6”, and “d2” respectively in Kea 1.2. If you are
migrating from Kea 1.2, you must modify your CA configuration to use
this new naming convention.

User contexts can store arbitrary data as long as they are in valid JSON
syntax and their top-level element is a map (i.e. the data must be
enclosed in curly brackets). Some hook libraries may expect specific
formatting; please consult the relevant hook library documentation for
details.

User contexts can be specified on either global scope, control socket,
or loggers. One other useful feature is the ability to store comments or
descriptions; the parser translates a “comment” entry into a user
context with the entry, which allows a comment to be attached within the
configuration itself.

Hooks libraries can be loaded by the Control Agent in the same way as
they are loaded by the DHCPv4 and DHCPv6 servers. The CA currently
supports one hook point - “control_command_receive” - which makes it
possible to delegate processing of some commands to the hooks library.
The hooks-libraries list contains the list of hooks libraries that
should be loaded by the CA, along with their configuration information
specified with parameters.

Please consult Logging for the details how to configure
logging. The CA’s root logger’s name is kea-ctrl-agent, as given in
the example above.

7.3. Secure Connections

The Control Agent does not natively support secure HTTP connections like
SSL or TLS. In order to setup a secure connection, please use one of the
available third-party HTTP servers and configure it to run as a reverse
proxy to the Control Agent. Kea has been tested with two major HTTP
server implentations working as a reverse proxy: Apache2 and nginx.
Example configurations, including extensive comments, are provided in
the doc/examples/https/ directory.

The reverse proxy forwards HTTP requests received over a secure
connection to the Control Agent using unsecured HTTP. Typically, the
reverse proxy and the Control Agent are running on the same machine, but
it is possible to configure them to run on separate machines as well. In
this case, security depends on the protection of the communications
between the reverse proxy and the Control Agent.

Apart from providing the encryption layer for the control channel, a
reverse proxy server is also often used for authentication of the
controlling clients. In this case, the client must present a valid
certificate when it connects via reverse proxy. The proxy server
authenticates the client by checking whether the presented certificate
is signed by the certificate authority used by the server.

To illustrate this, the following is a sample configuration for the
nginx server running as a reverse proxy to the Kea Control Agent. The
server enables authentication of the clients using certificates.

The server certificate and key can be generated as follows:
#
openssl genrsa -des3 -out kea-proxy.key 4096
openssl req -new -x509 -days 365 -key kea-proxy.key -out kea-proxy.crt
#
The CA certificate and key can be generated as follows:
#
openssl genrsa -des3 -out ca.key 4096
openssl req -new -x509 -days 365 -key ca.key -out ca.crt
#
#
The client certificate needs to be generated and signed:
#
openssl genrsa -des3 -out kea-client.key 4096
openssl req -new -key kea-client.key -out kea-client.csr
openssl x509 -req -days 365 -in kea-client.csr -CA ca.crt \
-CAkey ca.key -set_serial 01 -out kea-client.crt
#
Note that the "common name" value used when generating the client
and the server certificates must differ from the value used
for the CA certificate.
#
The client certificate must be deployed on the client system.
In order to test the proxy configuration with "curl", run a
command similar to the following:
#
curl -k --key kea-client.key --cert kea-client.crt -X POST \
-H Content-Type:application/json -d '{ "command": "list-commands" }' \
https://kea.example.org/kea
#
#
#
nginx configuration starts here.

events {
}

http {
 # HTTPS server
 server {
 # Use default HTTPS port.
 listen 443 ssl;
 # Set server name.
 server_name kea.example.org;

 # Server certificate and key.
 ssl_certificate /path/to/kea-proxy.crt;
 ssl_certificate_key /path/to/kea-proxy.key;

 # Certificate Authority. Client certificate must be signed by the CA.
 ssl_client_certificate /path/to/ca.crt;

 # Enable verification of the client certificate.
 ssl_verify_client on;

 # For URLs such as https://kea.example.org/kea, forward the
 # requests to http://127.0.0.1:8000.
 location /kea {
 proxy_pass http://127.0.0.1:8000;
 }
 }
}

Note

Note that the configuration snippet provided above is for testing
purposes only. It should be modified according to the security
policies and best practices of your organization.

When you use an HTTP client without TLS support as kea-shell, you
can use an HTTP/HTTPS translator such as stunnel in client mode. A
sample configuration is provided in the doc/examples/https/shell/
directory.

7.4. Starting the Control Agent

The CA is started by running its binary and specifying the configuration
file it should use. For example:

$./kea-ctrl-agent -c /usr/local/etc/kea/kea-ctrl-agent.conf

It can be started by keactrl as well (see Managing Kea with keactrl).

7.5. Connecting to the Control Agent

For an example of a tool that can take advantage of the RESTful API, see
The Kea Shell.

8. The DHCPv4 Server

8.1. Starting and Stopping the DHCPv4 Server

It is recommended that the Kea DHCPv4 server be started and stopped
using keactrl (described in Managing Kea with keactrl); however, it is also
possible to run the server directly. It accepts the following
command-line switches:

	-c file - specifies the configuration file. This is the only
mandatory switch.

	-d - specifies whether the server logging should be switched to
debug/verbose mode. In verbose mode, the logging severity and
debuglevel specified in the configuration file are ignored;
“debug” severity and the maximum debuglevel (99) are assumed. The
flag is convenient for temporarily switching the server into maximum
verbosity, e.g. when debugging.

	-p server-port - specifies the local UDP port on which the server
will listen. This is only useful during testing, as a DHCPv4 server
listening on ports other than the standard ones will not be able to
handle regular DHCPv4 queries.

	-P client-port - specifies the remote UDP port to which the
server will send all responses. This is only useful during testing,
as a DHCPv4 server sending responses to ports other than the standard
ones will not be able to handle regular DHCPv4 queries.

	-t file - specifies a configuration file to be tested. Kea-dhcp4
will load it, check it, and exit. During the test, log messages are
printed to standard output and error messages to standard error. The
result of the test is reported through the exit code (0 =
configuration looks ok, 1 = error encountered). The check is not
comprehensive; certain checks are possible only when running the
server.

	-v - displays the Kea version and exits.

	-V - displays the Kea extended version with additional parameters
and exits. The listing includes the versions of the libraries
dynamically linked to Kea.

	-W - displays the Kea configuration report and exits. The report
is a copy of the config.report file produced by ./configure;
it is embedded in the executable binary.

On startup, the server will detect available network interfaces and will
attempt to open UDP sockets on all interfaces mentioned in the
configuration file. Since the DHCPv4 server opens privileged ports, it
requires root access. This daemon must be run as root.

During startup, the server will attempt to create a PID file of the
form: [runstatedir]/kea/[conf name].kea-dhcp4.pid where:

	runstatedir: The value as passed into the build configure
script; it defaults to “/usr/local/var/run”. Note that this value may be
overridden at runtime by setting the environment variable
KEA_PIDFILE_DIR, although this is intended primarily for testing
purposes.

	conf name: The configuration file name used to start the server,
minus all preceding paths and the file extension. For example, given
a pathname of “/usr/local/etc/kea/myconf.txt”, the portion used would
be “myconf”.

If the file already exists and contains the PID of a live process, the
server will issue a DHCP4_ALREADY_RUNNING log message and exit. It is
possible, though unlikely, that the file is a remnant of a system crash
and the process to which the PID belongs is unrelated to Kea. In such a
case it would be necessary to manually delete the PID file.

The server can be stopped using the kill command. When running in a
console, the server can also be shut down by pressing ctrl-c. It detects
the key combination and shuts down gracefully.

8.2. DHCPv4 Server Configuration

8.2.1. Introduction

This section explains how to configure the DHCPv4 server using a
configuration file. Before DHCPv4 is started, its configuration file must
be created. The basic configuration is as follows:

{
DHCPv4 configuration starts on the next line
"Dhcp4": {

First we set up global values
 "valid-lifetime": 4000,
 "renew-timer": 1000,
 "rebind-timer": 2000,

Next we set up the interfaces to be used by the server.
 "interfaces-config": {
 "interfaces": ["eth0"]
 },

And we specify the type of lease database
 "lease-database": {
 "type": "memfile",
 "persist": true,
 "name": "/var/lib/kea/dhcp4.leases"
 },

Finally, we list the subnets from which we will be leasing addresses.
 "subnet4": [
 {
 "subnet": "192.0.2.0/24",
 "pools": [
 {
 "pool": "192.0.2.1 - 192.0.2.200"
 }
]
 }
]
DHCPv4 configuration ends with the next line
}

}

The following paragraphs provide a brief overview of the parameters in
the above example, along with their format. Subsequent sections of this
chapter go into much greater detail for these and other parameters.

The lines starting with a hash (#) are comments and are ignored by the
server; they do not impact its operation in any way.

The configuration starts in the first line with the initial opening
curly bracket (or brace). Each configuration must contain an object
specifying the configuration of the Kea module using it. In the example
above this object is called Dhcp4.

Note

In the current Kea release it is possible to specify configurations
of multiple modules within a single configuration file, but this is
not recommended and support for it will be removed in a future
release. The only object, besides the one specifying module
configuration, which can be (and usually was) included in the same file
is Logging. However, we don’t include this object in the example
above for clarity; its content, the list of loggers, should now be
inside the Dhcp4 object instead of the deprecated object.

The Dhcp4 configuration starts with the "Dhcp4": { line and ends
with the corresponding closing brace (in the above example, the brace
after the last comment). Everything defined between those lines is
considered to be the Dhcp4 configuration.

In general, the order in which those parameters appear does not
matter, but there are two caveats. The first one is to remember that the
configuration file must be well-formed JSON. That means that the
parameters for any given scope must be separated by a comma, and there
must not be a comma after the last parameter. When reordering a
configuration file, keep in mind that moving a parameter to or from the
last position in a given scope may also require moving the comma. The
second caveat is that it is uncommon — although legal JSON — to repeat
the same parameter multiple times. If that happens, the last occurrence
of a given parameter in a given scope is used, while all previous
instances are ignored. This is unlikely to cause any confusion as there
are no real-life reasons to keep multiple copies of the same parameter
in the configuration file.

The first few DHCPv4 configuration elements
define some global parameters. valid-lifetime defines how long the
addresses (leases) given out by the server are valid. If nothing
changes, a client that got an address is allowed to use it for 4000
seconds. (Note that integer numbers are specified as is, without any
quotes around them.) renew-timer and rebind-timer are values
(also in seconds) that define T1 and T2 timers that govern when the
client will begin the renewal and rebind procedures.

Note

Beginning with Kea 1.6.0 the lease valid lifetime is extended from a
single value to a triplet with minimum, default and maximum values using
min-valid-lifetime, valid-lifetime and
max-valid-lifetime. When the client does not specify
a lifetime the default value is used, when it specifies using a DHCP option
code 51 this value is used if it is not less than the minimum (in this case
the minimum is returned) or greater than the maximum (in this case the
maximum is used).

Note

Both renew-timer and rebind-timer
are optional. The server will only send rebind-timer to the client,
via DHCPv4 option code 59, if it is less than valid-lifetime; and it
will only send renew-timer, via DHCPv4 option code 58, if it is less
than rebind-timer (or valid-lifetime if rebind-timer was not
specified). In their absence, the client should select values for T1
and T2 timers according to RFC 2131 [https://tools.ietf.org/html/rfc2131].
See section Sending T1 (Option 58) and T2 (Option 59)
for more details on generating T1 and T2.

The interfaces-config map specifies the server configuration
concerning the network interfaces on which the server should listen to
the DHCP messages. The interfaces parameter specifies a list of
network interfaces on which the server should listen. Lists are opened
and closed with square brackets, with elements separated by commas. To
listen on two interfaces, the interfaces-config command should look
like this:

"interfaces-config": {
 "interfaces": ["eth0", "eth1"]
},

The next couple of lines define the lease database, the place where the
server stores its lease information. This particular example tells the
server to use memfile, which is the simplest (and fastest) database
backend. It uses an in-memory database and stores leases on disk in a
CSV (comma-separated values) file. This is a very simple configuration; usually the lease
database configuration is more extensive and contains additional
parameters. Note that lease-database is an object and opens up a new
scope, using an opening brace. Its parameters (just one in this example:
type) follow. If there were more than one, they would be separated
by commas. This scope is closed with a closing brace. As more parameters
for the Dhcp4 definition follow, a trailing comma is present.

Finally, we need to define a list of IPv4 subnets. This is the most
important DHCPv4 configuration structure, as the server uses that
information to process clients’ requests. It defines all subnets from
which the server is expected to receive DHCP requests. The subnets are
specified with the subnet4 parameter. It is a list, so it starts and
ends with square brackets. Each subnet definition in the list has
several attributes associated with it, so it is a structure and is
opened and closed with braces. At a minimum, a subnet definition has to
have at least two parameters: subnet (which defines the whole
subnet) and pools (which is a list of dynamically allocated pools
that are governed by the DHCP server).

The example contains a single subnet. If more than one were defined,
additional elements in the subnet4 parameter would be specified and
separated by commas. For example, to define three subnets, the following
syntax would be used:

"subnet4": [
 {
 "pools": [{ "pool": "192.0.2.1 - 192.0.2.200" }],
 "subnet": "192.0.2.0/24"
 },
 {
 "pools": [{ "pool": "192.0.3.100 - 192.0.3.200" }],
 "subnet": "192.0.3.0/24"
 },
 {
 "pools": [{ "pool": "192.0.4.1 - 192.0.4.254" }],
 "subnet": "192.0.4.0/24"
 }
]

Note that indentation is optional and is used for aesthetic purposes
only. In some cases it may be preferable to use more compact notation.

After all the parameters have been specified, we have two contexts open:
global and Dhcp4; thus, we need two closing curly brackets to close
them.

8.2.2. Lease Storage

All leases issued by the server are stored in the lease database.
Currently there are four database backends available: memfile (which is
the default backend), MySQL, PostgreSQL, and Cassandra.

8.2.2.1. Memfile - Basic Storage for Leases

The server is able to store lease data in different repositories. Larger
deployments may elect to store leases in a database.
Lease Database Configuration describes this option. In
typical smaller deployments, though, the server will store lease
information in a CSV file rather than a database. As well as requiring
less administration, an advantage of using a file for storage is that it
eliminates a dependency on third-party database software.

The configuration of the file backend (memfile) is controlled through
the Dhcp4/lease-database parameters. The type parameter is mandatory
and it specifies which storage for leases the server should use. The
value of "memfile" indicates that the file should be used as the
storage. The following list gives additional optional parameters that
can be used to configure the memfile backend.

	persist: controls whether the new leases and updates to existing
leases are written to the file. It is strongly recommended that the
value of this parameter be set to true at all times during the
server’s normal operation. Not writing leases to disk means that if a
server is restarted (e.g. after a power failure), it will not know
which addresses have been assigned. As a result, it may assign new clients
addresses that are already in use. The value of
false is mostly useful for performance-testing purposes. The
default value of the persist parameter is true, which enables
writing lease updates to the lease file.

	name: specifies an absolute location of the lease file in which
new leases and lease updates will be recorded. The default value for
this parameter is "[kea-install-dir]/var/lib/kea/kea-leases4.csv".

	lfc-interval: specifies the interval, in seconds, at which the
server will perform a lease file cleanup (LFC). This removes
redundant (historical) information from the lease file and
effectively reduces the lease file size. The cleanup process is
described in more detail later in this section. The default
value of the lfc-interval is 3600. A value of 0 disables the
LFC.

	max-row-errors: when the server loads a lease file, it is processed
row by row, each row contaning a single lease. If a row is flawed and
cannot be processed correctly the server will log it, discard the row,
and go on to the next row. This parameter can be used to set a limit on
the number of such discards that may occur after which the server will
abandon the effort and exit. The default value of 0 disables the limit
and allows the server to process the entire file, regardless of how many
rows are discarded.

"Dhcp4": {
 "lease-database": {
 "type": "memfile",
 "persist": true,
 "name": "/tmp/kea-leases4.csv",
 "lfc-interval": 1800,
 "max-row-errors": 100
 }
}

This configuration selects the /tmp/kea-leases4.csv as the storage
for lease information and enables persistence (writing lease updates to
this file). It also configures the backend to perform a periodic cleanup
of the lease file every 30 minutes and sets the maximum number of row
errors to 100.

It is important to know how the lease file contents are organized to
understand why the periodic lease file cleanup is needed. Every time the
server updates a lease or creates a new lease for the client, the new
lease information must be recorded in the lease file. For performance
reasons, the server does not update the existing client’s lease in the
file, as this would potentially require rewriting the entire file.
Instead, it simply appends the new lease information to the end of the
file; the previous lease entries for the client are not removed. When
the server loads leases from the lease file, e.g. at the server startup,
it assumes that the latest lease entry for the client is the valid one.
The previous entries are discarded, meaning that the server can
re-construct the accurate information about the leases even though there
may be many lease entries for each client. However, storing many entries
for each client results in a bloated lease file and impairs the
performance of the server’s startup and reconfiguration, as it needs to
process a larger number of lease entries.

Lease file cleanup (LFC) removes all previous entries for each client
and leaves only the latest ones. The interval at which the cleanup is
performed is configurable, and it should be selected according to the
frequency of lease renewals initiated by the clients. The more frequent
the renewals, the smaller the value of lfc-interval should be. Note,
however, that the LFC takes time and thus it is possible (although
unlikely) that, if the lfc-interval is too short, a new cleanup may
be started while the previous one is still running. The server would
recover from this by skipping the new cleanup when it detected that the
previous cleanup was still in progress. But it implies that the actual
cleanups will be triggered more rarely than configured. Moreover,
triggering a new cleanup adds overhead to the server, which will not be
able to respond to new requests for a short period of time when the new
cleanup process is spawned. Therefore, it is recommended that the
lfc-interval value be selected in a way that allows the LFC
to complete the cleanup before a new cleanup is triggered.

Lease file cleanup is performed by a separate process (in the
background) to avoid a performance impact on the server process. To
avoid conflicts between two processes both using the same lease
files, the LFC process starts with Kea opening a new lease file; the
actual LFC process operates on the lease file that is no longer used by
the server. There are also other files created as a side effect of the
lease file cleanup. The detailed description of the LFC process is located later
in this Kea Administrator’s Reference Manual: The LFC Process.

8.2.2.2. Lease Database Configuration

Note

Lease database access information must be configured for the DHCPv4
server, even if it has already been configured for the DHCPv6 server.
The servers store their information independently, so each server can
use a separate database or both servers can use the same database.

Lease database configuration is controlled through the
Dhcp4/lease-database parameters. The database type must be set to
“memfile”, “mysql”, “postgresql”, or “cql”, e.g.:

"Dhcp4": { "lease-database": { "type": "mysql", ... }, ... }

Next, the name of the database to hold the leases must be set; this is
the name used when the database was created (see
First-Time Creation of the MySQL Database, First-Time Creation of the PostgreSQL Database, or
First-Time Creation of the Cassandra Database).

"Dhcp4": { "lease-database": { "name": "database-name" , ... }, ... }

For Cassandra:

"Dhcp4": { "lease-database": { "keyspace": "database-name" , ... }, ... }

If the database is located on a different system from the DHCPv4 server,
the database host name must also be specified:

"Dhcp4": { "lease-database": { "host": "remote-host-name", ... }, ... }

(It should be noted that this configuration may have a severe impact on server performance.)

Normally, the database will be on the same machine as the DHCPv4 server.
In this case, set the value to the empty string:

"Dhcp4": { "lease-database": { "host" : "", ... }, ... }

Should the database use a port other than the default, it may be
specified as well:

"Dhcp4": { "lease-database": { "port" : 12345, ... }, ... }

Should the database be located on a different system, the administrator may need to
specify a longer interval for the connection timeout:

"Dhcp4": { "lease-database": { "connect-timeout" : timeout-in-seconds, ... }, ... }

The default value of five seconds should be more than adequate for local
connections. If a timeout is given, though, it should be an integer
greater than zero.

The maximum number of times the server will automatically attempt to
reconnect to the lease database after connectivity has been lost may be
specified:

"Dhcp4": { "lease-database": { "max-reconnect-tries" : number-of-tries, ... }, ... }

If the server is unable to reconnect to the database after making the
maximum number of attempts, the server will exit. A value of zero (the
default) disables automatic recovery and the server will exit
immediately upon detecting a loss of connectivity (MySQL and PostgreSQL
only). For Cassandra, Kea uses an interface that connects to
all nodes in a cluster at the same time. Any connectivity issues should
be handled by internal Cassandra mechanisms.

The number of milliseconds the server will wait between attempts to
reconnect to the lease database after connectivity has been lost may
also be specified:

"Dhcp4": { "lease-database": { "reconnect-wait-time" : number-of-milliseconds, ... }, ... }

The default value for MySQL and PostgreSQL is 0, which disables automatic
recovery and causes the server to exit immediately upon detecting the
loss of connectivity. The default value for Cassandra is 2000 ms.

Note

Automatic reconnection to database backends is configured
individually per backend. This allows users to tailor the recovery
parameters to each backend they use. We do suggest that users enable it
either for all backends or none, so behavior is consistent.
Losing connectivity to a backend for which reconnect is
disabled will result in the server shutting itself down. This
includes cases when the lease database backend and the hosts database
backend are connected to the same database instance.

Note

Note that the host parameter is used by the MySQL and PostgreSQL backends.
Cassandra has a concept of contact points that can be used to
contact the cluster, instead of a single IP or hostname. It takes a
list of comma-separated IP addresses, which may be specified as:

"Dhcp4": { "lease-database": { "contact-points" : "192.0.2.1,192.0.2.2", ... }, ... }

Finally, the credentials of the account under which the server will
access the database should be set:

"Dhcp4": { "lease-database": { "user": "user-name",
 "password": "password",
 ... },
 ... }

If there is no password to the account, set the password to the empty
string “”. (This is also the default.)

8.2.2.3. Cassandra-Specific Parameters

The Cassandra backend is configured slightly differently. Cassandra has
a concept of contact points that can be used to contact the cluster,
instead of a single IP or hostname. It takes a list of comma-separated
IP addresses, which may be specified as:

"Dhcp4": {
 "lease-database": {
 "type": "cql",
 "contact-points": "ip-address1, ip-address2 [,...]",
 ...
 },
 ...
}

Cassandra also supports a number of optional parameters:

	reconnect-wait-time - governs how long Kea waits before
attempting to reconnect. Expressed in milliseconds. The default is
2000 [ms].

	connect-timeout - sets the timeout for connecting to a node.
Expressed in milliseconds. The default is 5000 [ms].

	request-timeout - sets the timeout for waiting for a response
from a node. Expressed in milliseconds. The default is 12000 [ms].

	tcp-keepalive - governs the TCP keep-alive mechanism. Expressed
in seconds of delay. If the parameter is not present, the mechanism
is disabled.

	tcp-nodelay - enables/disables Nagle’s algorithm on connections.
The default is true.

	consistency - configures consistency level. The default is
“quorum”. Supported values: any, one, two, three, quorum, all,
local-quorum, each-quorum, serial, local-serial, local-one. See
Cassandra
consistency [https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlConfigConsistency.html]
for more details.

	serial-consistency - configures serial consistency level which
manages lightweight transaction isolation. The default is “serial”.
Supported values: any, one, two, three, quorum, all, local-quorum,
each-quorum, serial, local-serial, local-one. See Cassandra serial
consistency [https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlConfigSerialConsistency.html]
for more details.

For example, a complex Cassandra configuration with most parameters
specified could look as follows:

"Dhcp4": {
 "lease-database": {
 "type": "cql",
 "keyspace": "keatest",
 "contact-points": "192.0.2.1, 192.0.2.2, 192.0.2.3",
 "port": 9042,
 "reconnect-wait-time": 2000,
 "connect-timeout": 5000,
 "request-timeout": 12000,
 "tcp-keepalive": 1,
 "tcp-nodelay": true
 },
 ...
}

Similar parameters can be specified for the hosts database.

8.2.3. Hosts Storage

Kea is also able to store information about host reservations in the
database. The hosts database configuration uses the same syntax as the
lease database. In fact, a Kea server opens independent connections for
each purpose, be it lease or hosts information. This arrangement gives
the most flexibility. Kea can keep leases and host reservations
separately, but can also point to the same database. Currently the
supported hosts database types are MySQL, PostgreSQL, and Cassandra.

Please note that usage of hosts storage is optional. A user can define
all host reservations in the configuration file, and that is the
recommended way if the number of reservations is small. However, when
the number of reservations grows, it is more convenient to use host
storage. Please note that both storage methods (configuration file and
one of the supported databases) can be used together. If hosts are
defined in both places, the definitions from the configuration file are
checked first and external storage is checked later, if necessary.

In fact, host information can be placed in multiple stores. Operations
are performed on the stores in the order they are defined in the
configuration file, although this leads to a restriction in ordering
in the case of a host reservation addition; read-only stores must be
configured after a (required) read-write store, or the addition will
fail.

8.2.3.1. DHCPv4 Hosts Database Configuration

Hosts database configuration is controlled through the
Dhcp4/hosts-database parameters. If enabled, the type of database must
be set to “mysql” or “postgresql”.

"Dhcp4": { "hosts-database": { "type": "mysql", ... }, ... }

Next, the name of the database to hold the reservations must be set;
this is the name used when the lease database was created (see
Supported Backends for instructions on how to set up the
desired database type):

"Dhcp4": { "hosts-database": { "name": "database-name" , ... }, ... }

If the database is located on a different system than the DHCPv4 server,
the database host name must also be specified:

"Dhcp4": { "hosts-database": { "host": remote-host-name, ... }, ... }

(Again, it should be noted that this configuration may have a severe impact on server performance.)

Normally, the database will be on the same machine as the DHCPv4 server.
In this case, set the value to the empty string:

"Dhcp4": { "hosts-database": { "host" : "", ... }, ... }

Should the database use a port different than the default, it may be
specified as well:

"Dhcp4": { "hosts-database": { "port" : 12345, ... }, ... }

The maximum number of times the server will automatically attempt to
reconnect to the host database after connectivity has been lost may be
specified:

"Dhcp4": { "hosts-database": { "max-reconnect-tries" : number-of-tries, ... }, ... }

If the server is unable to reconnect to the database after making the
maximum number of attempts, the server will exit. A value of zero (the
default) disables automatic recovery and the server will exit
immediately upon detecting a loss of connectivity (MySQL and PostgreSQL
only).

The number of milliseconds the server will wait between attempts to
reconnect to the host database after connectivity has been lost may also
be specified:

"Dhcp4": { "hosts-database": { "reconnect-wait-time" : number-of-milliseconds, ... }, ... }

The default value for MySQL and PostgreSQL is 0, which disables automatic
recovery and causes the server to exit immediately upon detecting the
loss of connectivity. The default value for Cassandra is 2000 ms.

Note

Automatic reconnection to database backends is configured
individually per backend. This allows users to tailor the recovery
parameters to each backend they use. We do suggest that users enable it
either for all backends or none, so behavior is consistent.
Losing connectivity to a backend for which reconnect is
disabled will result in the server shutting itself down. This
includes cases when the lease database backend and the hosts database
backend are connected to the same database instance.

Finally, the credentials of the account under which the server will
access the database should be set:

"Dhcp4": { "hosts-database": { "user": "user-name",
 "password": "password",
 ... },
 ... }

If there is no password to the account, set the password to the empty
string “”. (This is also the default.)

The multiple storage extension uses a similar syntax; a configuration is
placed into a “hosts-databases” list instead of into a “hosts-database”
entry, as in:

"Dhcp4": { "hosts-databases": [{ "type": "mysql", ... }, ...], ... }

For additional Cassandra-specific parameters, see
Cassandra-Specific Parameters.

8.2.3.2. Using Read-Only Databases for Host Reservations with DHCPv4

In some deployments the database user whose name is specified in the
database backend configuration may not have write privileges to the
database. This is often required by the policy within a given network to
secure the data from being unintentionally modified. In many cases
administrators have deployed inventory databases, which contain
substantially more information about the hosts than just the static
reservations assigned to them. The inventory database can be used to
create a view of a Kea hosts database and such a view is often
read-only.

Kea host database backends operate with an implicit configuration to
both read from and write to the database. If the database user does not
have write access to the host database, the backend will fail to start
and the server will refuse to start (or reconfigure). However, if access
to a read-only host database is required for retrieving reservations
for clients and/or assigning specific addresses and options, it is
possible to explicitly configure Kea to start in “read-only” mode. This
is controlled by the readonly boolean parameter as follows:

"Dhcp4": { "hosts-database": { "readonly": true, ... }, ... }

Setting this parameter to false configures the database backend to
operate in “read-write” mode, which is also the default configuration if
the parameter is not specified.

Note

The readonly parameter is currently only supported for MySQL and
PostgreSQL databases.

8.2.4. Interface Configuration

The DHCPv4 server must be configured to listen on specific network
interfaces. The simplest network interface configuration tells the
server to listen on all available interfaces:

"Dhcp4": {
 "interfaces-config": {
 "interfaces": ["*"]
 }
 ...
},

The asterisk plays the role of a wildcard and means “listen on all
interfaces.” However, it is usually a good idea to explicitly specify
interface names:

"Dhcp4": {
 "interfaces-config": {
 "interfaces": ["eth1", "eth3"]
 },
 ...
}

It is possible to use a wildcard interface name (asterisk) concurrently
with explicit interface names:

"Dhcp4": {
 "interfaces-config": {
 "interfaces": ["eth1", "eth3", "*"]
 },
 ...
}

It is anticipated that this form of usage will only be used when it is
desired to temporarily override a list of interface names and listen on
all interfaces.

Some deployments of DHCP servers require that the servers listen on
interfaces with multiple IPv4 addresses configured. In these situations,
the address to use can be selected by appending an IPv4 address to the
interface name in the following manner:

"Dhcp4": {
 "interfaces-config": {
 "interfaces": ["eth1/10.0.0.1", "eth3/192.0.2.3"]
 },
 ...
}

Should the server be required to listen on multiple IPv4 addresses
assigned to the same interface, multiple addresses can be specified for
an interface as in the example below:

"Dhcp4": {
 "interfaces-config": {
 "interfaces": ["eth1/10.0.0.1", "eth1/10.0.0.2"]
 },
 ...
}

Alternatively, if the server should listen on all addresses for the
particular interface, an interface name without any address should be
specified.

Kea supports responding to directly connected clients which don’t have
an address configured. This requires the server to inject the hardware
address of the destination into the data link layer of the packet
being sent to the client. The DHCPv4 server uses raw sockets to
achieve this, and builds the entire IP/UDP stack for the outgoing
packets. The downside of raw socket use, however, is that incoming and
outgoing packets bypass the firewalls (e.g. iptables).

Handling traffic on multiple IPv4 addresses assigned to the same
interface can be a challenge, as raw sockets are bound to the
interface. When the DHCP server is configured to use the raw socket on
an interface to receive DHCP traffic, advanced packet filtering
techniques (e.g. the BPF) must be used to receive unicast traffic on
the desired addresses assigned to the interface. Whether clients use
the raw socket or the UDP socket depends on whether they are directly
connected (raw socket) or relayed (either raw or UDP socket).

Therefore, in deployments where the server does not need to provision
the directly connected clients and only receives the unicast packets
from the relay agents, the DHCP server should be configured to use UDP
sockets instead of raw sockets. The following configuration
demonstrates how this can be achieved:

"Dhcp4": {
 "interfaces-config": {
 "interfaces": ["eth1", "eth3"],
 "dhcp-socket-type": "udp"
 },
 ...
}

The dhcp-socket-type specifies that the IP/UDP sockets will be
opened on all interfaces on which the server listens, i.e. “eth1” and
“eth3” in our case. If dhcp-socket-type is set to raw, it
configures the server to use raw sockets instead. If the
dhcp-socket-type value is not specified, the default value raw
is used.

Using UDP sockets automatically disables the reception of broadcast
packets from directly connected clients. This effectively means that UDP
sockets can be used for relayed traffic only. When using raw sockets,
both the traffic from the directly connected clients and the relayed
traffic are handled. Caution should be taken when configuring the server
to open multiple raw sockets on the interface with several IPv4
addresses assigned. If the directly connected client sends the message
to the broadcast address, all sockets on this link will receive this
message and multiple responses will be sent to the client. Therefore,
the configuration with multiple IPv4 addresses assigned to the interface
should not be used when the directly connected clients are operating on
that link. To use a single address on such interface, the
“interface-name/address” notation should be used.

Note

Specifying the value raw as the socket type doesn’t guarantee
that the raw sockets will be used! The use of raw sockets to handle
the traffic from the directly connected clients is currently
supported on Linux and BSD systems only. If the raw sockets are not
supported on the particular OS in use, the server will issue a warning and
fall back to using IP/UDP sockets.

In a typical environment, the DHCP server is expected to send back a
response on the same network interface on which the query was received.
This is the default behavior. However, in some deployments it is desired
that the outbound (response) packets will be sent as regular traffic and
the outbound interface will be determined by the routing tables. This
kind of asymmetric traffic is uncommon, but valid. Kea supports a
parameter called outbound-interface that controls this behavior. It
supports two values; the first one, same-as-inbound, tells Kea to
send back the response on the same interface where the query packet was
received. This is the default behavior. The second one, use-routing,
tells Kea to send regular UDP packets and let the kernel’s routing table
determine the most appropriate interface. This only works when
dhcp-socket-type is set to udp. An example configuration looks
as follows:

"Dhcp4": {
 "interfaces-config": {
 "interfaces": ["eth1", "eth3"],
 "dhcp-socket-type": "udp",
 "outbound-interface": "use-routing"
 },
 ...
}

Interfaces are re-detected at each reconfiguration. This behavior can be
disabled by setting the re-detect value to false, for instance:

"Dhcp4": {
 "interfaces-config": {
 "interfaces": ["eth1", "eth3"],
 "re-detect": false
 },
 ...
}

Note that interfaces are not re-detected during config-test.

Usually loopback interfaces (e.g. the “lo” or “lo0” interface) may not
be configured, but if a loopback interface is explicitely configured and
IP/UDP sockets are specified, the loopback interface is accepted.

For example, it can be used to run Kea in a FreeBSD jail having only a
loopback interface, to service a relayed DHCP request:

"Dhcp4": {
 "interfaces-config": {
 "interfaces": ["lo0"],
 "dhcp-socket-type": "udp"
 },
 ...
}

8.2.5. Issues with Unicast Responses to DHCPINFORM

The use of UDP sockets has certain benefits in deployments where the
server receives only relayed traffic; these benefits are mentioned in
Interface Configuration. From the
administrator’s perspective it is often desirable to configure the
system’s firewall to filter out unwanted traffic, and the use of UDP
sockets facilitates this. However, the administrator must also be aware
of the implications related to filtering certain types of traffic, as it
may impair the DHCP server’s operation.

In this section we are focusing on the case when the server receives the
DHCPINFORM message from the client via a relay. According to RFC
2131 [https://tools.ietf.org/html/rfc2131], the server should unicast
the DHCPACK response to the address carried in the “ciaddr” field. When
the UDP socket is in use, the DHCP server relies on the low-level
functions of an operating system to build the data link, IP, and UDP
layers of the outgoing message. Typically, the OS will first use ARP to
obtain the client’s link-layer address to be inserted into the frame’s
header, if the address is not cached from a previous transaction that
the client had with the server. When the ARP exchange is successful, the
DHCP message can be unicast to the client, using the obtained address.

Some system administrators block ARP messages in their network, which
causes issues for the server when it responds to the DHCPINFORM
messages because the server is unable to send the DHCPACK if the
preceding ARP communication fails. Since the OS is entirely responsible
for the ARP communication and then sending the DHCP packet over the
wire, the DHCP server has no means to determine that the ARP exchange
failed and the DHCP response message was dropped. Thus, the server does
not log any error messages when the outgoing DHCP response is dropped.
At the same time, all hooks pertaining to the packet-sending operation
will be called, even though the message never reaches its destination.

Note that the issue described in this section is not observed when the
raw sockets are in use, because, in this case, the DHCP server builds
all the layers of the outgoing message on its own and does not use ARP.
Instead, it inserts the value carried in the “chaddr” field of the
DHCPINFORM message into the link layer.

Server administrators willing to support DHCPINFORM messages via relays
should not block ARP traffic in their networks or should use raw sockets
instead of UDP sockets.

8.2.6. IPv4 Subnet Identifier

The subnet identifier is a unique number associated with a particular
subnet. In principle, it is used to associate clients’ leases with their
respective subnets. When a subnet identifier is not specified for a
subnet being configured, it will be automatically assigned by the
configuration mechanism. The identifiers are assigned from 1 and are
monotonically increased for each subsequent subnet: 1, 2, 3 ….

If there are multiple subnets configured with auto-generated identifiers
and one of them is removed, the subnet identifiers may be renumbered.
For example: if there are four subnets and the third is removed, the
last subnet will be assigned the identifier that the third subnet had
before removal. As a result, the leases stored in the lease database for
subnet 3 are now associated with subnet 4, something that may have
unexpected consequences. The only remedy for this issue at present is to
manually specify a unique identifier for each subnet.

Note

Subnet IDs must be greater than zero and less than 4294967295.

The following configuration will assign the specified subnet identifier
to a newly configured subnet:

"Dhcp4": {
 "subnet4": [
 {
 "subnet": "192.0.2.0/24",
 "id": 1024,
 ...
 }
]
}

This identifier will not change for this subnet unless the “id”
parameter is removed or set to 0. The value of 0 forces auto-generation
of the subnet identifier.

8.2.7. IPv4 Subnet Prefix

The subnet prefix is the second way to identify a subnet. It does not
need to have the address part to match the prefix length, for instance
this configuration is accepted:

"Dhcp4": {
 "subnet4": [
 {
 "subnet": "192.0.2.1/24",
 ...
 }
]
}

Even there is another subnet with the “192.0.2.0/24” prefix: only the
textual form of subnets are compared to avoid duplicates.

Note

Abuse of this feature can lead to incorrect subnet selection
(see How the DHCPv4 Server Selects a Subnet for the Client).

8.2.8. Configuration of IPv4 Address Pools

The main role of a DHCPv4 server is address assignment. For this, the
server must be configured with at least one subnet and one pool of
dynamic addresses to be managed. For example, assume that the server is
connected to a network segment that uses the 192.0.2.0/24 prefix. The
administrator of that network decides that addresses from range
192.0.2.10 to 192.0.2.20 are going to be managed by the Dhcp4 server.
Such a configuration can be achieved in the following way:

"Dhcp4": {
 "subnet4": [
 {
 "subnet": "192.0.2.0/24",
 "pools": [
 { "pool": "192.0.2.10 - 192.0.2.20" }
],
 ...
 }
]
}

Note that subnet is defined as a simple string, but the pools
parameter is actually a list of pools; for this reason, the pool
definition is enclosed in square brackets, even though only one range of
addresses is specified.

Each pool is a structure that contains the parameters that describe
a single pool. Currently there is only one parameter, pool, which
gives the range of addresses in the pool.

It is possible to define more than one pool in a subnet; continuing the
previous example, further assume that 192.0.2.64/26 should be also be
managed by the server. It could be written as 192.0.2.64 to 192.0.2.127.
Alternatively, it can be expressed more simply as 192.0.2.64/26. Both
formats are supported by Dhcp4 and can be mixed in the pool list. For
example, one could define the following pools:

"Dhcp4": {
 "subnet4": [
 {
 "subnet": "192.0.2.0/24",
 "pools": [
 { "pool": "192.0.2.10-192.0.2.20" },
 { "pool": "192.0.2.64/26" }
],
 ...
 }
],
 ...
}

White space in pool definitions is ignored, so spaces before and after
the hyphen are optional. They can be used to improve readability.

The number of pools is not limited, but for performance reasons it is
recommended to use as few as possible.

The server may be configured to serve more than one subnet:

"Dhcp4": {
 "subnet4": [
 {
 "subnet": "192.0.2.0/24",
 "pools": [{ "pool": "192.0.2.1 - 192.0.2.200" }],
 ...
 },
 {
 "subnet": "192.0.3.0/24",
 "pools": [{ "pool": "192.0.3.100 - 192.0.3.200" }],
 ...
 },
 {
 "subnet": "192.0.4.0/24",
 "pools": [{ "pool": "192.0.4.1 - 192.0.4.254" }],
 ...
 }
]
}

When configuring a DHCPv4 server using prefix/length notation, please
pay attention to the boundary values. When specifying that the server
can use a given pool, it will also be able to allocate the first
(typically a network address) and the last (typically a broadcast
address) address from that pool. In the aforementioned example of pool
192.0.3.0/24, both the 192.0.3.0 and 192.0.3.255 addresses may be
assigned as well. This may be invalid in some network configurations. To
avoid this, use the “min-max” notation.

8.2.9. Sending T1 (Option 58) and T2 (Option 59)

According to RFC 2131 [https://tools.ietf.org/html/rfc2131],
servers should send values for T1 and T2 that are 50% and 87.5% of the
lease lifetime, respectively. By default, kea-dhcp4 does not send
either value. It can be configured to send values that are specified
explicitly or that are calculated as percentages of the lease time. The
server’s behavior is governed by a combination of configuration
parameters, two of which have already been mentioned.
To send specific, fixed values use the following two parameters:

	renew-timer - specifies the value of T1 in seconds.

	rebind-timer - specifies the value of T2 in seconds.

The server will only send T2 if it is less than the valid lease time. T1
will only be sent if: T2 is being sent and T1 is less than T2; or T2
is not being sent and T1 is less than the valid lease time.

Calculating the values is controlled by the following three parameters.

	calculate-tee-times - when true, T1 and T2 will be calculated as
percentages of the valid lease time. It defaults to false.

	t1-percent - the percentage of the valid lease time to use for
T1. It is expressed as a real number between 0.0 and 1.0 and must be
less than t2-percent. The default value is 0.50 per RFC 2131.

	t2-percent - the percentage of the valid lease time to use for
T2. It is expressed as a real number between 0.0 and 1.0 and must be
greater than t1-percent. The default value is .875 per RFC 2131.

Note

In the event that both explicit values are specified and
calculate-tee-times is true, the server will use the explicit values.
Administrators with a setup where some subnets or share-networks
will use explicit values and some will use calculated values must
not define the explicit values at any level higher than where they
will be used. Inheriting them from too high a scope, such as
global, will cause them to have values at every level underneath
(shared-networks and subnets), effectively disabling calculated
values.

8.2.10. Standard DHCPv4 Options

One of the major features of the DHCPv4 server is the ability to provide
configuration options to clients. Most of the options are sent by the
server only if the client explicitly requests them using the Parameter
Request List option. Those that do not require inclusion in the
Parameter Request List option are commonly used options, e.g. “Domain
Server”, and options which require special behavior, e.g. “Client FQDN”,
which is returned to the client if the client has included this option
in its message to the server.

List of Standard DHCPv4 Options comprises the list of the
standard DHCPv4 options whose values can be configured using the
configuration structures described in this section. This table excludes
the options which require special processing and thus cannot be
configured with fixed values. The last column of the table
indicates which options can be sent by the server even when they are not
requested in the Parameter Request List option, and those which are sent
only when explicitly requested.

The following example shows how to configure the addresses of DNS
servers, which is one of the most frequently used options. Options
specified in this way are considered global and apply to all configured
subnets.

"Dhcp4": {
 "option-data": [
 {
 "name": "domain-name-servers",
 "code": 6,
 "space": "dhcp4",
 "csv-format": true,
 "data": "192.0.2.1, 192.0.2.2"
 },
 ...
]
}

Note that only one of name or code is required; there is no need to
specify both. Space has a default value of “dhcp4”, so this can be skipped
as well if a regular (not encapsulated) DHCPv4 option is defined.
Finally, csv-format defaults to true, so it too can be skipped, unless
the option value is specified as a hexadecimal string. Therefore,
the above example can be simplified to:

"Dhcp4": {
 "option-data": [
 {
 "name": "domain-name-servers",
 "data": "192.0.2.1, 192.0.2.2"
 },
 ...
]
}

Defined options are added to the response when the client requests them
at a few exceptions, which are always added. To enforce the addition of
a particular option, set the always-send flag to true as in:

"Dhcp4": {
 "option-data": [
 {
 "name": "domain-name-servers",
 "data": "192.0.2.1, 192.0.2.2",
 "always-send": true
 },
 ...
]
}

The effect is the same as if the client added the option code in the
Parameter Request List option (or its equivalent for vendor options):

"Dhcp4": {
 "option-data": [
 {
 "name": "domain-name-servers",
 "data": "192.0.2.1, 192.0.2.2",
 "always-send": true
 },
 ...
],
 "subnet4": [
 {
 "subnet": "192.0.3.0/24",
 "option-data": [
 {
 "name": "domain-name-servers",
 "data": "192.0.3.1, 192.0.3.2"
 },
 ...
],
 ...
 },
 ...
],
 ...
}

The Domain Name Servers option is always added to responses (the
always-send is “sticky”), but the value is the subnet one when the client
is localized in the subnet.

The name parameter specifies the option name. For a list of
currently supported names, see List of Standard DHCPv4 Options
below. The code parameter specifies the option code, which must
match one of the values from that list. The next line specifies the
option space, which must always be set to “dhcp4” as these are standard
DHCPv4 options. For other option spaces, including custom option spaces,
see Nested DHCPv4 Options (Custom Option Spaces). The next line specifies the format in
which the data will be entered; use of CSV (comma-separated values) is
recommended. The sixth line gives the actual value to be sent to
clients. The data parameter is specified as normal text, with values separated by
commas if more than one value is allowed.

Options can also be configured as hexadecimal values. If csv-format
is set to false, option data must be specified as a hexadecimal string.
The following commands configure the domain-name-servers option for all
subnets with the following addresses: 192.0.3.1 and 192.0.3.2. Note that
csv-format is set to false.

"Dhcp4": {
 "option-data": [
 {
 "name": "domain-name-servers",
 "code": 6,
 "space": "dhcp4",
 "csv-format": false,
 "data": "C0 00 03 01 C0 00 03 02"
 },
 ...
],
 ...
}

Kea supports the following formats when specifying hexadecimal data:

	Delimited octets - one or more octets separated by either colons or
spaces (‘:’ or ‘ ‘). While each octet may contain one or two digits,
we strongly recommend always using two digits. Valid examples are
“ab:cd:ef” and “ab cd ef”.

	String of digits - a continuous string of hexadecimal digits with
or without a “0x” prefix. Valid examples are “0xabcdef” and “abcdef”.

Care should be taken to use proper encoding when using hexadecimal
format; Kea’s ability to validate data correctness in hexadecimal is
limited.

As of Kea 1.6.0, it is also possible to specify data for binary options as
a single-quoted text string within double quotes as shown (note that
csv-format must be set to false):

"Dhcp4": {
 "option-data": [
 {
 "name": "user-class",
 "code": 77,
 "space": "dhcp4",
 "csv-format": false,
 "data": "'convert this text to binary'"
 },
 ...
],
 ...
}

Most of the parameters in the “option-data” structure are optional and
can be omitted in some circumstances, as discussed in Unspecified Parameters for DHCPv4 Option Configuration.

It is possible to specify or override options on a per-subnet basis. If
clients connected to most subnets are expected to get the same
values of a given option, administrators should use global options; it is possible to
override specific values for a small number of subnets. On the other
hand, if different values are used in each subnet, it does not make sense
to specify global option values; rather, only
subnet-specific ones should be set.

The following commands override the global DNS servers option for a
particular subnet, setting a single DNS server with address 192.0.2.3:

"Dhcp4": {
 "subnet4": [
 {
 "option-data": [
 {
 "name": "domain-name-servers",
 "code": 6,
 "space": "dhcp4",
 "csv-format": true,
 "data": "192.0.2.3"
 },
 ...
],
 ...
 },
 ...
],
 ...
}

In some cases it is useful to associate some options with an address
pool from which a client is assigned a lease. Pool-specific option
values override subnet-specific and global option values. The server’s
administrator must not try to prioritize assignment of pool-specific
options by trying to order pool declarations in the server
configuration.

The following configuration snippet demonstrates how to specify the DNS
servers option, which will be assigned to a client only if the client
obtains an address from the given pool:

"Dhcp4": {
 "subnet4": [
 {
 "pools": [
 {
 "pool": "192.0.2.1 - 192.0.2.200",
 "option-data": [
 {
 "name": "domain-name-servers",
 "data": "192.0.2.3"
 },
 ...
],
 ...
 },
 ...
],
 ...
 },
 ...
],
 ...
}

Options can also be specified in class or host reservation scope. The
current Kea options precedence order is (from most important): host
reservation, pool, subnet, shared network, class, global.

The currently supported standard DHCPv4 options are listed in
List of Standard DHCPv4 Options. “Name” and “Code” are the
values that should be used as a name/code in the option-data structures.
“Type” designates the format of the data; the meanings of the various
types are given in List of Standard DHCP Option Types.

When a data field is a string and that string contains the comma (,;
U+002C) character, the comma must be escaped with two backslashes (;
U+005C). This double escape is required because both the routine
splitting CSV data into fields and JSON use the same escape character; a
single escape (,) would make the JSON invalid. For example, the string
“foo,bar” must be represented as:

"Dhcp4": {
 "subnet4": [
 {
 "pools": [
 {
 "option-data": [
 {
 "name": "boot-file-name",
 "data": "foo\\,bar"
 }
]
 },
 ...
],
 ...
 },
 ...
],
 ...
}

Some options are designated as arrays, which means that more than one
value is allowed in such an option. For example, the option time-servers
allows the specification of more than one IPv4 address, enabling clients
to obtain the addresses of multiple NTP servers.

Custom DHCPv4 Options describes the
configuration syntax to create custom option definitions (formats).
Creation of custom definitions for standard options is generally not
permitted, even if the definition being created matches the actual
option format defined in the RFCs. There is an exception to this rule
for standard options for which Kea currently does not provide a
definition. In order to use such options, a server administrator must
create a definition as described in
Custom DHCPv4 Options in the “dhcp4” option space. This
definition should match the option format described in the relevant RFC,
but the configuration mechanism will allow any option format as it
currently has no means to validate it.

List of Standard DHCPv4 Options

	Name

	Code

	Type

	Array?

	Returned if
not
requested?

	time-offset

	2

	int32

	false

	false

	routers

	3

	ipv4-address

	true

	true

	time-servers

	4

	ipv4-address

	true

	false

	name-servers

	5

	ipv4-address

	true

	false

	domain-name-servers

	6

	ipv4-address

	true

	true

	log-servers

	7

	ipv4-address

	true

	false

	cookie-servers

	8

	ipv4-address

	true

	false

	lpr-servers

	9

	ipv4-address

	true

	false

	impress-servers

	10

	ipv4-address

	true

	false

	resource-location-servers

	11

	ipv4-address

	true

	false

	boot-size

	13

	uint16

	false

	false

	merit-dump

	14

	string

	false

	false

	domain-name

	15

	fqdn

	false

	true

	swap-server

	16

	ipv4-address

	false

	false

	root-path

	17

	string

	false

	false

	extensions-path

	18

	string

	false

	false

	ip-forwarding

	19

	boolean

	false

	false

	non-local-source-routing

	20

	boolean

	false

	false

	policy-filter

	21

	ipv4-address

	true

	false

	max-dgram-reassembly

	22

	uint16

	false

	false

	default-ip-ttl

	23

	uint8

	false

	false

	path-mtu-aging-timeout

	24

	uint32

	false

	false

	path-mtu-plateau-table

	25

	uint16

	true

	false

	interface-mtu

	26

	uint16

	false

	false

	all-subnets-local

	27

	boolean

	false

	false

	broadcast-address

	28

	ipv4-address

	false

	false

	perform-mask-discovery

	29

	boolean

	false

	false

	mask-supplier

	30

	boolean

	false

	false

	router-discovery

	31

	boolean

	false

	false

	router-solicitation-address

	32

	ipv4-address

	false

	false

	static-routes

	33

	ipv4-address

	true

	false

	trailer-encapsulation

	34

	boolean

	false

	false

	arp-cache-timeout

	35

	uint32

	false

	false

	ieee802-3-encapsulation

	36

	boolean

	false

	false

	default-tcp-ttl

	37

	uint8

	false

	false

	tcp-keepalive-interval

	38

	uint32

	false

	false

	tcp-keepalive-garbage

	39

	boolean

	false

	false

	nis-domain

	40

	string

	false

	false

	nis-servers

	41

	ipv4-address

	true

	false

	ntp-servers

	42

	ipv4-address

	true

	false

	vendor-encapsulated-options

	43

	empty

	false

	false

	netbios-name-servers

	44

	ipv4-address

	true

	false

	netbios-dd-server

	45

	ipv4-address

	true

	false

	netbios-node-type

	46

	uint8

	false

	false

	netbios-scope

	47

	string

	false

	false

	font-servers

	48

	ipv4-address

	true

	false

	x-display-manager

	49

	ipv4-address

	true

	false

	dhcp-option-overload

	52

	uint8

	false

	false

	dhcp-server-identifier

	54

	ipv4-address

	false

	true

	dhcp-message

	56

	string

	false

	false

	dhcp-max-message-size

	57

	uint16

	false

	false

	vendor-class-identifier

	60

	string

	false

	false

	nwip-domain-name

	62

	string

	false

	false

	nwip-suboptions

	63

	binary

	false

	false

	nisplus-domain-name

	64

	string

	false

	false

	nisplus-servers

	65

	ipv4-address

	true

	false

	tftp-server-name

	66

	string

	false

	false

	boot-file-name

	67

	string

	false

	false

	mobile-ip-home-agent

	68

	ipv4-address

	true

	false

	smtp-server

	69

	ipv4-address

	true

	false

	pop-server

	70

	ipv4-address

	true

	false

	nntp-server

	71

	ipv4-address

	true

	false

	www-server

	72

	ipv4-address

	true

	false

	finger-server

	73

	ipv4-address

	true

	false

	irc-server

	74

	ipv4-address

	true

	false

	streettalk-server

	75

	ipv4-address

	true

	false

	streettalk-directory-assistance-server

	76

	ipv4-address

	true

	false

	user-class

	77

	binary

	false

	false

	slp-directory-agent

	78

	record (boolean,
ipv4-address)

	true

	false

	slp-service-scope

	79

	record (boolean, string)

	false

	false

	nds-server

	85

	ipv4-address

	true

	false

	nds-tree-name

	86

	string

	false

	false

	nds-context

	87

	string

	false

	false

	bcms-controller-names

	88

	fqdn

	true

	false

	bcms-controller-address

	89

	ipv4-address

	true

	false

	client-system

	93

	uint16

	true

	false

	client-ndi

	94

	record (uint8, uint8,
uint8)

	false

	false

	uuid-guid

	97

	record (uint8, binary)

	false

	false

	uap-servers

	98

	string

	false

	false

	geoconf-civic

	99

	binary

	false

	false

	pcode

	100

	string

	false

	false

	tcode

	101

	string

	false

	false

	netinfo-server-address

	112

	ipv4-address

	true

	false

	netinfo-server-tag

	113

	string

	false

	false

	default-url

	114

	string

	false

	false

	auto-config

	116

	uint8

	false

	false

	name-service-search

	117

	uint16

	true

	false

	subnet-selection

	118

	ipv4-address

	false

	false

	domain-search

	119

	fqdn

	true

	false

	vivco-suboptions

	124

	binary

	false

	false

	vivso-suboptions

	125

	binary

	false

	false

	pana-agent

	136

	ipv4-address

	true

	false

	v4-lost

	137

	fqdn

	false

	false

	capwap-ac-v4

	138

	ipv4-address

	true

	false

	sip-ua-cs-domains

	141

	fqdn

	true

	false

	rdnss-selection

	146

	record (uint8,
ipv4-address,
ipv4-address, fqdn)

	true

	false

	v4-portparams

	159

	record (uint8, psid)

	false

	false

	v4-captive-portal

	160

	string

	false

	false

	option-6rd

	212

	record (uint8, uint8,
ipv6-address,
ipv4-address)

	true

	false

	v4-access-domain

	213

	fqdn

	false

	false

List of Standard DHCP Option Types

	Name

	Meaning

	binary

	An arbitrary string of bytes, specified as a set
of hexadecimal digits.

	boolean

	A boolean value with allowed
values true or false.

	empty

	No value; data is carried in
sub-options.

	fqdn

	Fully qualified domain name (e.g.
www.example.com).

	ipv4-address

	IPv4 address in the usual
dotted-decimal notation (e.g.
192.0.2.1).

	ipv6-address

	IPv6 address in the usual colon
notation (e.g. 2001:db8::1).

	ipv6-prefix

	IPv6 prefix and prefix length
specified using CIDR notation,
e.g. 2001:db8:1::/64. This data
type is used to represent an
8-bit field conveying a prefix
length and the variable length
prefix value.

	psid

	PSID and PSID length separated by
a slash, e.g. 3/4 specifies
PSID=3 and PSID length=4. In the
wire format it is represented by
an 8-bit field carrying PSID
length (in this case equal to 4)
and the 16-bits-long PSID value
field (in this case equal to
“0011000000000000b” using binary
notation). Allowed values for a
PSID length are 0 to 16. See RFC
7597 [https://tools.ietf.org/html/rfc7597]
for details about the PSID wire
representation.

	record

	Structured data that may be
comprised of any types (except
“record” and “empty”). The array
flag applies to the last field
only.

	string

	Any text. Please note that Kea
will silently discard any
terminating/trailing nulls from
the end of ‘string’ options when
unpacking received packets. This
is in keeping with RFC 2132,
Section
2 [https://tools.ietf.org/html/rfc2132#section-2].

	tuple

	A length encoded as an 8- (16-
for DHCPv6) bit unsigned integer
followed by a string of this
length.

	uint8

	8-bit unsigned integer with
allowed values 0 to 255.

	uint16

	16-bit unsigned integer with
allowed values 0 to 65535.

	uint32

	32-bit unsigned integer with
allowed values 0 to 4294967295.

	int8

	8-bit signed integer with allowed
values -128 to 127.

	int16

	16-bit signed integer with
allowed values -32768 to 32767.

	int32

	32-bit signed integer with
allowed values -2147483648 to
2147483647.

8.2.11. Custom DHCPv4 Options

Kea supports custom (non-standard) DHCPv4 options. Assume that we want
to define a new DHCPv4 option called “foo” which will have code 222
and will convey a single, unsigned, 32-bit integer value. We can define
such an option by putting the following entry in the configuration file:

"Dhcp4": {
 "option-def": [
 {
 "name": "foo",
 "code": 222,
 "type": "uint32",
 "array": false,
 "record-types": "",
 "space": "dhcp4",
 "encapsulate": ""
 }, ...
],
 ...
}

The false value of the array parameter determines that the
option does NOT comprise an array of “uint32” values but is, instead, a
single value. Two other parameters have been left blank:
record-types and encapsulate. The former specifies the
comma-separated list of option data fields, if the option comprises a
record of data fields. The record-types value should be non-empty if
type is set to “record”; otherwise it must be left blank. The latter
parameter specifies the name of the option space being encapsulated by
the particular option. If the particular option does not encapsulate any
option space, the parameter should be left blank. Note that the option-def
configuration statement only defines the format of an option and does
not set its value(s).

The name, code, and type parameters are required; all others
are optional. The array default value is false. The
record-types and encapsulate default values are blank (i.e. “”).
The default space is “dhcp4”.

Once the new option format is defined, its value is set in the same way
as for a standard option. For example, the following commands set a
global value that applies to all subnets.

"Dhcp4": {
 "option-data": [
 {
 "name": "foo",
 "code": 222,
 "space": "dhcp4",
 "csv-format": true,
 "data": "12345"
 }, ...
],
 ...
}

New options can take more complex forms than simple use of primitives
(uint8, string, ipv4-address, etc.); it is possible to define an option
comprising a number of existing primitives.

For example, assume we want to define a new option that will consist of
an IPv4 address, followed by an unsigned 16-bit integer, followed by a
boolean value, followed by a text string. Such an option could be
defined in the following way:

"Dhcp4": {
 "option-def": [
 {
 "name": "bar",
 "code": 223,
 "space": "dhcp4",
 "type": "record",
 "array": false,
 "record-types": "ipv4-address, uint16, boolean, string",
 "encapsulate": ""
 }, ...
],
 ...
}

The type is set to “record” to indicate that the option contains
multiple values of different types. These types are given as a
comma-separated list in the record-types field and should be ones
from those listed in List of Standard DHCP Option Types.

The values of the option are set in an option-data statement as follows:

"Dhcp4": {
 "option-data": [
 {
 "name": "bar",
 "space": "dhcp4",
 "code": 223,
 "csv-format": true,
 "data": "192.0.2.100, 123, true, Hello World"
 }
],
 ...
}

csv-format is set to true to indicate that the data field
comprises a comma-separated list of values. The values in data
must correspond to the types set in the record-types field of the
option definition.

When array is set to true and type is set to “record”, the
last field is an array, i.e. it can contain more than one value, as in:

"Dhcp4": {
 "option-def": [
 {
 "name": "bar",
 "code": 223,
 "space": "dhcp4",
 "type": "record",
 "array": true,
 "record-types": "ipv4-address, uint16",
 "encapsulate": ""
 }, ...
],
 ...
}

The new option content is one IPv4 address followed by one or more 16-
bit unsigned integers.

Note

In general, boolean values are specified as true or false,
without quotes. Some specific boolean parameters may also accept
"true", "false", 0, 1, "0", and "1".

Note

Numbers can be specified in decimal or hexadecimal format. The
hexadecimal format can be either plain (e.g. abcd) or prefixed with
0x (e.g. 0xabcd).

8.2.12. DHCPv4 Private Options

Options with a code between 224 and 254 are reserved for private use.
They can be defined at the global scope or at the client-class local
scope; this allows option definitions to be used depending on context
and option data to be set accordingly. For instance, to configure an old
PXEClient vendor:

"Dhcp4": {
 "client-classes": [
 {
 "name": "pxeclient",
 "test": "option[vendor-class-identifier].text == 'PXEClient'",
 "option-def": [
 {
 "name": "configfile",
 "code": 209,
 "type": "string"
 }
],
 ...
 }, ...
],
 ...
}

As the Vendor-Specific Information option (code 43) has vendor-specific
format, i.e. can carry either raw binary value or sub-options, this
mechanism is available for this option too.

In the following example taken from a real configuration, two vendor
classes use the option 43 for different and incompatible purposes:

"Dhcp4": {
 "option-def": [
 {
 "name": "cookie",
 "code": 1,
 "type": "string",
 "space": "APC"
 },
 {
 "name": "mtftp-ip",
 "code": 1,
 "type": "ipv4-address",
 "space": "PXE"
 },
 ...
],
 "client-classes": [
 {
 "name": "APC",
 "test": "(option[vendor-class-identifier].text == 'APC'",
 "option-def": [
 {
 "name": "vendor-encapsulated-options",
 "type": "empty",
 "encapsulate": "APC"
 }
],
 "option-data": [
 {
 "name": "cookie",
 "space": "APC",
 "data": "1APC"
 },
 {
 "name": "vendor-encapsulated-options"
 },
 ...
],
 ...
 },
 {
 "name": "PXE",
 "test": "(option[vendor-class-identifier].text == 'PXE'",
 "option-def": [
 {
 "name": "vendor-encapsulated-options",
 "type": "empty",
 "encapsulate": "PXE"
 }
],
 "option-data": [
 {
 "name": "mtftp-ip",
 "space": "PXE",
 "data": "0.0.0.0"
 },
 {
 "name": "vendor-encapsulated-options"
 },
 ...
],
 ...
 },
 ...
],
 ...
}

The definition used to decode a VSI option is:

	The local definition of a client class the incoming packet belongs
to;

	If none, the global definition;

	If none, the last-resort definition described in the next section,
DHCPv4 Vendor-Specific Options (backward-compatible with previous Kea versions).

Note

This last-resort definition for the Vendor-Specific Information
option (code 43) is not compatible with a raw binary value. When
there are known cases where a raw binary value will be used, a
client class must be defined with both a classification expression
matching these cases and an option definition for the VSI option with
a binary type and no encapsulation.

Note

By default, in the Vendor-Specific Information option (code 43)
sub-option code 0 and 255 mean PAD and END respectively according to
RFC 2132 [https://tools.ietf.org/html/rfc2132]. In other words, the
sub-option code values of 0 and 255 are reserved. Kea does, however,
allow you to define sub-option codes from 0 to 255. If you define
sub-options with codes 0 and/or 255, bytes with that value will
no longer be treated as a PAD or an END, but as the sub-option code
when parsing a VSI option in an incoming query.

Option 43 input processing (aka unpacking) is deferred so that it
happens after classification. This means you cannot classify clients
using option 43 suboptions. The definition used to unpack option 43
is determined as follows:

	If defined at the global scope this definition is used

	If defined at client class scope and the packet belongs to this
class the client class definition is used

	If not defined at global scope nor in a client class to which the
packet belongs, the built-in last resort definition is used. This
definition only says the sub-option space is
“vendor-encapsulated-options-space”

The output definition selection is a bit simpler:

	If the packet belongs to a client class which defines the option
43 use this definition

	If defined at the global scope use this definition

	Otherwise use the built-in last resot definition.

Note as they use a specific/per vendor option space the sub-options
are defined at the global scope.

Note

Option definitions in client classes are allowed only for this
limited option set (codes 43 and from 224 to 254), and only for
DHCPv4.

8.2.13. DHCPv4 Vendor-Specific Options

Currently there are two option spaces defined for the DHCPv4 daemon:
“dhcp4” (for the top-level DHCPv4 options) and
“vendor-encapsulated-options-space”, which is empty by default but in
which options can be defined. Those options are carried in the
Vendor-Specific Information option (code 43). The following examples
show how to define an option “foo” with code 1 that
comprises an IPv4 address, an unsigned 16-bit integer, and a string. The
“foo” option is conveyed in a Vendor-Specific Information option.

The first step is to define the format of the option:

"Dhcp4": {
 "option-def": [
 {
 "name": "foo",
 "code": 1,
 "space": "vendor-encapsulated-options-space",
 "type": "record",
 "array": false,
 "record-types": "ipv4-address, uint16, string",
 "encapsulate": ""
 }
],
 ...
}

(Note that the option space is set to
vendor-encapsulated-options-space.) Once the option format is defined,
the next step is to define actual values for that option:

"Dhcp4": {
 "option-data": [
 {
 "name": "foo",
 "space": "vendor-encapsulated-options-space",
 "code": 1,
 "csv-format": true,
 "data": "192.0.2.3, 123, Hello World"
 }
],
 ...
}

We also include the Vendor-Specific Information option, the option that
conveys our suboption “foo”. This is required; otherwise, the option
will not be included in messages sent to the client.

"Dhcp4": {
 "option-data": [
 {
 "name": "vendor-encapsulated-options"
 }
],
 ...
}

Alternatively, the option can be specified using its code.

"Dhcp4": {
 "option-data": [
 {
 "code": 43
 }
],
 ...
}

Another popular option that is often somewhat imprecisely called “vendor
option” is option 125. Its proper name is vendor-independent
vendor-specific information option or vivso. The idea behind those
options is that each vendor has its own unique set of options with their
own custom formats. The vendor is identified by a 32-bit unsigned integer
called enterprise-id or vendor-id. For example, vivso with vendor-id
4491 represents DOCSIS options, and they are often seen
when dealing with cable modems.

In Kea each vendor is represented by its own vendor space. Since there
are hundreds of vendors and sometimes they use different option
definitions for different hardware, it’s impossible for Kea to support
them all out of the box. Fortunately, it’s easy to define support for
new vendor options. Let’s take an example of the Genexis home gateway. This
device requires sending the vivso 125 option with a suboption 2 that
contains a string with the TFTP server URL. To support such a device, three
steps are needed: first, we need to define option definitions that will
explain how the option is supposed to be formed. Second, we will need to
define option values. Third, we will need to tell Kea when to send those
specific options. This last step will be accomplished with client
classification.

An example snippet of a configuration could look similar to the
following:

{
 // First, we need to define that the suboption 2 in vivso option for
 // vendor-id 25167 has a specific format (it's a plain string in this example).
 // After this definition, we can specify values for option tftp.
 "option-def": [
 {
 // We define a short name, so the option can be referenced by name.
 // The option has code 2 and resides within vendor space 25167.
 // Its data is a plain string.
 "name": "tftp",
 "code": 2,
 "space": "vendor-25167",
 "type": "string"
 }],

 "client-classes": [
 {
 // We now need to tell Kea how to recognize when to use vendor space 25167.
 // Usually we can use a simple expression, such as checking if the device
 // sent a vivso option with specific vendor-id, e.g. "vendor[4491].exists".
 // Unfortunately, Genexis is a bit unusual in this aspect, because it
 // doesn't send vivso. In this case we need to look into the vendor class
 // (option code 60) and see if there's a specific string that identifies
 // the device.
 "name": "cpe_genexis",
 "test": "substring(option[60].hex,0,7) == 'HMC1000'",

 // Once the device is recognized, we want to send two options:
 // the vivso option with vendor-id set to 25167, and a suboption 2.
 "option-data": [
 {
 "name": "vivso-suboptions",
 "data": "25167",
 "encapsulate": "vendor-25167"
 },

 // The suboption 2 value is defined as any other option. However,
 // we want to send this suboption 2, even when the client didn't
 // explicitly request it (often there is no way to do that for
 // vendor options). Therefore we use always-send to force Kea
 // to always send this option when 25167 vendor space is involved.
 {
 "name": "tftp",
 "space": "vendor-25167",
 "data": "tftp://192.0.2.1/genexis/HMC1000.v1.3.0-R.img",
 "always-send": true
 }
]
 }]
}

By default Kea sends back
only those options that are requested by a client, unless there are
protocol rules that tell the DHCP server to always send an option. This
approach works nicely for most cases and avoids problems with clients
refusing responses with options they don’t understand. Unfortunately,
this is more complex when we consider vendor options. Some vendors (such
as docsis, identified by vendor option 4491) have a mechanism to
request specific vendor options and Kea is able to honor those.
Unfortunately, for many other vendors, such as Genexis (25167) as discussed
above, Kea does not have such a mechanism, so it can’t send any
sub-options on its own. To solve this issue, we came up with the concept of
persistent options. Kea can be told to always send options, even if the
client did not request them. This can be achieved by adding
"always-send": true to the option definition. Note that in this
particular case an option is defined in vendor space 25167. With the
“always-send” enabled, the option will be sent every time there is a
need to deal with vendor space 25167.

Another possibility is to redefine the option; see DHCPv4 Private Options.

8.2.14. Nested DHCPv4 Options (Custom Option Spaces)

It is sometimes useful to define a completely new option space, such as
when a user creates a new option in the standard option space
(“dhcp4”) and wants this option to convey sub-options. Since they are in
a separate space, sub-option codes will have a separate numbering scheme
and may overlap with the codes of standard options.

Note that the creation of a new option space is not required when
defining sub-options for a standard option, because one is created by
default if the standard option is meant to convey any sub-options (see
DHCPv4 Vendor-Specific Options).

Assume that we want to have a DHCPv4 option called “container” with code
222 that conveys two sub-options with codes 1 and 2. First we need to
define the new sub-options:

"Dhcp4": {
 "option-def": [
 {
 "name": "subopt1",
 "code": 1,
 "space": "isc",
 "type": "ipv4-address",
 "record-types": "",
 "array": false,
 "encapsulate": ""
 },
 {
 "name": "subopt2",
 "code": 2,
 "space": "isc",
 "type": "string",
 "record-types": "",
 "array": false,
 "encapsulate": ""
 }
],
 ...
}

Note that we have defined the options to belong to a new option space
(in this case, “isc”).

The next step is to define a regular DHCPv4 option with the desired code
and specify that it should include options from the new option space:

"Dhcp4": {
 "option-def": [
 ...,
 {
 "name": "container",
 "code": 222,
 "space": "dhcp4",
 "type": "empty",
 "array": false,
 "record-types": "",
 "encapsulate": "isc"
 }
],
 ...
}

The name of the option space in which the sub-options are defined is set
in the encapsulate field. The type field is set to empty, to
indicate that this option does not carry any data other than
sub-options.

Finally, we can set values for the new options:

"Dhcp4": {
 "option-data": [
 {
 "name": "subopt1",
 "code": 1,
 "space": "isc",
 "data": "192.0.2.3"
 },
 }
 "name": "subopt2",
 "code": 2,
 "space": "isc",
 "data": "Hello world"
 },
 {
 "name": "container",
 "code": 222,
 "space": "dhcp4"
 }
],
 ...
}

Note that it is possible to create an option which carries some data in
addition to the sub-options defined in the encapsulated option space.
For example, if the “container” option from the previous example were
required to carry a uint16 value as well as the sub-options, the
type value would have to be set to “uint16” in the option
definition. (Such an option would then have the following data
structure: DHCP header, uint16 value, sub-options.) The value specified
with the data parameter — which should be a valid integer enclosed
in quotes, e.g. “123” — would then be assigned to the uint16 field in
the “container” option.

8.2.15. Unspecified Parameters for DHCPv4 Option Configuration

In many cases it is not required to specify all parameters for an option
configuration, and the default values can be used. However, it is
important to understand the implications of not specifying some of them,
as it may result in configuration errors. The list below explains the
behavior of the server when a particular parameter is not explicitly
specified:

	name - the server requires either an option name or an option code to
identify an option. If this parameter is unspecified, the option code
must be specified.

	code - the server requires either an option name or an option code to
identify an option. This parameter may be left unspecified if the
name parameter is specified. However, this also requires that the
particular option have a definition (either as a standard option
or an administrator-created definition for the option using an
‘option-def’ structure), as the option definition associates an
option with a particular name. It is possible to configure an option
for which there is no definition (unspecified option format).
Configuration of such options requires the use of the option code.

	space - if the option space is unspecified it will default to
‘dhcp4’, which is an option space holding standard DHCPv4
options.

	data - if the option data is unspecified it defaults to an empty
value. The empty value is mostly used for the options which have no
payload (boolean options), but it is legal to specify empty values
for some options which carry variable-length data and for which the
specification allows a length of 0. For such options, the
data parameter may be omitted in the configuration.

	csv-format - if this value is not specified, the server will
assume that the option data is specified as a list of comma-separated
values to be assigned to individual fields of the DHCP option.

8.2.16. Stateless Configuration of DHCPv4 Clients

The DHCPv4 server supports the stateless client configuration whereby
the client has an IP address configured (e.g. using manual
configuration) and only contacts the server to obtain other
configuration parameters, such as addresses of DNS servers. In order to
obtain the stateless configuration parameters, the client sends the
DHCPINFORM message to the server with the “ciaddr” set to the address
that the client is currently using. The server unicasts the DHCPACK
message to the client that includes the stateless configuration
(“yiaddr” not set).

The server will respond to the DHCPINFORM when the client is associated
with a subnet defined in the server’s configuration. An example subnet
configuration will look like this:

"Dhcp4": {
 "subnet4": [
 {
 "subnet": "192.0.2.0/24"
 "option-data": [{
 "name": "domain-name-servers",
 "code": 6,
 "data": "192.0.2.200,192.0.2.201",
 "csv-format": true,
 "space": "dhcp4"
 }]
 }
]
}

This subnet specifies the single option which will be included in the
DHCPACK message to the client in response to DHCPINFORM. Note that the
subnet definition does not require the address pool configuration if it
will be used solely for the stateless configuration.

This server will associate the subnet with the client if one of the
following conditions is met:

	The DHCPINFORM is relayed and the giaddr matches the configured
subnet.

	The DHCPINFORM is unicast from the client and the ciaddr matches the
configured subnet.

	The DHCPINFORM is unicast from the client and the ciaddr is not set,
but the source address of the IP packet matches the configured
subnet.

	The DHCPINFORM is not relayed and the IP address on the interface on
which the message is received matches the configured subnet.

8.2.17. Client Classification in DHCPv4

The DHCPv4 server includes support for client classification. For a
deeper discussion of the classification process see Client Classification.

In certain cases it is useful to configure the server to differentiate
between DHCP client types and treat them accordingly. Client
classification can be used to modify the behavior of almost any part of
the DHCP message processing. Kea currently offers client classification
via private options and option 43 deferred unpacking; subnet selection;
pool selection; assignment of different options; and, for cable modems,
specific options for use with the TFTP server address and the boot file
field.

Kea can be instructed to limit access to given subnets based on class
information. This is particularly useful for cases where two types of
devices share the same link and are expected to be served from two
different subnets. The primary use case for such a scenario is cable
networks, where there are two classes of devices: the cable modem
itself, which should be handed a lease from subnet A; and all other
devices behind the modem, which should get a lease from subnet B. That
segregation is essential to prevent overly curious users from playing
with their cable modems. For details on how to set up class restrictions
on subnets, see Configuring Subnets With Class Information.

When subnets belong to a shared network, the classification applies to
subnet selection but not to pools; that is, a pool in a subnet limited to a
particular class can still be used by clients which do not belong to the
class, if the pool they are expected to use is exhausted. So the limit
on access based on class information is also available at the pool
level; see Configuring Pools With Class Information, within a subnet. This is
useful when segregating clients belonging to the same subnet into
different address ranges.

In a similar way, a pool can be constrained to serve only known clients,
i.e. clients which have a reservation, using the built-in “KNOWN” or
“UNKNOWN” classes. Addresses can be assigned to registered clients
without giving a different address per reservation, for instance when
there are not enough available addresses. The determination whether
there is a reservation for a given client is made after a subnet is
selected, so it is not possible to use “KNOWN”/”UNKNOWN” classes to select a
shared network or a subnet.

The process of classification is conducted in five steps. The first step
is to assess an incoming packet and assign it to zero or more classes.
The second step is to choose a subnet, possibly based on the class
information. When the incoming packet is in the special class, “DROP”,
it is dropped and an debug message logged.
The next step is to evaluate class expressions depending on
the built-in “KNOWN”/”UNKNOWN” classes after host reservation lookup,
using them for pool selection and assigning classes from host
reservations. The list of required classes is then built and each class
of the list has its expression evaluated; when it returns “true” the
packet is added as a member of the class. The last step is to assign
options, again possibly based on the class information. More complete
and detailed information is available in Client Classification.

There are two main methods of classification. The first is automatic and
relies on examining the values in the vendor class options or the
existence of a host reservation. Information from these options is
extracted, and a class name is constructed from it and added to the
class list for the packet. The second specifies an expression that is
evaluated for each packet. If the result is “true”, the packet is a
member of the class.

Note

Care should be taken with client classification, as it is easy for
clients that do not meet class criteria to be denied all service.

8.2.17.1. Setting Fixed Fields in Classification

It is possible to specify that clients belonging to a particular class
should receive packets with specific values in certain fixed fields. In
particular, three fixed fields are supported: next-server (conveys
an IPv4 address, which is set in the siaddr field), server-hostname
(conveys a server hostname, can be up to 64 bytes long, and is sent in
the sname field) and boot-file-name (conveys the configuration file,
can be up to 128 bytes long, and is sent using the file field).

Obviously, there are many ways to assign clients to specific classes,
but for PXE clients the client architecture type option (code 93)
seems to be particularly suited to make the distinction. The following
example checks whether the client identifies itself as a PXE device with
architecture EFI x86-64, and sets several fields if it does. See
Section 2.1 of RFC
4578 [https://tools.ietf.org/html/rfc4578#section-2.1]) or the
client documentation for specific values.

"Dhcp4": {
 "client-classes": [
 {
 "name": "ipxe_efi_x64",
 "test": "option[93].hex == 0x0009",
 "next-server": "192.0.2.254",
 "server-hostname": "hal9000",
 "boot-file-name": "/dev/null"
 },
 ...
],
 ...
 }

If there are multiple classes defined and an incoming packet is matched
to multiple classes, the class that is evaluated first is used.

Note

The classes are ordered as specified in the configuration.

8.2.17.2. Using Vendor Class Information in Classification

The server checks whether an incoming packet includes the vendor class
identifier option (60). If it does, the content of that option is
prepended with “VENDOR_CLASS_”, and it is interpreted as a class. For
example, modern cable modems will send this option with value
“docsis3.0” and as a result the packet will belong to class
“VENDOR_CLASS_docsis3.0”.

Note

Certain special actions for clients in VENDOR_CLASS_docsis3.0 can be
achieved by defining VENDOR_CLASS_docsis3.0 and setting its
next-server and boot-file-name values appropriately.

This example shows a configuration using an automatically generated
“VENDOR_CLASS_” class. The administrator of the network has decided that
addresses from range 192.0.2.10 to 192.0.2.20 are going to be managed by
the Dhcp4 server and only clients belonging to the docsis3.0 client
class are allowed to use that pool.

"Dhcp4": {
 "subnet4": [
 {
 "subnet": "192.0.2.0/24",
 "pools": [{ "pool": "192.0.2.10 - 192.0.2.20" }],
 "client-class": "VENDOR_CLASS_docsis3.0"
 }
],
 ...
}

8.2.17.3. Defining and Using Custom Classes

The following example shows how to configure a class using an expression
and a subnet using that class. This configuration defines the class
named “Client_foo”. It is comprised of all clients whose client ids
(option 61) start with the string “foo”. Members of this class will be
given addresses from 192.0.2.10 to 192.0.2.20 and the addresses of their
DNS servers set to 192.0.2.1 and 192.0.2.2.

"Dhcp4": {
 "client-classes": [
 {
 "name": "Client_foo",
 "test": "substring(option[61].hex,0,3) == 'foo'",
 "option-data": [
 {
 "name": "domain-name-servers",
 "code": 6,
 "space": "dhcp4",
 "csv-format": true,
 "data": "192.0.2.1, 192.0.2.2"
 }
]
 },
 ...
],
 "subnet4": [
 {
 "subnet": "192.0.2.0/24",
 "pools": [{ "pool": "192.0.2.10 - 192.0.2.20" }],
 "client-class": "Client_foo"
 },
 ...
],
 ...
}

8.2.17.4. Required Classification

In some cases it is useful to limit the scope of a class to a
shared network, subnet, or pool. There are two parameters which are used
to limit the scope of the class by instructing the server to evaluate test
expressions when required.

The first one is the per-class only-if-required flag, which is false
by default. When it is set to true, the test expression of the class
is not evaluated at the reception of the incoming packet but later, and
only if the class evaluation is required.

The second is require-client-classes, which takes a list of class
names and is valid in shared-network, subnet, and pool scope. Classes in
these lists are marked as required and evaluated after selection of this
specific shared network/subnet/pool and before output option processing.

In this example, a class is assigned to the incoming packet when the
specified subnet is used:

"Dhcp4": {
 "client-classes": [
 {
 "name": "Client_foo",
 "test": "member('ALL')",
 "only-if-required": true
 },
 ...
],
 "subnet4": [
 {
 "subnet": "192.0.2.0/24",
 "pools": [{ "pool": "192.0.2.10 - 192.0.2.20" }],
 "require-client-classes": ["Client_foo"],
 ...
 },
 ...
],
 ...
}

Required evaluation can be used to express complex dependencies like subnet membership. It can also be used to reverse the
precedence; if an option-data is set in a subnet, it takes precedence
over an option-data in a class. If the option-data is moved to a
required class and required in the subnet, a class evaluated earlier
may take precedence.

Required evaluation is also available at the shared-network and pool levels.
The order in which required classes are considered is: shared-network,
subnet, and pool, i.e. in the opposite order in which option-data is
processed.

8.2.18. DDNS for DHCPv4

As mentioned earlier, kea-dhcp4 can be configured to generate requests
to the DHCP-DDNS server, kea-dhcp-ddns, (referred to herein as “D2”) to
update DNS entries. These requests are known as Name Change Requests or
NCRs. Each NCR contains the following information:

	Whether it is a request to add (update) or remove DNS entries

	Whether the change requests forward DNS updates (A records), reverse
DNS updates (PTR records), or both

	The Fully Qualified Domain Name (FQDN), lease address, and DHCID
(information identifying the client associated with the FQDN)

Prior to Kea 1.7.1, all parameters for controlling DDNS were within the
global dhcp-ddns section of the kea-dhcp4. Beginning with Kea 1.7.1
DDNS related parameters were split into two groups:

	Connectivity Parameters

These are parameters which specify where and how kea-dhcp4 connects to
and communicates with D2. These parameters can only be specified
within the top-level dhcp-ddns section in the kea-dhcp4
configuration. The connectivity parameters are listed below:

	enable-updates

	server-ip

	server-port

	sender-ip

	sender-port

	max-queue-size

	ncr-protocol

	ncr-format"

	Behavioral Parameters

These parameters influence behavior such as how client host names and
FQDN options are handled. They have been moved out of the dhcp-ddns
section so that they may be specified at the global, shared-network,
and/or subnet levels. Furthermore, they are inherited downward from global to
shared-network to subnet. In other words, if a parameter is not specified at
a given level, the value for that level comes from the level above it.
The behavioral parameter as follows:

	ddns-send-updates

	ddns-override-no-update

	ddns-override-client-update

	ddns-replace-client-name"

	ddns-generated-prefix

	ddns-qualifying-suffix

	hostname-char-set

	hostname-char-replacement

Note

For backward compatibility, configuration parsing will still recognize
the original behavioral parameters specified in dhcp-ddns. It will
do so by translating the parameter into its global equivalent. If a
parameter is specified both globally and in dhcp-ddns, the latter
value will be ignored. In either case, a log will be emitted explaining
what has occurred. Specifying these values within dhcp-ddns is
deprecated and support for it will be removed at some future date.

The default configuration would appear as follows:

"Dhcp4": {
 "dhcp-ddns": {
 // Connectivity parameters
 "enable-updates": false,
 "server-ip": "127.0.0.1",
 "server-port":53001,
 "sender-ip":"",
 "sender-port":0,
 "max-queue-size":1024,
 "ncr-protocol":"UDP",
 "ncr-format":"JSON"
 },

 // Behavioral parameters (global)
 "ddns-send-updates": true,
 "ddns-override-no-update": false,
 "ddns-override-client-update": false,
 "ddns-replace-client-name": "never",
 "ddns-generated-prefix": "myhost",
 "ddns-qualifying-suffix": "",
 "hostname-char-set": "",
 "hostname-char-replacement": ""
 ...
}

As of Kea 1.7.1, there are two parameters which determine if kea-dhcp4
can generate DDNS requests to D2. The existing, dhcp-ddns:enable-updates
parameter which now only controls whether kea-dhcp4 connects to D2.
And the new behavioral parameter, ddns-send-updates, which determines
if DDNS updates are enabled at a given level (i.e global, shared-network,
or subnet). The following table shows how the two parameters function
together:

Enabling and Disabling DDNS Updates

	dhcp-ddns:
enable-updates

	Global
ddns-send-udpates

	Outcome

	false (default)

	false

	no updates at any scope

	false

	true (default)

	no updates at any scope

	true

	false

	updates only at scopes with
a local value of true for
ddns-enable-updates

	true

	true

	updates at all scopes except
those with a local value of
false for ddns-enable-updates

8.2.18.1. DHCP-DDNS Server Connectivity

For NCRs to reach the D2 server, kea-dhcp4 must be able to communicate
with it. kea-dhcp4 uses the following configuration parameters to
control this communication:

	enable-updates - As of Kea 1.7.1, this parameter only enables
connectivity to kea-dhcp-ddns such that DDNS updates can be constructed
and sent. It must be true for NCRs to be generated and sent to D2.
It defaults to false.

	server-ip - the IP address on which D2 listens for requests. The
default is the local loopback interface at address 127.0.0.1.
Either an IPv4 or IPv6 address may be specified.

	server-port - the port on which D2 listens for requests. The default
value is 53001.

	sender-ip - the IP address which kea-dhcp4 uses to send requests to
D2. The default value is blank, which instructs kea-dhcp4 to select a
suitable address.

	sender-port - the port which kea-dhcp4 uses to send requests to D2.
The default value of 0 instructs kea-dhcp4 to select a suitable port.

	max-queue-size - the maximum number of requests allowed to queue
waiting to be sent to D2. This value guards against requests
accumulating uncontrollably if they are being generated faster than
they can be delivered. If the number of requests queued for
transmission reaches this value, DDNS updating will be turned off
until the queue backlog has been sufficiently reduced. The intent is
to allow the kea-dhcp4 server to continue lease operations without
running the risk that its memory usage grows without limit. The
default value is 1024.

	ncr-protocol - the socket protocol to use when sending requests to
D2. Currently only UDP is supported.

	ncr-format - the packet format to use when sending requests to D2.
Currently only JSON format is supported.

By default, kea-dhcp-ddns is assumed to be running on the same machine
as kea-dhcp4, and all of the default values mentioned above should be
sufficient. If, however, D2 has been configured to listen on a different
address or port, these values must be altered accordingly. For example,
if D2 has been configured to listen on 192.168.1.10 port 900, the
following configuration is required:

"Dhcp4": {
 "dhcp-ddns": {
 "server-ip": "192.168.1.10",
 "server-port": 900,
 ...
 },
 ...
}

8.2.18.2. When Does the kea-dhcp4 Server Generate a DDNS Request?

kea-dhcp4 follows the behavior prescribed for DHCP servers in RFC
4702 [https://tools.ietf.org/html/rfc4702]. It is important to keep in
mind that kea-dhcp4 makes the initial decision of when and what to
update and forwards that information to D2 in the form of NCRs. Carrying
out the actual DNS updates and dealing with such things as conflict
resolution are within the purview of D2 itself
(see The DHCP-DDNS Server). This section describes when kea-dhcp4
will generate NCRs and the configuration parameters that can be used to
influence this decision. It assumes that both the connectivity parameter,
enable-updates and the behavioral parameter ddns-send-updates,
are true.

In general, kea-dhcp4 will generate DDNS update requests when:

	A new lease is granted in response to a DHCPREQUEST;

	An existing lease is renewed but the FQDN associated with it has
changed; or

	An existing lease is released in response to a DHCPRELEASE.

In the second case, lease renewal, two DDNS requests will be issued: one
request to remove entries for the previous FQDN, and a second request to
add entries for the new FQDN. In the last case, a lease release, a
single DDNS request to remove its entries will be made.

As for the first case, the decisions involved when granting a new lease are
more complex. When a new lease is granted, kea-dhcp4 will generate a
DDNS update request if the DHCPREQUEST contains either the FQDN option
(code 81) or the Host Name option (code 12). If both are present, the
server will use the FQDN option. By default, kea-dhcp4 will respect the
FQDN N and S flags specified by the client as shown in the following
table:

Default FQDN Flag Behavior

	Client
Flags:N-S

	Client Intent

	Server Response

	Server
Flags:N-S-O

	0-0

	Client wants to
do forward
updates, server
should do
reverse updates

	Server
generates
reverse-only
request

	1-0-0

	0-1

	Server should
do both forward
and reverse
updates

	Server
generates
request to
update both
directions

	0-1-0

	1-0

	Client wants no
updates done

	Server does not
generate a
request

	1-0-0

The first row in the table above represents “client delegation.” Here
the DHCP client states that it intends to do the forward DNS updates and
the server should do the reverse updates. By default, kea-dhcp4 will
honor the client’s wishes and generate a DDNS request to the D2 server
to update only reverse DNS data. The parameter
ddns-override-client-update can be used to instruct the server to
override client delegation requests. When this parameter is “true”,
kea-dhcp4 will disregard requests for client delegation and generate a
DDNS request to update both forward and reverse DNS data. In this case,
the N-S-O flags in the server’s response to the client will be 0-1-1
respectively.

(Note that the flag combination N=1, S=1 is prohibited according to RFC
4702 [https://tools.ietf.org/html/rfc4702]. If such a combination is
received from the client, the packet will be dropped by kea-dhcp4.)

To override client delegation, set the following values in the
configuration file:

"Dhcp4": {
 ...
 "ddns-override-client-update": true,
 ...
}

The third row in the table above describes the case in which the client
requests that no DNS updates be done. The parameter,
ddns-override-no-update, can be used to instruct the server to disregard
the client’s wishes. When this parameter is true, kea-dhcp4 will
generate DDNS update requests to kea-dhcp-ddns even if the client
requests that no updates be done. The N-S-O flags in the server’s
response to the client will be 0-1-1.

To override client delegation, issue the following commands:

"Dhcp4": {
 ...
 "ddns-override-no-update": true,
 ...
}

kea-dhcp4 will always generate DDNS update requests if the client
request only contains the Host Name option. In addition, it will include
an FQDN option in the response to the client with the FQDN N-S-O flags
set to 0-1-0 respectively. The domain name portion of the FQDN option
will be the name submitted to D2 in the DDNS update request.

8.2.18.3. kea-dhcp4 Name Generation for DDNS Update Requests

Each Name Change Request must of course include the fully qualified domain
name whose DNS entries are to be affected. kea-dhcp4 can be configured
to supply a portion or all of that name, based upon what it receives
from the client in the DHCPREQUEST.

The default rules for constructing the FQDN that will be used for DNS
entries are:

	If the DHCPREQUEST contains the client FQDN option, take the
candidate name from there; otherwise, take it from the Host Name
option.

	If the candidate name is a partial (i.e. unqualified) name, then add
a configurable suffix to the name and use the result as the FQDN.

	If the candidate name provided is empty, generate an FQDN using a
configurable prefix and suffix.

	If the client provides neither option, then take no DNS action.

These rules can be amended by setting the ddns-replace-client-name
parameter, which provides the following modes of behavior:

	never - use the name the client sent. If the client sent no name,
do not generate one. This is the default mode.

	always - replace the name the client sent. If the client sent no
name, generate one for the client.

	when-present - replace the name the client sent. If the client
sent no name, do not generate one.

	when-not-present - use the name the client sent. If the client
sent no name, generate one for the client.

Note

Note that in early versions of Kea, this parameter was a boolean and permitted only
values of true and false. Boolean values have been deprecated
and are no longer accepted. Administrators currently using booleans
must replace them with the desired mode name. A value of true
maps to "when-present", while false maps to "never".

For example, to instruct kea-dhcp4 to always generate the FQDN for a
client, set the parameter ddns-replace-client-name to always as
follows:

"Dhcp4": {
 ...
 "ddns-replace-client-name": "always",
 ...
}

The prefix used in the generation of an FQDN is specified by the
generated-prefix parameter. The default value is “myhost”. To alter
its value, simply set it to the desired string:

"Dhcp4": {
 ...
 "ddns-generated-prefix": "another.host",
 ...
}

The suffix used when generating an FQDN, or when qualifying a partial
name, is specified by the ddns-qualifying-suffix parameter. It is
strongly recommended that you supply a value for qualifying prefix when
DDNS updates are enabled. For obvious reasons, we cannot supply a
meaningful default.

"Dhcp4": {
 ...
 "ddns-qualifying-suffix": "foo.example.org",
 ...
}

When generating a name, kea-dhcp4 will construct the name in the format:

[ddns-generated-prefix]-[address-text].[ddns-qualifying-suffix].

where address-text is simply the lease IP address converted to a
hyphenated string. For example, if the lease address is 172.16.1.10, the
qualifying suffix “example.com”, and the default value is used for
ddns-generated-prefix, the generated FQDN is:

myhost-172-16-1-10.example.com.

8.2.18.4. Sanitizing Client Host Name and FQDN Names

Some DHCP clients may provide values in the Host Name
option (option code 12) or FQDN option (option code 81) that contain
undesirable characters. It is possible to configure kea-dhcp4 to
sanitize these values. The most typical use case is ensuring that only
characters that are permitted by RFC 1035 be included: A-Z, a-z, 0-9,
and ‘-’. This may be accomplished with the following two parameters:

	hostname-char-set - a regular expression describing the invalid
character set. This can be any valid, regular expression using POSIX
extended expression syntax. Embedded nuls (0x00) will always be
considered an invalid character to be replaced (or omitted).

	hostname-char-replacement - a string of zero or more characters
with which to replace each invalid character in the host name. An empty
string and will cause invalid characters to be OMITTED rather than replaced.

Note

Starting with Kea 1.7.5, the default values are as follows:

	“hostname-char-set”: “[^A-Za-z0-9.-]”,

	“hostname-char-replacement”: “”

This enables sanitizing and will omit any character that is not
a letter,digit, hyphen, dot or nul.

The following configuration will replace anything other than a letter,
digit, hyphen, or dot with the letter ‘x’:

"Dhcp4": {
 ...
 "hostname-char-set": "[^A-Za-z0-9.-]",
 "hostname-char-replacement": "x",
 ...
}

Thus, a client-supplied value of “myhost-$[123.org” would become
“myhost-xx123.org”. Sanitizing is performed only on the portion of the
name supplied by the client, and it is performed before applying a
qualifying suffix (if one is defined and needed).

Note

The following are some considerations to keep in mind:
Name sanitizing is meant to catch the more common cases of invalid
characters through a relatively simple character-replacement scheme.
It is difficult to devise a scheme that works well in all cases, for
both Host Name and FQDN options. Administrators who find they have clients
with odd corner cases of character combinations that cannot be
readily handled with this mechanism should consider writing a
hook that can carry out sufficiently complex logic to address their
needs.

If clients include domain names in the Host Name option and the administrator
wants these preserved, they will need to make sure that the dot, ‘.’,
is considered a valid character by the hostname-char-set expression,
such as this: “[^A-Za-z0-9.-]”. This will not affect dots in FQDN
Option values. When scrubbing FQDNs, dots are treated as delimiters
and used to separate the option value into individual domain labels
that are scrubbed and then re-assembled.

If clients are sending values that differ only by characters
considered as invalid by the hostname-char-set, be aware that
scrubbing them will yield identical values. In such cases, DDNS
conflict rules will permit only one of them to register the name.

Finally, given the latitude clients have in the values they send, it
is virtually impossible to guarantee that a combination of these two
parameters will always yield a name that is valid for use in DNS. For
example, using an empty value for hostname-char-replacement could
yield an empty domain label within a name, if that label consists
only of invalid characters.

Note

Since the 1.6.0 Kea release it is possible to specify hostname-char-set
and/or hostname-char-replacement at the global scope. This allows
to sanitize host names without requiring a dhcp-ddns entry. When
a hostname-char parameter is defined at the global scope and
in a dhcp-ddns entry the second (local) value is used.

8.2.19. Next Server (siaddr)

In some cases, clients want to obtain configuration from a TFTP server.
Although there is a dedicated option for it, some devices may use the
siaddr field in the DHCPv4 packet for that purpose. That specific field
can be configured using the next-server directive. It is possible to
define it in the global scope or for a given subnet only. If both are
defined, the subnet value takes precedence. The value in subnet can be
set to 0.0.0.0, which means that next-server should not be sent. It
may also be set to an empty string, which means the same as if it were
not defined at all; that is, use the global value.

The server-hostname (which conveys a server hostname, can be up to
64 bytes long, and will be sent in the sname field) and
boot-file-name (which conveys the configuration file, can be up to
128 bytes long, and will be sent using the file field) directives are
handled the same way as next-server.

"Dhcp4": {
 "next-server": "192.0.2.123",
 "boot-file-name": "/dev/null",
 ...,
 "subnet4": [
 {
 "next-server": "192.0.2.234",
 "server-hostname": "some-name.example.org",
 "boot-file-name": "bootfile.efi",
 ...
 }
]
}

8.2.20. Echoing Client-ID (RFC 6842)

The original DHCPv4 specification (RFC
2131 [https://tools.ietf.org/html/rfc2131]) states that the DHCPv4
server must not send back client-id options when responding to clients.
However, in some cases that result confused clients that did not have a MAC
address or client-id; see RFC
6842 [https://tools.ietf.org/html/rfc6842] for details. That behavior
changed with the publication of RFC
6842 [https://tools.ietf.org/html/rfc6842], which updated RFC
2131 [https://tools.ietf.org/html/rfc2131]. That update states that
the server must send the client-id if the client sent it. That is Kea’s
default behavior. However, in some cases older devices that do not
support RFC 6842 [https://tools.ietf.org/html/rfc6842] may refuse to
accept responses that include the client-id option. To enable backward
compatibility, an optional configuration parameter has been introduced.
To configure it, use the following configuration statement:

"Dhcp4": {
 "echo-client-id": false,
 ...
}

8.2.21. Using Client Identifier and Hardware Address

The DHCP server must be able to identify the client from which it
receives the message and distinguish it from other clients. There are
many reasons why this identification is required; the most important
ones are:

	When the client contacts the server to allocate a new lease, the
server must store the client identification information in the lease
database as a search key.

	When the client is trying to renew or release the existing lease, the
server must be able to find the existing lease entry in the database
for this client, using the client identification information as a
search key.

	Some configurations use static reservations for the IP addresses and
other configuration information. The server’s administrator uses
client identification information to create these static assignments.

	In dual-stack networks there is often a need to correlate the lease
information stored in DHCPv4 and DHCPv6 servers for a particular
host. Using common identification information by the DHCPv4 and
DHCPv6 clients allows the network administrator to achieve this
correlation and better administer the network.

DHCPv4 uses two distinct identifiers which are placed by the client in
the queries sent to the server and copied by the server to its responses
to the client: “chaddr” and “client identifier”. The former was
introduced as a part of the BOOTP specification and it is also used by
DHCP to carry the hardware address of the interface used to send the
query to the server (MAC address for the Ethernet). The latter is
carried in the Client-identifier option, introduced in RFC
2132 [https://tools.ietf.org/html/rfc2132].

RFC 2131 [https://tools.ietf.org/html/rfc2131] indicates that the
server may use both of these identifiers to identify the client but the
“client identifier”, if present, takes precedence over “chaddr”. One of
the reasons for this is that “client identifier” is independent from the
hardware used by the client to communicate with the server. For example,
if the client obtained the lease using one network card and then the
network card is moved to another host, the server will wrongly identify
this host as the one which obtained the lease. Moreover, RFC
4361 [https://tools.ietf.org/html/rfc4361] gives the recommendation
to use a DUID (see RFC 8415 [https://tools.ietf.org/html/rfc8415],
the DHCPv6 specification) carried as a “client identifier” when dual-stack
networks are in use to provide consistent identification information for
the client, regardless of the type of protocol it is using. Kea adheres to
these specifications, and the “client identifier” by default takes
precedence over the value carried in the “chaddr” field when the server
searches, creates, updates, or removes the client’s lease.

When the server receives a DHCPDISCOVER or DHCPREQUEST message from the
client, it will try to find out if the client already has a lease in the
database; if it does, the server will hand out that lease rather than allocate a new one.
Each lease in the lease database is associated with the “client
identifier” and/or “chaddr”. The server will first use the “client
identifier” (if present) to search for the lease. If the lease is found, the
server will treat this lease as belonging to the client even if the
current “chaddr” and the “chaddr” associated with the lease do not
match. This facilitates the scenario when the network card on the client
system has been replaced and thus the new MAC address appears in the
messages sent by the DHCP client. If the server fails to find the lease
using the “client identifier”, it will perform another lookup using the
“chaddr”. If this lookup returns no result, the client is considered as
not having a lease and a new lease will be created.

A common problem reported by network operators is that poor client
implementations do not use stable client identifiers, instead generating
a new “client identifier” each time the client connects to the network.
Another well-known case is when the client changes its “client
identifier” during the multi-stage boot process (PXE). In such cases,
the MAC address of the client’s interface remains stable, and using the
“chaddr” field to identify the client guarantees that the particular
system is considered to be the same client, even though its “client
identifier” changes.

To address this problem, Kea includes a configuration option which
enables client identification using “chaddr” only. This instructs the
server to “ignore” the “client identifier” during lease lookups and allocations
for a particular subnet. Consider the following simplified server configuration:

"Dhcp4": {
 ...
 "match-client-id": true,
 ...
 "subnet4": [
 {
 "subnet": "192.0.10.0/24",
 "pools": [{ "pool": "192.0.2.23-192.0.2.87" }],
 "match-client-id": false
 },
 {
 "subnet": "10.0.0.0/8",
 "pools": [{ "pool": "10.0.0.23-10.0.2.99" }],
 }
]
}

The match-client-id is a boolean value which controls this behavior.
The default value of true indicates that the server will use the
“client identifier” for lease lookups and “chaddr” if the first lookup
returns no results. The false means that the server will only use
the “chaddr” to search for the client’s lease. Whether the DHCID for DNS
updates is generated from the “client identifier” or “chaddr” is
controlled through the same parameter.

The match-client-id parameter may appear both in the global
configuration scope and/or under any subnet declaration. In the example
shown above, the effective value of the match-client-id will be
false for the subnet 192.0.10.0/24, because the subnet-specific
setting of the parameter overrides the global value of the parameter.
The effective value of the match-client-id for the subnet 10.0.0.0/8
will be set to true because the subnet declaration lacks this
parameter and the global setting is by default used for this subnet. In
fact, the global entry for this parameter could be omitted in this case,
because true is the default value.

It is important to understand what happens when the client obtains its
lease for one setting of the match-client-id and then renews it when
the setting has been changed. First, consider the case when the client
obtains the lease and the match-client-id is set to true. The
server will store the lease information, including “client identifier”
(if supplied) and “chaddr”, in the lease database. When the setting is
changed and the client renews the lease, the server will determine that
it should use the “chaddr” to search for the existing lease. If the
client hasn’t changed its MAC address, the server should successfully
find the existing lease. The “client identifier” associated with the
returned lease will be ignored and the client will be allowed to use this lease.
When the lease is renewed only the “chaddr” will be recorded for this lease,
according to the new server setting.

In the second case the client has the lease with only a “chaddr” value
recorded. When the match-client-id setting is changed to true,
the server will first try to use the “client identifier” to find the
existing client’s lease. This will return no results because the “client
identifier” was not recorded for this lease. The server will then use
the “chaddr” and the lease will be found. If the lease appears to have
no “client identifier” recorded, the server will assume that this lease
belongs to the client and that it was created with the previous setting
of the match-client-id. However, if the lease contains a “client
identifier” which is different from the “client identifier” used by the
client, the lease will be assumed to belong to another client and the
new lease will be allocated.

8.2.22. Authoritative DHCPv4 Server Behavior

The original DHCPv4 specification (RFC
2131 [https://tools.ietf.org/html/rfc2131]) states that if a client
requests an address in the INIT-REBOOT state, of which the server has no
knowledge, the server must remain silent, except if the server knows
that the client has requested an IP address from the wrong network. By
default, Kea follows the behavior of the ISC dhcpd daemon instead of the
specification and also remains silent if the client requests an IP
address from the wrong network, because configuration information about
a given network segment is not known to be correct. Kea only rejects a
client’s DHCPREQUEST with a DHCPNAK message if it already has a lease
for the client with a different IP address. Administrators can
override this behavior through the boolean authoritative (false
by default) setting.

In authoritative mode, authoritative set to true, Kea always
rejects INIT-REBOOT requests from unknown clients with DHCPNAK messages.
The authoritative setting can be specified in global,
shared-network, and subnet configuration scope and is automatically
inherited from the parent scope, if not specified. All subnets in a
shared-network must have the same authoritative setting.

8.2.23. DHCPv4-over-DHCPv6: DHCPv4 Side

The support of DHCPv4-over-DHCPv6 transport is described in RFC
7341 [https://tools.ietf.org/html/rfc7341] and is implemented using
cooperating DHCPv4 and DHCPv6 servers. This section is about the
configuration of the DHCPv4 side (the DHCPv6 side is described in
DHCPv4-over-DHCPv6: DHCPv6 Side).

Note

DHCPv4-over-DHCPv6 support is experimental and the details of the
inter-process communication may change; both the DHCPv4 and DHCPv6
sides should be running the same version of Kea. For instance, the
support of port relay (RFC 8357) introduced an incompatible change.

The dhcp4o6-port global parameter specifies the first of the two
consecutive ports of the UDP sockets used for the communication between
the DHCPv6 and DHCPv4 servers. The DHCPv4 server is bound to ::1 on
port + 1 and connected to ::1 on port.

With DHCPv4-over-DHCPv6, the DHCPv4 server does not have access to
several of the identifiers it would normally use to select a subnet. To
address this issue, three new configuration entries have been added; the
presence of any of these allows the subnet to be used with
DHCPv4-over-DHCPv6. These entries are:

	4o6-subnet: takes a prefix (i.e., an IPv6 address followed by a
slash and a prefix length) which is matched against the source
address.

	4o6-interface-id: takes a relay interface ID option value.

	4o6-interface: takes an interface name which is matched against
the incoming interface name.

The following configuration was used during some tests:

{

DHCPv4 conf
"Dhcp4": {
 "interfaces-config": {
 "interfaces": ["eno33554984"]
 },

 "lease-database": {
 "type": "memfile",
 "name": "leases4"
 },

 "valid-lifetime": 4000,

 "subnet4": [{
 "subnet": "10.10.10.0/24",
 "4o6-interface": "eno33554984",
 "4o6-subnet": "2001:db8:1:1::/64",
 "pools": [{ "pool": "10.10.10.100 - 10.10.10.199" }]
 }],

 "dhcp4o6-port": 6767,

 "loggers": [{
 "name": "kea-dhcp4",
 "output_options": [{
 "output": "/tmp/kea-dhcp4.log"
 }],
 "severity": "DEBUG",
 "debuglevel": 0
 }]
}

}

8.2.24. Sanity Checks in DHCPv4

An important aspect of a well-running DHCP system is an assurance that
the data remain consistent. However, in some cases it may be convenient
to tolerate certain inconsistent data. For example, a network
administrator that temporarily removed a subnet from a configuration
would not want all the leases associated with it to disappear from the
lease database. Kea has a mechanism to control sanity checks such
as this.

Kea supports a configuration scope called sanity-checks. It
currently allows only a single parameter, called lease-checks, which
governs the verification carried out when a new lease is loaded from a
lease file. This mechanism permits Kea to attempt to correct inconsistent data.

Every subnet has a subnet-id value; this is how Kea internally
identifies subnets. Each lease has a subnet-id parameter as well, which
identifies which subnet it belongs to. However, if the configuration has
changed, it is possible that a lease could exist with a subnet-id, but
without any subnet that matches it. Also, it may be possible that the
subnet’s configuration has changed and the subnet-id now belongs to a
subnet that does not match the lease. Kea’s corrective algorithm first
checks to see if there is a subnet with the subnet-id specified by the
lease. If there is, it verifies whether the lease belongs to that
subnet. If not, depending on the lease-checks setting, the lease is
discarded, a warning is displayed, or a new subnet is selected for the
lease that matches it topologically.

There are five levels which are supported:

	none - do no special checks; accept the lease as is.

	warn - if problems are detected display a warning, but
accept the lease data anyway. This is the default value. If
not explicitly configured to some other value, this level will be
used.

	fix - if a data inconsistency is discovered, try to
correct it. If the correction is not successful, the incorrect data
will be inserted anyway.

	fix-del - if a data inconsistency is discovered, try to
correct it. If the correction is not successful, reject the lease.
This setting ensures the data’s correctness, but some
incorrect data may be lost. Use with care.

	del - this is the strictest mode. If any inconsistency is
detected, reject the lease. Use with care.

This feature is currently implemented for the memfile backend.

An example configuration that sets this parameter looks as follows:

"Dhcp4": {
 "sanity-checks": {
 "lease-checks": "fix-del"
 },
 ...
}

8.2.25. Storing Extended Lease Information

In order to support such features as DHCP LeaseQuery
(RFC 4388 [https://tools.ietf.org/html/rfc4388]) it is necessary to
store additional information with each lease. Because the amount
of information stored for each lease has ramifications in terms of
performance and system resource consumption, storing this additional
information is configurable through the “store-extended-info” parameter.
It defaults to false and may be set at the global, shared-network, and
subnet levels.

"Dhcp4": {
 "store-extended-info": true,
 ...
}

When enabled, information relevant to the DHCPREQUEST asking for the lease is
added into the lease’s user-context as a map element labeled “ISC”. Currently,
the map will contain a single value, the relay-agent-info option (DHCP Option 82),
when the DHCPREQUEST received contains it. Other values may be added at a
future date. Since DHCPREQUESTs sent as renewals will likely not contain this
information, the values taken from the last DHCPREQUEST that did contain it will
be retained on the lease. The lease’s user-context will look something like this:

{ "ISC": { "relay-agent-info": "0x52050104AABBCCDD" } }

Note

This feature is intended to be used in conjunction with an upcoming LeaseQuery
hook library and at this time there is other use for this information within Kea.

Note

It is possible that other hook libraries are already making use of user-context.
Enabling store-extended-info should not interfere with any other user-context
content so long as it does not also use an element labled “ISC”. In other
words, user-context is intended to be a flexible container serving mulitple
purposes. As long as no other purpose also writes an “ISC” element to
user-context there should not be a conflict.

8.2.26. Multi-threading settings

The Kea server can be configured to process packets in parallel using multiple
threads. These settings can be found under multi-threading structure and are
represented by:

	enable-multi-threading - use multiple threads to process packets in
parallel (default false).

	thread-pool-size - specify the number of threads to process packets in
parallel. Supported values are: 0 (auto detect), any positive number sets
thread count explicitly (default 0).

	packet-queue-size - specify the size of the queue used by the thread
pool to process packets. Supported values are: 0 (unlimited), any positive
number sets queue size explicitly (default 64).

An example configuration that sets these parameter looks as follows:

"Dhcp4": {
 "multi-threading": {
 "enable-multi-threading": true,
 "thread-pool-size": 4,
 "packet-queue-size": 16
 }
 ...
}

8.3. Host Reservation in DHCPv4

There are many cases where it is useful to provide a configuration on a
per-host basis. The most obvious one is to reserve a specific, static
address for exclusive use by a given client (host); the returning client
will receive the same address from the server every time, and other
clients will generally not receive that address. Another situation when
host reservations are applicable is when a host has
specific requirements, e.g. a printer that needs additional DHCP
options. Yet another possible use case is to define unique names for
hosts.

Note that there may be
cases when a new reservation has been made for a client for an address
currently in use by another client. We call this situation a “conflict.”
These conflicts get resolved automatically over time as described in
subsequent sections. Once the conflict is resolved, the correct client will
receive the reserved configuration when it renews.

Host reservations are defined as parameters for each subnet. Each host
must have its own unique identifier, such as the hardware/MAC
address. There is an optional reservations array in the subnet4
structure; each element in that array is a structure that holds
information about reservations for a single host. In particular, the
structure must have a unique host identifier. In
the DHCPv4 context, the identifier is usually a hardware or MAC address.
In most cases an IP address will be specified. It is also possible to
specify a hostname, host-specific options, or fields carried within the
DHCPv4 message such as siaddr, sname, or file.

The following example shows how to reserve addresses for specific hosts
in a subnet:

"subnet4": [
 {
 "pools": [{ "pool": "192.0.2.1 - 192.0.2.200" }],
 "subnet": "192.0.2.0/24",
 "interface": "eth0",
 "reservations": [
 {
 "hw-address": "1a:1b:1c:1d:1e:1f",
 "ip-address": "192.0.2.202"
 },
 {
 "duid": "0a:0b:0c:0d:0e:0f",
 "ip-address": "192.0.2.100",
 "hostname": "alice-laptop"
 },
 {
 "circuit-id": "'charter950'",
 "ip-address": "192.0.2.203"
 },
 {
 "client-id": "01:11:22:33:44:55:66",
 "ip-address": "192.0.2.204"
 }
]
 }
]

The first entry reserves the 192.0.2.202 address for the client that
uses a MAC address of 1a:1b:1c:1d:1e:1f. The second entry reserves the
address 192.0.2.100 and the hostname of alice-laptop for the client
using a DUID 0a:0b:0c:0d:0e:0f. (Note that if DNS updates are planned,
it is strongly recommended that the hostnames be unique.) The
third example reserves address 192.0.3.203 for a client whose request
would be relayed by a relay agent that inserts a circuit-id option with
the value “charter950”. The fourth entry reserves address 192.0.2.204
for a client that uses a client identifier with value
01:11:22:33:44:55:66.

The above example is used for illustrational purposes only; in actual
deployments it is recommended to use as few types as possible
(preferably just one). See Fine-Tuning DHCPv4 Host Reservation for a detailed discussion of this
point.

Making a reservation for a mobile host that may visit multiple subnets
requires a separate host definition in each subnet that host is expected to
visit. It is not possible to define multiple host definitions with the
same hardware address in a single subnet. Multiple host definitions with
the same hardware address are valid if each is in a different subnet.

Adding host reservations incurs a performance penalty. In principle, when
a server that does not support host reservation responds to a query, it
needs to check whether there is a lease for a given address being
considered for allocation or renewal. The server that does support host
reservation has to perform additional checks: not only whether the
address is currently used (i.e., if there is a lease for it), but also
whether the address could be used by someone else (i.e., if there is a
reservation for it). That additional check incurs extra overhead.

8.3.1. Address Reservation Types

In a typical scenario there is an IPv4 subnet defined, e.g.
192.0.2.0/24, with a certain part of it dedicated for dynamic allocation
by the DHCPv4 server. That dynamic part is referred to as a dynamic pool
or simply a pool. In principle, a host reservation can reserve any
address that belongs to the subnet. The reservations that specify
addresses that belong to configured pools are called “in-pool
reservations.” In contrast, those that do not belong to dynamic pools
are called “out-of-pool reservations.” There is no formal difference in
the reservation syntax and both reservation types are handled uniformly.

Kea supports global host reservations. These are reservations that are
specified at the global level within the configuration and that do not
belong to any specific subnet. Kea will still match inbound client
packets to a subnet as before, but when the subnet’s reservation mode is
set to "global", Kea will look for host reservations only among the
global reservations defined. Typically, such reservations would be used
to reserve hostnames for clients which may move from one subnet to
another.

Note

Global reservations, while useful in certain circumstances, have aspects
that must be given due consideration when using them, please see
Conflicts in DHCPv4 Reservations for more details.

8.3.2. Conflicts in DHCPv4 Reservations

As reservations and lease information are stored separately, conflicts
may arise. Consider the following series of events: the server has
configured the dynamic pool of addresses from the range of 192.0.2.10 to
192.0.2.20. Host A requests an address and gets 192.0.2.10. Now the
system administrator decides to reserve address 192.0.2.10 for Host B.
In general, reserving an address that is currently assigned to someone
else is not recommended, but there are valid use cases where such an
operation is warranted.

The server now has a conflict to resolve. If Host B boots up and
requests an address, the server is not able to assign the reserved
address 192.0.2.10. A naive approach would to be immediately remove the
existing lease for Host A and create a new one for Host B. That would
not solve the problem, though, because as soon as Host B gets the
address, it will detect that the address is already in use (by Host A) and
will send a DHCPDECLINE message. Therefore, in this situation, the
server has to temporarily assign a different address from the dynamic
pool (not matching what has been reserved) to Host B.

When Host A renews its address, the server will discover that the
address being renewed is now reserved for another host - Host B.
The server will inform Host A that it is no longer allowed to
use it by sending a DHCPNAK message. The server will not remove the
lease, though, as there’s a small chance that the DHCPNAK may be lost if
the network is lossy. If that happens, the client will not receive any
responses, so it will retransmit its DHCPREQUEST packet. Once the
DHCPNAK is received by Host A, it will revert to server discovery and
will eventually get a different address. Besides allocating a new lease,
the server will also remove the old one. As a result, address 192.0.2.10
will become free. When Host B tries to renew its temporarily assigned
address, the server will detect that it has a valid lease, but will note
that there is a reservation for a different address. The server will
send DHCPNAK to inform Host B that its address is no longer usable, but
will keep its lease (again, the DHCPNAK may be lost, so the server will
keep it until the client returns for a new address). Host B will revert
to the server discovery phase and will eventually send a DHCPREQUEST
message. This time the server will find that there is a reservation for
that host and that the reserved address 192.0.2.10 is not used, so it
will be granted. It will also remove the lease for the temporarily
assigned address that Host B previously obtained.

This recovery will succeed, even if other hosts attempt to get the
reserved address. If Host C requests the address 192.0.2.10 after the
reservation is made, the server will either offer a different address
(when responding to DHCPDISCOVER) or send DHCPNAK (when responding to
DHCPREQUEST).

The recovery mechanism allows the server to fully recover from a case
where reservations conflict with existing leases; however, this procedure
will take roughly as long as the value set for renew-timer. The
best way to avoid such recovery is not to define new reservations that
conflict with existing leases. Another recommendation is to use
out-of-pool reservations. If the reserved address does not belong to a
pool, there is no way that other clients can get it.

Note

The conflict-resolution mechanism does not work for global
reservations. Although the global address reservations feature may be useful
in certain settings, it is generally recommended not to use
global reservations for addresses. Administrators who do choose
to use global reservations must manually ensure that the reserved
addresses are not in dynamic pools.

8.3.3. Reserving a Hostname

When the reservation for a client includes the hostname, the server
will return this hostname to the client in the Client FQDN or Hostname
option. The server responds with the Client FQDN option only if the
client has included the Client FQDN option in its message to the server. The
server will respond with the Hostname option if the client included
the Hostname option in its message to the server, or if the client
requested the Hostname option using the Parameter Request List option.
The server will return the Hostname option even if it is not configured
to perform DNS updates. The reserved hostname always takes precedence
over the hostname supplied by the client or the autogenerated (from the
IPv4 address) hostname.

The server qualifies the reserved hostname with the value of the
ddns-qualifying-suffix parameter. For example, the following subnet
configuration:

{
 "subnet4": [{
 "subnet": "10.0.0.0/24",
 "pools": [{ "pool": "10.0.0.10-10.0.0.100" }],
 "ddns-qualifying-suffix": "example.isc.org.",
 "reservations": [
 {
 "hw-address": "aa:bb:cc:dd:ee:ff",
 "hostname": "alice-laptop"
 }
]
 }],
 "dhcp-ddns": {
 "enable-updates": true,
 }
}

will result in assigning the “alice-laptop.example.isc.org.” hostname to
the client using the MAC address “aa:bb:cc:dd:ee:ff”. If the
ddns-qualifying-suffix is not specified, the default (empty) value will
be used, and in this case the value specified as a hostname will be
treated as a fully qualified name. Thus, by leaving the
ddns-qualifying-suffix empty it is possible to qualify hostnames for
different clients with different domain names:

{
 "subnet4": [{
 "subnet": "10.0.0.0/24",
 "pools": [{ "pool": "10.0.0.10-10.0.0.100" }],
 "reservations": [
 {
 "hw-address": "aa:bb:cc:dd:ee:ff",
 "hostname": "alice-laptop.isc.org."
 },
 {
 "hw-address": "12:34:56:78:99:AA",
 "hostname": "mark-desktop.example.org."
 }

]
 }],
 "dhcp-ddns": {
 "enable-updates": true,
 }
}

8.3.4. Including Specific DHCPv4 Options in Reservations

Kea offers the ability to specify options on a per-host basis. These
options follow the same rules as any other options. These can be
standard options (see Standard DHCPv4 Options),
custom options (see Custom DHCPv4 Options),
or vendor-specific options (see DHCPv4 Vendor-Specific Options). The following
example demonstrates how standard options can be defined.

{
 "subnet4": [{
 "reservations": [
 {
 "hw-address": "aa:bb:cc:dd:ee:ff",
 "ip-address": "192.0.2.1",
 "option-data": [
 {
 "name": "cookie-servers",
 "data": "10.1.1.202,10.1.1.203"
 },
 {
 "name": "log-servers",
 "data": "10.1.1.200,10.1.1.201"
 }]
 }]
 }]
}

Vendor-specific options can be reserved in a similar manner:

{
 "subnet4": [{
 "reservations": [
 {
 "hw-address": "aa:bb:cc:dd:ee:ff",
 "ip-address": "10.0.0.7",
 "option-data": [
 {
 "name": "vivso-suboptions",
 "data": "4491"
 },
 {
 "name": "tftp-servers",
 "space": "vendor-4491",
 "data": "10.1.1.202,10.1.1.203"
 }]
 }]
 }]
}

Options defined at host level have the highest priority. In other words,
if there are options defined with the same type on global, subnet,
class, and host levels, the host-specific values will be used.

8.3.5. Reserving Next Server, Server Hostname, and Boot File Name

BOOTP/DHCPv4 messages include “siaddr”, “sname”, and “file” fields. Even
though DHCPv4 includes corresponding options, such as option 66 and
option 67, some clients may not support these options. For this reason,
server administrators often use the “siaddr”, “sname”, and “file” fields
instead.

With Kea, it is possible to make static reservations for these DHCPv4
message fields:

{
 "subnet4": [{
 "reservations": [
 {
 "hw-address": "aa:bb:cc:dd:ee:ff",
 "next-server": "10.1.1.2",
 "server-hostname": "server-hostname.example.org",
 "boot-file-name": "/tmp/bootfile.efi"
 }]
 }]
}

Note that those parameters can be specified in combination with other
parameters for a reservation, such as a reserved IPv4 address. These
parameters are optional; a subset of them can be specified, or all
of them can be omitted.

8.3.6. Reserving Client Classes in DHCPv4

Using Expressions in Classification explains how to configure
the server to assign classes to a client, based on the content of the
options that this client sends to the server. Host reservations
mechanisms also allow for the static assignment of classes to clients.
The definitions of these classes are placed in the Kea configuration or
a database. The following configuration snippet shows how to specify that
a client belongs to classes reserved-class1 and reserved-class2. Those
classes are associated with specific options sent to the clients which belong
to them.

{
 "client-classes": [
 {
 "name": "reserved-class1",
 "option-data": [
 {
 "name": "routers",
 "data": "10.0.0.200"
 }
]
 },
 {
 "name": "reserved-class2",
 "option-data": [
 {
 "name": "domain-name-servers",
 "data": "10.0.0.201"
 }
]
 }
],
 "subnet4": [{
 "subnet": "10.0.0.0/24",
 "pools": [{ "pool": "10.0.0.10-10.0.0.100" }],
 "reservations": [
 {
 "hw-address": "aa:bb:cc:dd:ee:ff",

 "client-classes": ["reserved-class1", "reserved-class2"]

 }
]
 }]
}

In some cases the host reservations can be used in conjuction with client
classes specified within the Kea configuration. In particular, when a
host reservation exists for a client within a given subnet, the “KNOWN”
built-in class is assigned to the client. Conversely, when there is no
static assignment for the client, the “UNKNOWN” class is assigned to the
client. Class expressions within the Kea configuration file can
refer to “KNOWN” or “UNKNOWN” classes using using the “member” operator.
For example:

{
 "client-classes": [
 {
 "name": "dependent-class",
 "test": "member('KNOWN')",
 "only-if-required": true
 }
]
}

Note that the only-if-required parameter is needed here to force
evaluation of the class after the lease has been allocated and thus the
reserved class has been also assigned.

Note

Be aware that the classes specified in non global host reservations
are assigned to the processed packet after all classes with the
only-if-required parameter set to false have been evaluated.
This has an implication that these classes must not depend on the
statically assigned classes from the host reservations. If there
is a need to create such dependency, the only-if-required must
be set to true for the dependent classes. Such classes are
evaluated after the static classes have been assigned to the packet.
This, however, imposes additional configuration overhead, because
all classes marked as only-if-required must be listed in the
require-client-classes list for every subnet where they are used.

Note

Client classes specified within the Kea configuration file may
depend on the classes specified within the global host reservations.
In such case the only-if-required parameter is not needed.
Refer to the Pool Selection with Client Class Reservations and
Subnet Selection with Client Class Reservations
for the specific use cases.

8.3.7. Storing Host Reservations in MySQL, PostgreSQL, or Cassandra

It is possible to store host reservations in MySQL, PostgreSQL, or
Cassandra. See Hosts Storage for information on how to
configure Kea to use reservations stored in MySQL, PostgreSQL, or
Cassandra. Kea provides a dedicated hook for managing reservations in a
database; section host_cmds: Host Commands provides detailed information.
The Kea wiki [https://gitlab.isc.org/isc-projects/kea/wikis/designs/commands#23-host-reservations-hr-management]
provides some examples of how to conduct common host reservation
operations.

Note

In Kea, the maximum length of an option specified per-host is
arbitrarily set to 4096 bytes.

8.3.8. Fine-Tuning DHCPv4 Host Reservation

The host reservation capability introduces additional restrictions for
the allocation engine (the component of Kea that selects an address for
a client) during lease selection and renewal. In particular, three major
checks are necessary. First, when selecting a new lease, it is not
sufficient for a candidate lease to simply not be in use by another DHCP
client; it also must not be reserved for another client. Second, when
renewing a lease, an additional check must be performed to see whether
the address being renewed is reserved for another client. Finally, when
a host renews an address, the server must check whether there is a
reservation for this host, so the existing (dynamically allocated)
address should be revoked and the reserved one be used instead.

Some of those checks may be unnecessary in certain deployments, and not
performing them may improve performance. The Kea server provides the
reservation-mode configuration parameter to select the types of
reservations allowed for a particular subnet. Each reservation type has
different constraints for the checks to be performed by the server when
allocating or renewing a lease for the client. Allowed values are:

	all - enables both in-pool and out-of-pool host reservation
types. This setting is the default value, and is the safest and
most flexible. However, as all checks are conducted, it is also the slowest.
It does not check against global reservations.

	out-of-pool - allows only out-of- pool host reservations. With
this setting in place, the server may assume that all host
reservations are for addresses that do not belong to the dynamic
pool. Therefore, it can skip the reservation checks when dealing with
in-pool addresses, thus improving performance. Do not use this mode
if any reservations use in-pool addresses. Caution is advised
when using this setting; Kea does not sanity-check the reservations
against reservation-mode and misconfiguration may cause problems.

	global - allows only global host reservations. With this setting
in place, the server searches for reservations for a client only
among the defined global reservations. If an address is specified,
the server skips the reservation checks carried out when dealing in
other modes, thus improving performance. Caution is advised when
using this setting; Kea does not sanity-check the reservations when
global and misconfiguration may cause problems.

	disabled - host reservation support is disabled. As there are no
reservations, the server will skip all checks. Any reservations
defined will be completely ignored. As the checks are skipped, the
server may operate faster in this mode.

The parameter can be specified at global, subnet, and shared-network
levels.

An example configuration that disables reservation looks as follows:

"Dhcp4": {
 "subnet4": [
 {
 "subnet": "192.0.2.0/24",
 "reservation-mode": "disabled",
 ...
 }
]
}

An example configuration using global reservations is shown below:

"Dhcp4": {

 "reservation-mode": "global",
 "reservations": [
 {
 "hw-address": "01:bb:cc:dd:ee:ff",
 "hostname": "host-one"
 },
 {
 "hw-address": "02:bb:cc:dd:ee:ff",
 "hostname": "host-two"
 }
],

 "subnet4": [
 {
 "subnet": "192.0.2.0/24",
 ...
 }
]
}

For more details regarding global reservations, see Global Reservations in DHCPv4.

Another aspect of host reservations is the different types of
identifiers. Kea currently supports four types of identifiers:
hw-address, duid, client-id, and circuit-id. This is beneficial from a
usability perspective; however, there is one drawback. For each incoming
packet, Kea has to extract each identifier type and then query the
database to see if there is a reservation by this particular identifier.
If nothing is found, the next identifier is extracted and the next query
is issued. This process continues until either a reservation is found or
all identifier types have been checked. Over time, with an increasing
number of supported identifier types, Kea would become slower and
slower.

To address this problem, a parameter called
host-reservation-identifiers is available. It takes a list of
identifier types as a parameter. Kea will check only those identifier
types enumerated in host-reservation-identifiers. From a performance
perspective, the number of identifier types should be kept to a minimum,
ideally one. If the deployment uses several reservation types, please
enumerate them from most- to least-frequently used, as this increases
the chances of Kea finding the reservation using the fewest queries. An
example of host reservation identifiers looks as follows:

"host-reservation-identifiers": ["circuit-id", "hw-address", "duid", "client-id"],
"subnet4": [
 {
 "subnet": "192.0.2.0/24",
 ...
 }
]

If not specified, the default value is:

"host-reservation-identifiers": ["hw-address", "duid", "circuit-id", "client-id"]

8.3.9. Global Reservations in DHCPv4

In some deployments, such as mobile, clients can roam within the network
and certain parameters must be specified regardless of the client’s
current location. To facilitate such a need, a global reservation
mechanism has been implemented. The idea behind it is that regular host
reservations are tied to specific subnets, by using a specific
subnet-id. Kea can specify a global reservation that can be used in
every subnet that has global reservations enabled.

This feature can be used to assign certain parameters, such as hostname
or other dedicated, host-specific options. It can also be used to assign
addresses. However, global reservations that assign addresses bypass the
whole topology determination provided by DHCP logic implemented in Kea.
It is very easy to misuse this feature and get a configuration that is
inconsistent. To give a specific example, imagine a global reservation
for address 192.0.2.100 and two subnets 192.0.2.0/24 and 192.0.5.0/24.
If global reservations are used in both subnets and a device matching
global host reservations visits part of the network that is serviced by
192.0.5.0/24, it will get an IP address 192.0.2.100, a subnet 192.0.5.0
and a default router 192.0.5.1. Obviously, such a configuration is
unusable, as the client will not be able to reach its default gateway.

To use global host reservations, a configuration similar to the
following can be used:

"Dhcp4:" {
 # This specifies global reservations. They will apply to all subnets that
 # have global reservations enabled.

 "reservations": [
 {
 "hw-address": "aa:bb:cc:dd:ee:ff",
 "hostname": "hw-host-dynamic"
 },
 {
 "hw-address": "01:02:03:04:05:06",
 "hostname": "hw-host-fixed",

 # Use of IP address in global reservation is risky. If used outside of
 # a matching subnet, such as 192.0.1.0/24, it will result in a broken
 # configuration being handed to the client.
 "ip-address": "192.0.1.77"
 },
 {
 "duid": "01:02:03:04:05",
 "hostname": "duid-host"
 },
 {
 "circuit-id": "'charter950'",
 "hostname": "circuit-id-host"
 },
 {
 "client-id": "01:11:22:33:44:55:66",
 "hostname": "client-id-host"
 }
],
 "valid-lifetime": 600,
 "subnet4": [{
 "subnet": "10.0.0.0/24",
 "reservation-mode": "global",
 "pools": [{ "pool": "10.0.0.10-10.0.0.100" }]
 }]
}

When using database backends, the global host reservations are
distinguished from regular reservations by using a subnet-id value of
zero.

8.3.10. Pool Selection with Client Class Reservations

Client classes can be specified both in the Kea configuration file and/or
host reservations. The classes specified in the Kea configuration file are
evaluated immediately after receiving the DHCP packet and therefore can be
used to influence subnet selection using the client-class parameter
specified in the subnet scope. The classes specified within the host
reservations are fetched and assigned to the packet after the server has
already selected a subnet for the client. This means that the client
class specified within a host reservation cannot be used to influence
subnet assignment for this client, unless the subnet belongs to a
shared network. If the subnet belongs to a shared network, the server may
dynamically change the subnet assignment while trying to allocate a lease.
If the subnet does not belong to a shared network, once selected, the subnet
is not changed.

If the subnet does not belong to a shared network, it is possible to
use host reservation based client classification to select an address pool
within the subnet as follows:

"Dhcp4": {
 "client-classes": [
 {
 "name": "reserved_class"
 },
 {
 "name": "unreserved_class",
 "test": "not member('reserved_class')"
 }
],
 "subnet4": [
 {
 "subnet": "192.0.2.0/24",
 "reservations": [{"
 "hw-address": "aa:bb:cc:dd:ee:fe",
 "client-classes": ["reserved_class"]
 }],
 "pools": [
 {
 "pool": "192.0.2.10-192.0.2.20",
 "client-class": "reserved_class"
 },
 {
 "pool": "192.0.2.30-192.0.2.40",
 "client-class": "unreserved_class"
 }
]
 }
]
}

The reserved_class is declared without the test parameter because
it may be only assigned to the client via host reservation mechanism. The
second class, unreserved_class, is assigned to the clients which do not
belong to the reserved_class. The first pool within the subnet is only
used for the clients having a reservation for the reserved_class. The
second pool is used for the clients not having such reservation. The
configuration snippet includes one host reservation which causes the client
having the MAC address of aa:bb:cc:dd:ee:fe to be assigned to the
reserved_class. Thus, this client will be given an IP address from the
first address pool.

8.3.11. Subnet Selection with Client Class Reservations

There is one specific use case when subnet selection may be influenced by
client classes specified within host reservations. This is the case when the
client belongs to a shared network. In such case it is possible to use
classification to select a subnet within this shared network. Consider the
following example:

"Dhcp4": {
 "client-classes": [
 {
 "name": "reserved_class"
 },
 {
 "name: "unreserved_class",
 "test": "not member('reserved_class")
 }
],
 "reservations": [{"
 "hw-address": "aa:bb:cc:dd:ee:fe",
 "client-classes": ["reserved_class"]
 }],
 "reservation-mode": "global",
 "shared-networks": [{
 "subnet4": [
 {
 "subnet": "192.0.2.0/24",
 "pools": [
 {
 "pool": "192.0.2.10-192.0.2.20",
 "client-class": "reserved_class"
 }
]
 },
 {
 "subnet": "192.0.3.0/24",
 "pools": [
 {
 "pool": "192.0.3.10-192.0.3.20",
 "client-class": "unreserved_class"
 }
]
 }
]
 }]
}

This is similar to the example described in the
Pool Selection with Client Class Reservations. This time, however, there
are two subnets, each of them having a pool associated with a different
class. The clients which don’t have a reservation for the reserved_class
will be assigned an address from the subnet 192.0.3.0/24. Clients having
a reservation for the reserved_class will be assigned an address from
the subnet 192.0.2.0/24. The subnets must belong to the same shared network.
In addition, the reservation for the client class must be specified at the
global scope (global reservation) and the reservation-mode must be
set to global.

In the example above the client-class could also be specified at the
subnet level rather than pool level yielding the same effect.

8.4. Shared Networks in DHCPv4

DHCP servers use subnet information in two ways. First, it is used to
determine the point of attachment, or where the client is
connected to the network. Second, the subnet information is used to
group information pertaining to a specific location in the network. This
approach works well in general, but there are scenarios where the
boundaries are blurred. Sometimes it is useful to have more than one
logical IP subnet deployed on the same physical link.
Understanding that two or more subnets are used on the same link requires
additional logic in the DHCP server. This capability is called “shared
networks” in the Kea and ISC DHCP projects. (It is sometimes also called
“shared subnets”; in Microsoft’s nomenclature it is called “multinet.”)

There are many use cases where the feature is useful; this paragraph
explains just a handful of the most common ones. The first and by far
the most common use case is an existing network that has grown and is
running out of available address space. Rather than migrating all
devices to a new, larger subnet, it is easier to simply configure
additional subnets on top of the existing one. Sometimes, due to address
space fragmentation (e.g. only many disjointed /24s are available), this
is the only choice. Also, configuring additional subnets has the
advantage of not disrupting the operation of existing devices.

Another very frequent use case comes from cable networks. There are two
types of devices in cable networks: cable modems and the end-user
devices behind them. It is a common practice to use different subnets
for cable modems to prevent users from tinkering with them. In this
case, the distinction is based on the type of device, rather than
on address-space exhaustion.

A client connected to a shared network may be assigned an address from
any of the pools defined within the subnets belonging to the shared
network. Internally, the server selects one of the subnets belonging to
a shared network and tries to allocate an address from this subnet. If
the server is unable to allocate an address from the selected subnet
(e.g., due to address-pool exhaustion), it will use another subnet from
the same shared network and will try to allocate an address from this subnet,
etc. Therefore, the server will typically allocate all
addresses available in a given subnet before it starts allocating
addresses from other subnets belonging to the same shared network.
However, in certain situations the client can be allocated an address
from another subnet before the address pools in the first subnet get
exhausted; this sometimes occurs when the client provides a hint that belongs to another
subnet, or the client has reservations in a subnet other than the
default.

Note

Deployments should not assume that Kea waits until it has allocated
all the addresses from the first subnet in a shared network before
allocating addresses from other subnets.

In order to define a shared network an additional configuration scope is
introduced:

{
"Dhcp4": {
 "shared-networks": [
 {
 # Name of the shared network. It may be an arbitrary string
 # and it must be unique among all shared networks.
 "name": "my-secret-lair-level-1",

 # The subnet selector can be specified at the shared network level.
 # Subnets from this shared network will be selected for directly
 # connected clients sending requests to server's "eth0" interface.
 "interface": "eth0",

 # This starts a list of subnets in this shared network.
 # There are two subnets in this example.
 "subnet4": [
 {
 "subnet": "10.0.0.0/8",
 "pools": [{ "pool": "10.0.0.1 - 10.0.0.99" }],
 },
 {
 "subnet": "192.0.2.0/24",
 "pools": [{ "pool": "192.0.2.100 - 192.0.2.199" }]
 }
],
 }], # end of shared-networks

 # It is likely that in the network there will be a mix of regular,
 # "plain" subnets and shared networks. It is perfectly valid to mix
 # them in the same configuration file.
 #
 # This is a regular subnet. It is not part of any shared network.
 "subnet4": [
 {
 "subnet": "192.0.3.0/24",
 "pools": [{ "pool": "192.0.3.1 - 192.0.3.200" }],
 "interface": "eth1"
 }
]

} # end of Dhcp4
}

As demonstrated in the example, it is possible to mix shared and regular
(“plain”) subnets. Each shared network must have a unique name. This is
similar to the ID for subnets, but gives administrators more
flexibility. It is used for logging, but also internally for identifying
shared networks.

In principle it makes sense to define only shared networks that consist
of two or more subnets. However, for testing purposes, an empty subnet
or a network with just a single subnet is allowed. This is not a
recommended practice in production networks, as the shared network logic
requires additional processing and thus lowers the server’s performance.
To avoid unnecessary performance degradation, the shared subnets should
only be defined when required by the deployment.

Shared networks provide an ability to specify many parameters in the
shared network scope that apply to all subnets within it. If
necessary, it is possible to specify a parameter in the shared network scope and
then override its value in the subnet scope. For example:

"shared-networks": [
 {
 "name": "lab-network3",

 "interface": "eth0",

 # This applies to all subnets in this shared network, unless
 # values are overridden on subnet scope.
 "valid-lifetime": 600,

 # This option is made available to all subnets in this shared
 # network.
 "option-data": [{
 "name": "log-servers",
 "data": "1.2.3.4"
 }],

 "subnet4": [
 {
 "subnet": "10.0.0.0/8",
 "pools": [{ "pool": "10.0.0.1 - 10.0.0.99" }],

 # This particular subnet uses different values.
 "valid-lifetime": 1200,
 "option-data": [
 {
 "name": "log-servers",
 "data": "10.0.0.254"
 },
 {
 "name": "routers",
 "data": "10.0.0.254"
 }]
 },
 {
 "subnet": "192.0.2.0/24",
 "pools": [{ "pool": "192.0.2.100 - 192.0.2.199" }],

 # This subnet does not specify its own valid-lifetime value,
 # so it is inherited from shared network scope.
 "option-data": [
 {
 "name": "routers",
 "data": "192.0.2.1"
 }]
 }
]
 }]

In this example, there is a log-servers option defined that is available
to clients in both subnets in this shared network. Also, the valid
lifetime is set to 10 minutes (600s). However, the first subnet
overrides some of the values (valid lifetime is 20 minutes, different IP
address for log-servers), but also adds its own option (router address).
Assuming a client asking for router and log servers options is assigned
a lease from this subnet, it will get a lease for 20 minutes and a
log-servers and routers value of 10.0.0.254. If the same client is
assigned to the second subnet, it will get a 10-minute lease, a
log-servers value of 1.2.3.4, and routers set to 192.0.2.1.

8.4.1. Local and Relayed Traffic in Shared Networks

It is possible to specify an interface name at the shared network level
to tell the server that this specific shared network is reachable
directly (not via relays) using the local network interface. As all
subnets in a shared network are expected to be used on the same physical
link, it is a configuration error to attempt to define a shared network
using subnets that are reachable over different interfaces. In other
words, all subnets within the shared network must have the same value
of the “interface” parameter. The following configuration is wrong.

"shared-networks": [
 {
 "name": "office-floor-2",
 "subnet4": [
 {
 "subnet": "10.0.0.0/8",
 "pools": [{ "pool": "10.0.0.1 - 10.0.0.99" }],
 "interface": "eth0"
 },
 {
 "subnet": "192.0.2.0/24",
 "pools": [{ "pool": "192.0.2.100 - 192.0.2.199" }],

 # Specifying the different interface name is a configuration
 # error. This value should rather be "eth0" or the interface
 # name in the other subnet should be "eth1".
 "interface": "eth1"
 }
]
 }]

To minimize the chance of the configuration errors, it is often more convenient
to simply specify the interface name once, at the shared network level, like
shown in the example below.

"shared-networks": [
 {
 "name": "office-floor-2",

 # This tells Kea that the whole shared network is reachable over a
 # local interface. This applies to all subnets in this network.
 "interface": "eth0",

 "subnet4": [
 {
 "subnet": "10.0.0.0/8",
 "pools": [{ "pool": "10.0.0.1 - 10.0.0.99" }],
 },
 {
 "subnet": "192.0.2.0/24",
 "pools": [{ "pool": "192.0.2.100 - 192.0.2.199" }]
 }
]
 }]

In case of the relayed traffic, the subnets are typically selected using
the relay agents’ addresses. If the subnets are used independently (not
grouped within a shared network) it is allowed to specify different relay
address for each of these subnets. When multiple subnets belong to a
shared network they must be selected via the same relay address and,
similarly to the case of the local traffic described above, it is a
configuration error to specify different relay addresses for the respective
subnets in the shared network. The following configuration is wrong.

"shared-networks": [
 {
 "name": "kakapo",
 "subnet4": [
 {
 "subnet": "192.0.2.0/26",
 "relay": {
 "ip-addresses": ["192.1.1.1"]
 },
 "pools": [{ "pool": "192.0.2.63 - 192.0.2.63" }]
 },
 {
 "subnet": "10.0.0.0/24",
 "relay": {
 # Specifying a different relay address for this
 # subnet is a configuration error. In this case
 # it should be 192.1.1.1 or the relay address
 # in the previous subnet should be 192.2.2.2.
 "ip-addresses": ["192.2.2.2"]
 },
 "pools": [{ "pool": "10.0.0.16 - 10.0.0.16" }]
 }
]
 }
]

Again, it is better to specify the relay address at the shared network
level and this value will be inherited by all subnets belonging to the
shared network.

"shared-networks": [
 {
 "name": "kakapo",
 "relay": {
 # This relay address is inherited by both subnets.
 "ip-addresses": ["192.1.1.1"]
 },
 "subnet4": [
 {
 "subnet": "192.0.2.0/26",
 "pools": [{ "pool": "192.0.2.63 - 192.0.2.63" }]
 },
 {
 "subnet": "10.0.0.0/24",
 "pools": [{ "pool": "10.0.0.16 - 10.0.0.16" }]
 }
]
 }
]

Even though it is technically possible to configure two (or more) subnets
within the shared network to use different relay addresses, this will almost
always lead to a different behavior than what the user would expect. In this
case, the Kea server will initially select one of the subnets by matching
the relay address in the client’s packet with the subnet’s conifguration.
However, it MAY end up using the other subnet (even though it does not match
the relay address) if the client already has a lease in this subnet, has a
host reservation in this subnet or simply the initially selected subnet has no
more addresses available. Therefore, it is strongly recommended to always
specify subnet selectors (interface or a relay address) at shared network
level if the subnets belong to a shared network, as it is rarely useful to
specify them at the subnet level and it may lead to the configurtion errors
described above.

8.4.2. Client Classification in Shared Networks

Sometimes it is desirable to segregate clients into specific subnets
based on certain properties. This mechanism is called client
classification and is described in Client Classification. Client
classification can be applied to subnets belonging to shared networks in
the same way as it is used for subnets specified outside of shared
networks. It is important to understand how the server selects subnets
for clients when client classification is in use, to ensure that the
desired subnet is selected for a given client type.

If a subnet is associated with a class, only the clients belonging to
this class can use this subnet. If there are no classes specified for a
subnet, any client connected to a given shared network can use this
subnet. A common mistake is to assume that the subnet including a client
class is preferred over subnets without client classes. Consider the
following example:

{
 "client-classes": [
 {
 "name": "b-devices",
 "test": "option[93].hex == 0x0002"
 }
],
 "shared-networks": [
 {
 "name": "galah",
 "interface": "eth0",
 "subnet4": [
 {
 "subnet": "192.0.2.0/26",
 "pools": [{ "pool": "192.0.2.1 - 192.0.2.63" }],
 },
 {
 "subnet": "10.0.0.0/24",
 "pools": [{ "pool": "10.0.0.2 - 10.0.0.250" }],
 "client-class": "b-devices"
 }
]
 }
]
}

If the client belongs to the “b-devices” class (because it includes
option 93 with a value of 0x0002), that does not guarantee that the
subnet 10.0.0.0/24 will be used (or preferred) for this client. The
server can use either of the two subnets, because the subnet 192.0.2.0/26
is also allowed for this client. The client classification used in this
case should be perceived as a way to restrict access to certain subnets,
rather than a way to express subnet preference. For example, if the
client does not belong to the “b-devices” class it may only use the
subnet 192.0.2.0/26 and will never use the subnet 10.0.0.0/24.

A typical use case for client classification is in a cable network,
where cable modems should use one subnet and other devices should use
another subnet within the same shared network. In this case it is
necessary to apply classification on all subnets. The following example
defines two classes of devices, and the subnet selection is made based
on option 93 values.

{
 "client-classes": [
 {

 "name": "a-devices",
 "test": "option[93].hex == 0x0001"
 },
 {
 "name": "b-devices",
 "test": "option[93].hex == 0x0002"
 }
],
 "shared-networks": [
 {
 "name": "galah",
 "interface": "eth0",
 "subnet4": [
 {
 "subnet": "192.0.2.0/26",
 "pools": [{ "pool": "192.0.2.1 - 192.0.2.63" }],
 "client-class": "a-devices"
 },
 {
 "subnet": "10.0.0.0/24",
 "pools": [{ "pool": "10.0.0.2 - 10.0.0.250" }],
 "client-class": "b-devices"
 }
]
 }
]
}

In this example each class has its own restriction. Only clients that
belong to class “a-devices” will be able to use subnet 192.0.2.0/26 and
only clients belonging to “b-devices” will be able to use subnet
10.0.0.0/24. Care should be taken not to define too-restrictive
classification rules, as clients that are unable to use any subnets will
be refused service. However, this may be a desired outcome if one wishes
to provide service only to clients with known properties (e.g. only VoIP
phones allowed on a given link).

Note that it is possible to achieve an effect similar to the one
presented in this section without the use of shared networks. If the
subnets are placed in the global subnets scope, rather than in the
shared network, the server will still use classification rules to pick
the right subnet for a given class of devices. The major benefit of
placing subnets within the shared network is that common parameters for
the logically grouped subnets can be specified once, in the shared
network scope, e.g. the “interface” or “relay” parameter. All subnets
belonging to this shared network will inherit those parameters.

8.4.3. Host Reservations in Shared Networks

Subnets that are part of a shared network allow host reservations,
similar to regular subnets:

{
 "shared-networks": [
 {
 "name": "frog",
 "interface": "eth0",
 "subnet4": [
 {
 "subnet": "192.0.2.0/26",
 "id": 100,
 "pools": [{ "pool": "192.0.2.1 - 192.0.2.63" }],
 "reservations": [
 {
 "hw-address": "aa:bb:cc:dd:ee:ff",
 "ip-address": "192.0.2.28"
 }
]
 },
 {
 "subnet": "10.0.0.0/24",
 "id": 101,
 "pools": [{ "pool": "10.0.0.1 - 10.0.0.254" }],
 "reservations": [
 {
 "hw-address": "11:22:33:44:55:66",
 "ip-address": "10.0.0.29"
 }
]
 }
]
 }
]
}

It is worth noting that Kea conducts additional checks when processing a
packet if shared networks are defined. First, instead of simply checking
whether there’s a reservation for a given client in its initially
selected subnet, Kea looks through all subnets in a shared network for a
reservation. This is one of the reasons why defining a shared network
may impact performance. If there is a reservation for a client in any
subnet, that particular subnet will be picked for the client. Although
it is technically not an error, it is considered a bad practice to define
reservations for the same host in multiple subnets belonging to the same
shared network.

While not strictly mandatory, it is strongly recommended to use explicit
“id” values for subnets if database storage will be used for host
reservations. If an ID is not specified, the values for it are
autogenerated, i.e. Kea assigns increasing integer values starting from
1. Thus, the autogenerated IDs are not stable across configuration
changes.

8.5. Server Identifier in DHCPv4

The DHCPv4 protocol uses a “server identifier” to allow clients to
discriminate between several servers present on the same link; this
value is an IPv4 address of the server. The server chooses the IPv4
address of the interface on which the message from the client (or relay)
has been received. A single server instance will use multiple server
identifiers if it is receiving queries on multiple interfaces.

It is possible to override the default server identifier values by
specifying the “dhcp-server-identifier” option. This option is only
supported at the global, shared network, and subnet levels; it must not
be specified on the client class or host reservation levels.

The following example demonstrates how to override the server identifier
for a subnet:

"subnet4": [
 {
 "subnet": "192.0.2.0/24",
 "option-data": [
 {
 "name": "dhcp-server-identifier",
 "data": "10.2.5.76"
 }
],
 ...
 }
]

8.6. How the DHCPv4 Server Selects a Subnet for the Client

The DHCPv4 server differentiates between directly connected clients,
clients trying to renew leases, and clients sending their messages
through relays. For directly connected clients, the server will check
the configuration for the interface on which the message has been
received and, if the server configuration doesn’t match any configured
subnet, the message is discarded.

Assuming that the server’s interface is configured with the IPv4 address
192.0.2.3, the server will only process messages received through this
interface from a directly connected client if there is a subnet
configured to which this IPv4 address belongs, such as 192.0.2.0/24. The
server will use this subnet to assign an IPv4 address for the client.

The rule above does not apply when the client unicasts its message, i.e.
is trying to renew its lease. Such a message is accepted through any
interface. The renewing client sets ciaddr to the currently used IPv4
address, and the server uses this address to select the subnet for the
client (in particular, to extend the lease using this address).

If the message is relayed it is accepted through any interface. The
giaddr set by the relay agent is used to select the subnet for the
client.

It is also possible to specify a relay IPv4 address for a given subnet.
It can be used to match incoming packets into a subnet in uncommon
configurations, e.g. shared networks. See Using a Specific Relay Agent for a Subnet for details.

Note

The subnet selection mechanism described in this section is based on
the assumption that client classification is not used. The
classification mechanism alters the way in which a subnet is selected
for the client, depending on the classes to which the client belongs.

8.6.1. Using a Specific Relay Agent for a Subnet

A relay must have an interface connected to the link on which the
clients are being configured. Typically the relay has an IPv4 address
configured on that interface, which belongs to the subnet from which the
server will assign addresses. Normally, the server is able to use the
IPv4 address inserted by the relay (in the giaddr field of the DHCPv4
packet) to select the appropriate subnet.

However, that is not always the case. In certain uncommon — but valid —
deployments, the relay address may not match the subnet. This usually
means that there is more than one subnet allocated for a given link. The
two most common examples where this is the case are long-lasting network
renumbering (where both old and new address space is still being used)
and a cable network. In a cable network, both cable modems and the
devices behind them are physically connected to the same link, yet they
use distinct addressing. In such a case, the DHCPv4 server needs
additional information (the IPv4 address of the relay) to properly
select an appropriate subnet.

The following example assumes that there is a subnet 192.0.2.0/24 that
is accessible via a relay that uses 10.0.0.1 as its IPv4 address. The
server is able to select this subnet for any incoming packets that come
from a relay that has an address in the 192.0.2.0/24 subnet. It also
selects that subnet for a relay with address 10.0.0.1.

"Dhcp4": {
 "subnet4": [
 {
 "subnet": "192.0.2.0/24",
 "pools": [{ "pool": "192.0.2.10 - 192.0.2.20" }],
 "relay": {
 "ip-addresses": ["10.0.0.1"]
 },
 ...
 }
],
 ...
}

If “relay” is specified, the “ip-addresses” parameter within it is
mandatory.

Note

The current version of Kea uses the “ip-addresses” parameter, which
supports specifying a list of addresses.

8.6.2. Segregating IPv4 Clients in a Cable Network

In certain cases, it is useful to mix relay address information
(introduced in Using a Specific Relay Agent for a Subnet), with client classification (explained
in Client Classification). One specific example is in a cable network,
where modems typically get addresses from a different subnet than all
the devices connected behind them.

Let us assume that there is one CMTS (Cable Modem Termination System)
with one CM MAC (a physical link that modems are connected to). We want
the modems to get addresses from the 10.1.1.0/24 subnet, while
everything connected behind the modems should get addresses from another
subnet (192.0.2.0/24). The CMTS that acts as a relay uses address
10.1.1.1. The following configuration can serve that configuration:

"Dhcp4": {
 "subnet4": [
 {
 "subnet": "10.1.1.0/24",
 "pools": [{ "pool": "10.1.1.2 - 10.1.1.20" }],
 "client-class" "docsis3.0",
 "relay": {
 "ip-addresses": ["10.1.1.1]"
 }
 },
 {
 "subnet": "192.0.2.0/24",
 "pools": [{ "pool": "192.0.2.10 - 192.0.2.20" }],
 "relay": {
 "ip-addresses": ["10.1.1.1"]
 }
 }
],
 ...
}

8.7. Duplicate Addresses (DHCPDECLINE Support)

The DHCPv4 server is configured with a certain pool of addresses that it
is expected to hand out to DHCPv4 clients. It is assumed that the server
is authoritative and has complete jurisdiction over those addresses.
However, for various reasons, such as misconfiguration or a faulty
client implementation that retains its address beyond the valid
lifetime, there may be devices connected that use those addresses
without the server’s approval or knowledge.

Such an unwelcome event can be detected by legitimate clients (using ARP
or ICMP Echo Request mechanisms) and reported to the DHCPv4 server using
a DHCPDECLINE message. The server will do a sanity check (to see whether
the client declining an address really was supposed to use it), and then
will conduct a clean-up operation. Any DNS entries related to that
address will be removed, the fact will be logged, and hooks will be
triggered. After that is complete, the address will be marked as
declined (which indicates that it is used by an unknown entity and thus
not available for assignment) and a probation time will be set on it.
Unless otherwise configured, the probation period lasts 24 hours; after
that period, the server will recover the lease (i.e. put it back into
the available state) and the address will be available for assignment
again. It should be noted that if the underlying issue of a
misconfigured device is not resolved, the duplicate-address scenario
will repeat. If reconfigured correctly, this mechanism provides an
opportunity to recover from such an event automatically, without any
system administrator intervention.

To configure the decline probation period to a value other than the
default, the following syntax can be used:

 "Dhcp4": {
 "decline-probation-period": 3600,
 "subnet4": [...],
 ...
}

The parameter is expressed in seconds, so the example above will
instruct the server to recycle declined leases after one hour.

There are several statistics and hook points associated with the Decline
handling procedure. The lease4_decline hook is triggered after the
incoming DHCPDECLINE message has been sanitized and the server is about
to decline the lease. The declined-addresses statistic is increased
after the hook returns (both global and subnet-specific variants). (See
Statistics in the DHCPv4 Server and Hooks Libraries for more details on DHCPv4 statistics and Kea
hook points.)

Once the probation time elapses, the declined lease is recovered using
the standard expired-lease reclamation procedure, with several
additional steps. In particular, both declined-addresses statistics
(global and subnet-specific) are decreased. At the same time,
reclaimed-declined-addresses statistics (again in two variants, global
and subnet-specific) are increased.

A note about statistics: the server does not decrease the
assigned-addresses statistics when a DHCPDECLINE is received and
processed successfully. While technically a declined address is no
longer assigned, the primary usage of the assigned-addresses statistic
is to monitor pool utilization. Most people would forget to include
declined-addresses in the calculation, and simply use
assigned-addresses/total-addresses. This would cause a bias towards
under-representing pool utilization. As this has a potential for major
issues, ISC decided not to decrease assigned-addresses immediately after
receiving DHCPDECLINE, but to do it later when Kea recovers the address
back to the available pool.

8.8. Statistics in the DHCPv4 Server

The DHCPv4 server supports the following statistics:

DHCPv4 Statistics

	Statistic

	Data Type

	Description

	pkt4-received

	integer

	Number of DHCPv4 packets
received. This includes all
packets: valid, bogus,
corrupted, rejected, etc. This
statistic is expected to grow
rapidly.

	pkt4-discover-received

	integer

	Number of
DHCPDISCOVER packets
received. This
statistic is expected
to grow; its increase
means that clients
that just booted
started their
configuration process
and their initial
packets reached the
Kea server.

	pkt4-offer-received

	integer

	Number of DHCPOFFER
packets received.
This statistic is
expected to remain
zero at all times, as
DHCPOFFER packets are
sent by the server
and the server is
never expected to
receive them. A
non-zero value
indicates an error.
One likely cause
would be a
misbehaving relay
agent that
incorrectly forwards
DHCPOFFER messages
towards the server,
rather than back to
the clients.

	pkt4-request-received

	integer

	Number of DHCPREQUEST
packets received.
This statistic is
expected to grow. Its
increase means that
clients that just
booted received the
server’s response
(DHCPOFFER) and
accepted it, and are
now requesting an
address
(DHCPREQUEST).

	pkt4-ack-received

	integer

	Number of DHCPACK
packets received.
This statistic is
expected to remain
zero at all times, as
DHCPACK packets are
sent by the server
and the server is
never expected to
receive them. A
non-zero value
indicates an error.
One likely cause
would be a
misbehaving relay
agent that
incorrectly forwards
DHCPACK messages
towards the server,
rather than back to
the clients.

	pkt4-nak-received

	integer

	Number of DHCPNAK
packets received.
This statistic is
expected to remain
zero at all times, as
DHCPNAK packets are
sent by the server
and the server is
never expected to
receive them. A
non-zero value
indicates an error.
One likely cause
would be a
misbehaving relay
agent that
incorrectly forwards
DHCPNAK messages
towards the server,
rather than back to
the clients.

	pkt4-release-received

	integer

	Number of DHCPRELEASE
packets received.
This statistic is
expected to grow. Its
increase means that
clients that had an
address are shutting
down or ceasing to
use their addresses.

	pkt4-decline-received

	integer

	Number of DHCPDECLINE
packets received.
This statistic is
expected to remain
close to zero. Its
increase means that a
client leased an
address, but
discovered that the
address is currently
used by an unknown
device in the
network.

	pkt4-inform-received

	integer

	Number of DHCPINFORM
packets received.
This statistic is
expected to grow. Its
increase means that
there are clients
that either do not
need an address or
already have an
address and are
interested only in
getting additional
configuration
parameters.

	pkt4-unknown-received

	integer

	Number of packets
received of an
unknown type. A
non-zero value of
this statistic
indicates that the
server received a
packet that it wasn’t
able to recognize,
either with an
unsupported type or
possibly malformed
(without message type
option).

	pkt4-sent

	integer

	Number of DHCPv4
packets sent. This
statistic is expected
to grow every time
the server transmits
a packet. In general,
it should roughly
match pkt4-received,
as most incoming
packets cause the
server to respond.
There are exceptions
(e.g. DHCPRELEASE),
so do not worry if it
is less than
pkt4-received.

	pkt4-offer-sent

	integer

	Number of DHCPOFFER
packets sent. This
statistic is expected
to grow in most cases
after a DHCPDISCOVER
is processed. There
are certain uncommon,
but valid, cases
where incoming
DHCPDISCOVER packets
are dropped, but in
general this
statistic is expected
to be close to
pkt4-discover-received.

	pkt4-ack-sent

	integer

	Number of DHCPACK
packets sent. This
statistic is expected
to grow in most cases
after a DHCPREQUEST
is processed. There
are certain cases
where DHCPNAK is sent
instead. In general,
the sum of
pkt4-ack-sent and
pkt4-nak-sent should
be close to
pkt4-request-received.

	pkt4-nak-sent

	integer

	Number of DHCPNAK
packets sent. This
statistic is expected
to grow when the
server chooses not to
honor the address
requested by a
client. In general,
the sum of
pkt4-ack-sent and
pkt4-nak-sent should
be close to
pkt4-request-received.

	pkt4-parse-failed

	integer

	Number of incoming
packets that could
not be parsed. A
non-zero value of
this statistic
indicates that the
server received a
malformed or
truncated packet.
This may indicate
problems in the
network, faulty
clients, or a bug in
the server.

	pkt4-receive-drop

	integer

	Number of incoming
packets that were
dropped. The exact
reason for dropping
packets is logged,
but the most common
reasons may be: an
unacceptable packet
type, direct
responses are
forbidden, or the
server-id sent by the
client does not match
the server’s
server-id.

	subnet[id].total-addresses

	integer

	Total number of
addresses available
for DHCPv4
management; in other
words, this is the
sum of all addresses
in all configured
pools. This statistic
changes only during
configuration
changes. Note it does
not take into account
any addresses that
may be reserved due
to host reservation.
The id is the
subnet-id of a given
subnet. This
statistic is exposed
for each subnet
separately, and is
reset during a
reconfiguration
event.

	cumulative-assigned-addresses

	integer

	Cumulative number of
addresses that have been
assigned since
server startup. It is
incremented each time
an address is assigned and
is not reset when the server
is reconfigured.

	subnet[id].cumulative-assigned-addresses

	integer

	Cumulative number of assigned
addresses in a given
subnet. It increases
every time a new
lease is allocated
(as a result of
receiving a
DHCPREQUEST message)
and never decreased.
The id is the subnet-id
of the subnet. This
statistic is exposed
for each subnet
separately, and is
reset during a
reconfiguration
event.

	subnet[id].assigned-addresses

	integer

	Number of assigned
addresses in a given
subnet. It increases
every time a new
lease is allocated
(as a result of
receiving a
DHCPREQUEST message)
and is decreased
every time a lease is
released (a
DHCPRELEASE message
is received) or
expires. The id is
the subnet-id of the
subnet. This
statistic is exposed
for each subnet
separately, and is
reset during a
reconfiguration
event.

	reclaimed-leases

	integer

	Number of expired
leases that have been
reclaimed since
server startup. It is
incremented each time
an expired lease is
reclaimed and is
reset when the server
is reconfigured.

	subnet[id].reclaimed-leases

	integer

	Number of expired
leases associated
with a given subnet
(id is the
subnet-id) that have
been reclaimed since
server startup. It is
incremented each time
an expired lease is
reclaimed and is
reset when the server
is reconfigured.

	declined-addresses

	integer

	Number of IPv4
addresses that are
currently declined; a
count of the number
of leases currently
unavailable. Once a
lease is recovered,
this statistic will
be decreased;
ideally, this
statistic should be
zero. If this
statistic is non-zero
or increasing, a
network administrator
should investigate
whether there is a
misbehaving device in
the network. This is
a global statistic
that covers all
subnets.

	subnet[id].declined-addresses

	integer

	Number of IPv4
addresses that are
currently declined in
a given subnet; a
count of the number
of leases currently
unavailable. Once a
lease is recovered,
this statistic will
be decreased;
ideally, this
statistic should be
zero. If this
statistic is non-zero
or increasing, a
network administrator
should investigate
whether there is a
misbehaving device in
the network. The id
is the subnet-id of a
given subnet. This
statistic is exposed
for each subnet
separately.

	reclaimed-declined-addresses

	integer

	Number of IPv4
addresses that were
declined, but have
now been recovered.
Unlike
declined-addresses,
this statistic never
decreases. It can be
used as a long-term
indicator of how many
actual valid Declines
were processed and
recovered from. This
is a global statistic
that covers all
subnets.

	subnet[id].reclaimed-declined-addresses

	integer

	Number of IPv4
addresses that were
declined, but have
now been recovered.
Unlike
declined-addresses,
this statistic never
decreases. It can be
used as a long-term
indicator of how many
actual valid Declines
were processed and
recovered from. The
id is the subnet-id
of a given subnet.
This statistic is
exposed for each
subnet separately.

	pkt4-lease-query-received

	integer

	Number of IPv4 DHCPLEASEQUERY
packets received. (Only exists if
Leasequery hook library is
loaded.)

	pkt4-lease-query-response-unknown-sent

	integer

	Number of IPv4 DHCPLEASEUNKNOWN
responses sent. (Only exists if
Leasequery hook library is
loaded.)

	pkt4-lease-query-response-unassigned-sent

	integer

	Number of IPv4 DHCPLEASEUNASSIGNED
responses sent. (Only exists if
Leasequery hook library is
loaded.)

	pkt4-lease-query-response-active-sent

	integer

	Number of IPv4 DHCPLEASEACTIVE
responses sent. (Only exists if
Leasequery hook library is
loaded.)

Note

This section describes DHCPv4-specific statistics. For a general
overview and usage of statistics, see Statistics.

Beginning with Kea 1.7.7 the DHCPv4 server provides two global
parameters to control statistics default sample limits:

	statistic-default-sample-count - determines the default maximum
number of samples which will be kept. The special value of zero
means to use a default maximum age.

	statistic-default-sample-age - determines the default maximum
age in seconds of samples which will be kept.

For instance to reduce the statistic keeping overhead you can set
the default maximum sample count to 1 so only one sample will be kept by:

 "Dhcp4": {
 "statistic-default-sample-count": 1,
 "subnet4": [...],
 ...
}

Statistics can be retrieved periodically to gain more insight into Kea operations. One tool that
leverages that capability is ISC Stork. See Monitoring Kea with Stork for details.

8.9. Management API for the DHCPv4 Server

The management API allows the issuing of specific management commands,
such as statistics retrieval, reconfiguration, or shutdown. For more
details, see Management API. Currently, the only supported
communication channel type is UNIX stream socket. By default there are
no sockets open; to instruct Kea to open a socket, the following entry
in the configuration file can be used:

"Dhcp4": {
 "control-socket": {
 "socket-type": "unix",
 "socket-name": "/path/to/the/unix/socket"
 },

 "subnet4": [
 ...
],
 ...
}

The length of the path specified by the socket-name parameter is
restricted by the maximum length for the UNIX socket name on the administrator’s
operating system, i.e. the size of the sun_path field in the
sockaddr_un structure, decreased by 1. This value varies on
different operating systems between 91 and 107 characters. Typical
values are 107 on Linux and 103 on FreeBSD.

Communication over the control channel is conducted using JSON
structures. See the
Control Channel section in the Kea Developer’s Guide [https://jenkins.isc.org/job/Kea_doc/doxygen/d2/d96/ctrlSocket.html]
for more details.

The DHCPv4 server supports the following operational commands:

	build-report

	config-get

	config-reload

	config-set

	config-test

	config-write

	dhcp-disable

	dhcp-enable

	leases-reclaim

	list-commands

	shutdown

	status-get

	version-get

as described in Commands Supported by Both the DHCPv4 and DHCPv6 Servers. In addition, it supports the
following statistics-related commands:

	statistic-get

	statistic-reset

	statistic-remove

	statistic-get-all

	statistic-reset-all

	statistic-remove-all

	statistic-sample-age-set

	statistic-sample-age-set-all

	statistic-sample-count-set

	statistic-sample-count-set-all

as described in Commands for Manipulating Statistics.

8.10. User Contexts in IPv4

Kea allows loading hook libraries that can sometimes benefit from
additional parameters. If such a parameter is specific to the whole
library, it is typically defined as a parameter for the hook library.
However, sometimes there is a need to specify parameters that are
different for each pool.

See Comments and User Context for additional background regarding the user
context idea. See User Contexts in Hooks for a discussion from the
hooks perspective.

User contexts can be specified at global scope, shared network, subnet,
pool, client class, option data, or definition level, and via host
reservation. One other useful feature is the ability to store comments or
descriptions.

Let’s consider an imaginary case of devices that have colored LED lights.
Depending on their location, they should glow red, blue, or green. It
would be easy to write a hook library that would send specific values as
maybe a vendor option. However, the server has to have some way to
specify that value for each pool. This need is addressed by user
contexts. In essence, any user data can be specified in the user context
as long as it is a valid JSON map. For example, the aforementioned case
of LED devices could be configured in the following way:

"Dhcp4": {
 "subnet4": [{
 "subnet": "192.0.2.0/24",
 "pools": [{
 "pool": "192.0.2.10 - 192.0.2.20",
 # This is pool specific user context
 "user-context": { "color": "red" }
 }],

 # This is a subnet-specific user context. Any type
 # of information can be entered here as long as it is valid JSON.
 "user-context": {
 "comment": "network on the second floor",
 "last-modified": "2017-09-04 13:32",
 "description": "you can put anything you like here",
 "phones": ["x1234", "x2345"],
 "devices-registered": 42,
 "billing": false
 }
 }],
}

Kea does not interpret or use the user context information; it simply stores it and makes it
available to the hook libraries. It is up to each hook library to
extract that information and use it. The parser translates a “comment”
entry into a user context with the entry, which allows a comment to be
attached inside the configuration itself.

8.11. Supported DHCP Standards

The following standards are currently supported:

	BOOTP Vendor Information Extensions, RFC
1497 [https://tools.ietf.org/html/rfc1497]: This requires the open
source BOOTP hook to be loaded.

	Dynamic Host Configuration Protocol, RFC
2131 [https://tools.ietf.org/html/rfc2131]: Supported messages are
DHCPDISCOVER (1), DHCPOFFER (2), DHCPREQUEST (3), DHCPRELEASE (7),
DHCPINFORM (8), DHCPACK (5), and DHCPNAK(6).

	DHCP Options and BOOTP Vendor Extensions, RFC
2132 [https://tools.ietf.org/html/rfc2132]: Supported options are:
PAD (0), END(255), Message Type(53), DHCP Server Identifier (54),
Domain Name (15), DNS Servers (6), IP Address Lease Time (51), Subnet
mask (1), and Routers (3).

	DHCP Relay Agent Information Option, RFC
3046 [https://tools.ietf.org/html/rfc3046]: Relay Agent Information
option is supported.

	Vendor-Identifying Vendor Options for Dynamic Host Configuration
Protocol version 4, RFC
3925 [https://tools.ietf.org/html/rfc3925]: Vendor-Identifying
Vendor Class and Vendor-Identifying Vendor-Specific Information
options are supported.

	The Dynamic Host Configuration Protocol (DHCP) Client Fully
Qualified Domain Name (FQDN) Option, RFC 4702 [https://tools.ietf.org/html/rfc4702]: The Kea server is able to
handle the Client FQDN option. Also, it is able to use
kea-dhcp-ddns component do initiate appropriate DNS Update
operations.

	Resolution of Fully Qualified Domain Name (FQDN) Conflicts among Dynamic Host
Configuration Protocol (DHCP) Clients, RFC 4703 [https://tools.ietf.org/html/rfc4703]: The DHCPv6 server uses DHCP-DDNS
server to resolve conflicts.

	Client Identifier Option in DHCP Server Replies, RFC
6842 [https://tools.ietf.org/html/rfc6842]: Server by default sends
back client-id option. That capability may be disabled. See Echoing Client-ID (RFC 6842) for details.

	Generalized UDP Source Port for DHCP Relay, RFC 8357 [https://tools.ietf.org/html/rfc8357]: The Kea server is able
to handle Relay Agent Information Source Port suboption in a received
message, remembers the UDP port and sends back reply to the same relay
agent using this UDP port.

8.12. DHCPv4 Server Limitations

These are the current limitations of the DHCPv4 server software. Most of
them are reflections of the current stage of development and should be
treated as “not implemented yet,” rather than as actual limitations.
However, some of them are implications of the design choices made. Those
are clearly marked as such.

	BOOTP (RFC 951 [https://tools.ietf.org/html/rfc951]) is not
supported. This is a design choice; historic BOOTP support is not planned.

	BOOTP with vendor information extensions
(RFC 1497 [https://tools.ietf.org/html/rfc1497]) is supported
by the BOOTP hooks library; see BOOTP support for details.

	On Linux and BSD system families the DHCP messages are sent and
received over the raw sockets (using LPF and BPF) and all packet
headers (including data link layer, IP, and UDP headers) are created
and parsed by Kea, rather than by the system kernel. Currently, Kea
can only parse the data link layer headers with a format adhering to
the IEEE 802.3 standard and assumes this data link layer header
format for all interfaces. Thus, Kea will fail to work on interfaces
which use different data link layer header formats (e.g. Infiniband).

	The DHCPv4 server does not verify that an assigned address is unused.
According to RFC 2131 [https://tools.ietf.org/html/rfc2131], the
allocating server should verify that an address is not used by
sending an ICMP echo request.

8.13. Kea DHCPv4 Server Examples

A collection of simple-to-use examples for the DHCPv4 component of Kea
is available with the source files, located in the doc/examples/kea4
directory.

8.14. Configuration Backend in DHCPv4

In the Kea Configuration Backend section we have described the Configuration
Backend feature, its applicability, and its limitations. This section focuses
on the usage of the CB with the DHCPv4 server. It lists the supported
parameters, describes limitations, and gives examples of the DHCPv4
server configuration to take advantage of the CB. Please also refer to
the sibling section Configuration Backend in DHCPv6 for the DHCPv6-specific usage of
the CB.

8.14.1. Supported Parameters

The ultimate goal for the CB is to serve as a central configuration
repository for one or multiple Kea servers connected to the database. In
the future it will be possible to store most of the server’s
configuration in the database and reduce the configuration file to a bare
minimum; the only mandatory parameter will be
config-control, which includes the necessary information to connect
to the database. In the Kea 1.6.0 release, however, only a subset of
the DHCPv4 server parameters can be stored in the database. All other
parameters must be specified in the JSON configuration file, if
required.

The following table lists DHCPv4 specific parameters supported by the
Configuration Backend, with an indication on which level of the hierarchy
it is currently supported. “n/a” is used in cases when a
given parameter is not applicable on a particular level of the
hierarchy, or in cases when the parameter is not supported by the server
at this level of the hierarchy. “no” is used when the parameter is
supported by the server on the given level of the hierarchy, but is not
configurable via the Configuration Backend.

All supported parameters can be configured via the cb_cmds hooks library
described in the cb_cmds: Configuration Backend Commands section. The general rule is that
the scalar global parameters are set using
remote-global-parameter4-set; the shared network-specific parameters
are set using remote-network4-set; and the subnet- and pool-level
parameters are set using remote-subnet4-set. Whenever
there is an exception to this general rule, it is highlighted in the
table. The non-scalar global parameters have dedicated commands; for example,
the global DHCPv4 options (option-data) are modified using
remote-option4-global-set.

The Configuration Sharing and Server Tags explains the concept of shareable
and non-shareable configuration elements and the limitations for
sharing them between multiple servers. In the DHCP configuration (both DHCPv4
and DHCPv6) the shareable configuration elements are: subnets and shared
networks. Thus, they can be explicitly associated with multiple server tags.
The global parameters, option definitions and global options are non-shareable
and they can be associated with only one server tag. This rule does not apply
to the configuration elements associated with “all” servers. Any configuration
element associated with “all” servers (using “all” keyword as a server tag) is
used by all servers connecting to the configuration database.

List of DHCPv4 Parameters Supported by the Configuration Backend

	Parameter

	Global

	Shared
Network

	Subnet

	Pool

	4o6-interface

	n/a

	n/a

	yes

	n/a

	4o6-interface-id

	n/a

	n/a

	yes

	n/a

	4o6-subnet

	n/a

	n/a

	yes

	n/a

	boot-file-name

	yes

	yes

	yes

	n/a

	calculate-tee-times

	yes

	yes

	yes

	n/a

	client-class

	n/a

	yes

	yes

	yes

	ddns-send-update

	yes

	yes

	yes

	n/a

	ddns-override-no-update

	yes

	yes

	yes

	n/a

	ddns-override-client-update

	yes

	yes

	yes

	n/a

	ddns-replace-client-name

	yes

	yes

	yes

	n/a

	ddns-generated-prefix

	yes

	yes

	yes

	n/a

	ddns-qualifying-suffix

	yes

	yes

	yes

	n/a

	decline-probation-period

	yes

	n/a

	n/a

	n/a

	dhcp4o6-port

	yes

	n/a

	n/a

	n/a

	echo-client-id

	yes

	n/a

	n/a

	n/a

	hostname-char-set

	no

	no

	no

	n/a

	hostname-char-replacement

	no

	no

	no

	n/a

	interface

	n/a

	yes

	yes

	n/a

	match-client-id

	yes

	yes

	yes

	n/a

	next-server

	yes

	yes

	yes

	n/a

	option-data

	yes (via
remote-option4-global-set)

	yes

	yes

	yes

	option-def

	yes (via
remote-option-def4-set)

	n/a

	n/a

	n/a

	rebind-timer

	yes

	yes

	yes

	n/a

	renew-timer

	yes

	yes

	yes

	n/a

	server-hostname

	yes

	yes

	yes

	n/a

	valid-lifetime

	yes

	yes

	yes

	n/a

	relay

	n/a

	yes

	yes

	n/a

	require-client-classes

	no

	yes

	yes

	yes

	reservation-mode

	yes

	yes

	yes

	n/a

	t1-percent

	yes

	yes

	yes

	n/a

	t2-percent

	yes

	yes

	yes

	n/a

8.14.2. Enabling Configuration Backend

Consider the following configuration snippet:

"Dhcp4": {
 "server-tag": "my DHCPv4 server",
 "config-control": {
 "config-databases": [{
 "type": "mysql",
 "name": "kea",
 "user": "kea",
 "password": "kea",
 "host": "192.0.2.1",
 "port": 3302
 }],
 "config-fetch-wait-time": 20
 },
 "hooks-libraries": [{
 "library": "/usr/local/lib/kea/hooks/libdhcp_mysql_cb.so"
 }, {
 "library": "/usr/local/lib/kea/hooks/libdhcp_cb_cmds.so"
 }],
}

The config-control command contains two parameters. config-databases
is a list which contains one element comprising database type, location,
and the credentials to be used to connect to this database. (Note that
the parameters specified here correspond to the database specification
for the lease database backend and hosts database backend.) Currently
only one database connection can be specified on the
config-databases list. The server will connect to this database
during the startup or reconfiguration, and will fetch the configuration
available for this server from the database. This configuration is
merged into the configuration read from the configuration file.

Note

Whenever there is a conflict between the parameters specified in the
configuration file and the database, the parameters from the database
take precedence. We strongly recommend avoiding the duplication of
parameters in the file and the database, but this recommendation is
not enforced by the Kea servers. In particular, if the subnets’
configuration is sourced from the database, we recommend that all
subnets be specified in the database and that no subnets be specified in
the configuration file. It is possible to specify the subnets in both
places, but the subnets in the
configuration file with overlapping ids and/or prefixes with the
subnets from the database will be superseded by those from the
database.

Once the Kea server is configured, it starts periodically polling for
the configuration changes in the database. The frequency of polling is
controlled by the config-fetch-wait-time parameter, expressed
in seconds; it is the period between the time when the server
completed last polling (and possibly the local configuration update) and
the time when it will begin polling again. In the example above, this period
is set to 20 seconds. This means that after adding a new configuration
into the database (e.g. adding new subnet), it will take up to 20 seconds
(plus the time needed to fetch and apply the new configuration) before
the server starts using this subnet. The lower the
config-fetch-wait-time value, the shorter the time for the server to
react to the incremental configuration updates in the database. On the
other hand, polling the database too frequently may impact the DHCP
server’s performance, because the server needs to make at least one query
to the database to discover the pending configuration updates. The
default value of the config-fetch-wait-time is 30 seconds.

The config-backend-pull command can be used to force the server to
immediately poll the configuration changes from the database and avoid
waiting for the next fetch cycle. The command was added in 1.7.1 Kea
release for DHCPv4 and DHCPv6 servers.

Finally, in the configuration example above, two hooks libraries are
loaded. The first, libdhcp_mysql_cb.so, is the implementation of
the Configuration Backend for MySQL. It must be always present when the
server uses MySQL as the configuration repository. Failing to load this
library will result in an error during the server configuration if the
“mysql” database is selected with the config-control parameter.

The second hooks library, libdhcp_cb_cmds.so, is optional. It should
be loaded when the Kea server instance is to be used for managing the
configuration in the database. See the cb_cmds: Configuration Backend Commands section for
details. Note that this hooks library is only available to ISC
customers with a support contract.

9. The DHCPv6 Server

9.1. Starting and Stopping the DHCPv6 Server

It is recommended that the Kea DHCPv6 server be started and stopped
using keactrl (described in Managing Kea with keactrl); however, it is also
possible to run the server directly. It accepts the following
command-line switches:

	-c file - specifies the configuration file. This is the only
mandatory switch.

	-d - specifies whether the server logging should be switched to
debug/verbose mode. In verbose mode, the logging severity and debuglevel
specified in the configuration file are ignored; “debug” severity
and the maximum debuglevel (99) are assumed. The flag is convenient
for temporarily switching the server into maximum verbosity, e.g.
when debugging.

	-p server-port - specifies the local UDP port on which the server
will listen. This is only useful during testing, as a DHCPv6 server
listening on ports other than the standard ones will not be able to
handle regular DHCPv6 queries.

	-P client-port - specifies the remote UDP port to which the
server will send all responses. This is only useful during testing,
as a DHCPv6 server sending responses to ports other than the standard
ones will not be able to handle regular DHCPv6 queries.

	-t file - specifies a configuration file to be tested. Kea-dhcp6
will load it, check it, and exit. During the test, log messages are
printed to standard output and error messages to standard error. The
result of the test is reported through the exit code (0 =
configuration looks ok, 1 = error encountered). The check is not
comprehensive; certain checks are possible only when running the
server.

	-v - displays the Kea version and exits.

	-V - displays the Kea extended version with additional parameters
and exits. The listing includes the versions of the libraries
dynamically linked to Kea.

	-W - displays the Kea configuration report and exits. The report
is a copy of the config.report file produced by ./configure;
it is embedded in the executable binary.

On startup, the server will detect available network interfaces and will
attempt to open UDP sockets on all interfaces mentioned in the
configuration file. Since the DHCPv6 server opens privileged ports, it
requires root access. This daemon must be run as root.

During startup, the server will attempt to create a PID file of the
form: [runstatedir]/kea/[conf name].kea-dhcp6.pid where:

	runstatedir: The value as passed into the build configure
script; it defaults to “/usr/local/var/run”. Note that this value may be
overridden at runtime by setting the environment variable
KEA_PIDFILE_DIR, although this is intended primarily for testing
purposes.

	conf name: The configuration file name used to start the server,
minus all preceding paths and the file extension. For example, given
a pathname of “/usr/local/etc/kea/myconf.txt”, the portion used would
be “myconf”.

If the file already exists and contains the PID of a live process, the
server will issue a DHCP6_ALREADY_RUNNING log message and exit. It is
possible, though unlikely, that the file is a remnant of a system crash
and the process to which the PID belongs is unrelated to Kea. In such a
case it would be necessary to manually delete the PID file.

The server can be stopped using the kill command. When running in a
console, the server can also be shut down by pressing ctrl-c. It detects
the key combination and shuts down gracefully.

9.2. DHCPv6 Server Configuration

9.2.1. Introduction

This section explains how to configure the DHCPv6 server using a
configuration file. Before DHCPv6 is started, its configuration file must
be created. The basic configuration is as follows:

{
DHCPv6 configuration starts on the next line
"Dhcp6": {

First we set up global values
 "valid-lifetime": 4000,
 "renew-timer": 1000,
 "rebind-timer": 2000,
 "preferred-lifetime": 3000,

Next we set up the interfaces to be used by the server.
 "interfaces-config": {
 "interfaces": ["eth0"]
 },

And we specify the type of lease database
 "lease-database": {
 "type": "memfile",
 "persist": true,
 "name": "/var/lib/kea/dhcp6.leases"
 },

Finally, we list the subnets from which we will be leasing addresses.
 "subnet6": [
 {
 "subnet": "2001:db8:1::/64",
 "pools": [
 {
 "pool": "2001:db8:1::1-2001:db8:1::ffff"
 }
]
 }
]
DHCPv6 configuration ends with the next line
}

}

The following paragraphs provide a brief overview of the parameters in
the above example, along with their format. Subsequent sections of this
chapter go into much greater detail for these and other parameters.

The lines starting with a hash (#) are comments and are ignored by the
server; they do not impact its operation in any way.

The configuration starts in the first line with the initial opening
curly bracket (or brace). Each configuration must contain an object
specifying the configuration of the Kea module using it. In the example
above this object is called Dhcp6.

Note

In the current Kea release it is possible to specify configurations
of multiple modules within a single configuration file, but this is
not recommended and support for it will be removed in a future
release. The only object, besides the one specifying module
configuration, which can be (and usually was) included in the same file
is Logging. However, we don’t include this object in the example
above for clarity; its content, the list of loggers, should now be
inside the Dhcp6 object instead of this deprecated object.

The Dhcp6 configuration starts with the "Dhcp6": { line and ends
with the corresponding closing brace (in the above example, the brace
after the last comment). Everything defined between those lines is
considered to be the Dhcp6 configuration.

In general, the order in which those parameters appear does not
matter, but there are two caveats. The first one is to remember that the
configuration file must be well-formed JSON. That means that the
parameters for any given scope must be separated by a comma, and there
must not be a comma after the last parameter. When reordering a
configuration file, keep in mind that moving a parameter to or from the
last position in a given scope may also require moving the comma. The
second caveat is that it is uncommon — although legal JSON — to repeat
the same parameter multiple times. If that happens, the last occurrence
of a given parameter in a given scope is used, while all previous
instances are ignored. This is unlikely to cause any confusion as there
are no real-life reasons to keep multiple copies of the same parameter
in the configuration file.

The first few DHCPv6 configuration elements
define some global parameters. valid-lifetime defines how long the
addresses (leases) given out by the server are valid. If nothing
changes, a client that got an address is allowed to use it for 4000
seconds. (Note that integer numbers are specified as is, without any
quotes around them.) The address will become deprecated in 3000 seconds,
i.e. clients are allowed to keep old connections, but can’t use this
address for creating new connections. renew-timer and
rebind-timer are values (also in seconds) that define T1 and T2 timers that govern
when the client will begin the renewal and rebind procedures.

The interfaces-config map specifies the server configuration
concerning the network interfaces on which the server should listen to
the DHCP messages. The interfaces parameter specifies a list of
network interfaces on which the server should listen. Lists are opened
and closed with square brackets, with elements separated by commas. To
listen on two interfaces, the interfaces-config should look like
this:

"interfaces-config": {
 "interfaces": ["eth0", "eth1"]
},

The next couple of lines define the lease database, the place where the
server stores its lease information. This particular example tells the
server to use memfile, which is the simplest (and fastest) database
backend. It uses an in-memory database and stores leases on disk in a
CSV (comma-separated values) file. This is a very simple configuration; usually the lease
database configuration is more extensive and contains additional
parameters. Note that lease-database is an object and opens up a new
scope, using an opening brace. Its parameters (just one in this example:
type) follow. If there were more than one, they would be separated
by commas. This scope is closed with a closing brace. As more parameters
for the Dhcp6 definition follow, a trailing comma is present.

Finally, we need to define a list of IPv6 subnets. This is the most
important DHCPv6 configuration structure, as the server uses that
information to process clients’ requests. It defines all subnets from
which the server is expected to receive DHCP requests. The subnets are
specified with the subnet6 parameter. It is a list, so it starts and
ends with square brackets. Each subnet definition in the list has
several attributes associated with it, so it is a structure and is
opened and closed with braces. At a minimum, a subnet definition has to
have at least two parameters: subnet (which defines the whole
subnet) and pools (which is a list of dynamically allocated pools
that are governed by the DHCP server).

The example contains a single subnet. If more than one were defined,
additional elements in the subnet6 parameter would be specified and
separated by commas. For example, to define two subnets, the following
syntax would be used:

"subnet6": [
 {
 "pools": [{ "pool": "2001:db8:1::/112" }],
 "subnet": "2001:db8:1::/64"
 },
 {
 "pools": [{ "pool": "2001:db8:2::1-2001:db8:2::ffff" }],
 "subnet": "2001:db8:2::/64"
 }
]

Note that indentation is optional and is used for aesthetic purposes
only. In some cases in may be preferable to use more compact notation.

After all the parameters are specified, we have two contexts open: global
and Dhcp6; thus, we need two closing curly brackets to close them.

9.2.2. Lease Storage

All leases issued by the server are stored in the lease database.
Currently there are four database backends available: memfile (which is
the default backend), MySQL, PostgreSQL, and Cassandra.

9.2.2.1. Memfile - Basic Storage for Leases

The server is able to store lease data in different repositories. Larger
deployments may elect to store leases in a database.
Lease Database Configuration describes this option. In
typical smaller deployments, though, the server will store lease
information in a CSV file rather than a database. As well as requiring
less administration, an advantage of using a file for storage is that it
eliminates a dependency on third-party database software.

The configuration of the file backend (memfile) is controlled through
the Dhcp6/lease-database parameters. The type parameter is mandatory
and it specifies which storage for leases the server should use. The
value of "memfile" indicates that the file should be used as the
storage. The following list gives additional optional parameters that
can be used to configure the memfile backend.

	persist: controls whether the new leases and updates to existing
leases are written to the file. It is strongly recommended that the
value of this parameter be set to true at all times during the
server’s normal operation. Not writing leases to disk means that if a
server is restarted (e.g. after a power failure), it will not know
which addresses have been assigned. As a result, it may assign new clients
addresses that are already in use. The value of
false is mostly useful for performance-testing purposes. The
default value of the persist parameter is true, which enables
writing lease updates to the lease file.

	name: specifies an absolute location of the lease file in which
new leases and lease updates will be recorded. The default value for
this parameter is "[kea-install-dir]/var/lib/kea/kea-leases6.csv".

	lfc-interval: specifies the interval, in seconds, at which the
server will perform a lease file cleanup (LFC). This removes
redundant (historical) information from the lease file and
effectively reduces the lease file size. The cleanup process is
described in more detail later in this section. The
default value of the lfc-interval is 3600. A value of 0
disables the LFC.

	max-row-errors: when the server loads a lease file, it is processed
row by row, each row contaning a single lease. If a row is flawed and
cannot be processed correctly the server will log it, discard the row,
and go on to the next row. This parameter can be used to set a limit on
the number of such discards that may occur after which the server will
abandon the effort and exit. The default value of 0 disables the limit
and allows the server to process the entire file, regardless of how many
rows are discarded.

An example configuration of the memfile backend is presented below:

"Dhcp6": {
 "lease-database": {
 "type": "memfile",
 "persist": true,
 "name": "/tmp/kea-leases6.csv",
 "lfc-interval": 1800,
 "max-row-errors": 100
 }
}

This configuration selects the /tmp/kea-leases6.csv as the storage
for lease information and enables persistence (writing lease updates to
this file). It also configures the backend to perform a periodic cleanup
of the lease file every 30 minutes and sets the maximum number of row
errors to 100.

It is important to know how the lease file contents are organized to
understand why the periodic lease file cleanup is needed. Every time the
server updates a lease or creates a new lease for the client, the new
lease information must be recorded in the lease file. For performance
reasons, the server does not update the existing client’s lease in the
file, as this would potentially require rewriting the entire file.
Instead, it simply appends the new lease information to the end of the
file; the previous lease entries for the client are not removed. When
the server loads leases from the lease file, e.g. at the server startup,
it assumes that the latest lease entry for the client is the valid one.
The previous entries are discarded, meaning that the server can
re-construct the accurate information about the leases even though there
may be many lease entries for each client. However, storing many entries
for each client results in a bloated lease file and impairs the
performance of the server’s startup and reconfiguration, as it needs to
process a larger number of lease entries.

Lease file cleanup (LFC) removes all previous entries for each client
and leaves only the latest ones. The interval at which the cleanup is
performed is configurable, and it should be selected according to the
frequency of lease renewals initiated by the clients. The more frequent
the renewals, the smaller the value of lfc-interval should be. Note,
however, that the LFC takes time and thus it is possible (although
unlikely) that, if the lfc-interval is too short, a new cleanup may
be started while the previous one is still running. The server would
recover from this by skipping the new cleanup when it detected that the
previous cleanup was still in progress. But it implies that the actual
cleanups will be triggered more rarely than configured. Moreover,
triggering a new cleanup adds overhead to the server, which will not be
able to respond to new requests for a short period of time when the new
cleanup process is spawned. Therefore, it is recommended that the
lfc-interval value be selected in a way that allows the LFC
to complete the cleanup before a new cleanup is triggered.

Lease file cleanup is performed by a separate process (in the
background) to avoid a performance impact on the server process. To
avoid conflicts between two processes both using the same lease
files, the LFC process starts with Kea opening a new lease file; the
actual LFC process operates on the lease file that is no longer used by
the server. There are also other files created as a side effect of the
lease file cleanup. The detailed description of the LFC process is located later
in this Kea Administrator’s Reference Manual: The LFC Process.

9.2.2.2. Lease Database Configuration

Note

Lease database access information must be configured for the DHCPv6
server, even if it has already been configured for the DHCPv4 server.
The servers store their information independently, so each server can
use a separate database or both servers can use the same database.

Lease database configuration is controlled through the
Dhcp6/lease-database parameters. The database type must be set to
“memfile”, “mysql”, “postgresql”, or “cql”, e.g.:

"Dhcp6": { "lease-database": { "type": "mysql", ... }, ... }

Next, the name of the database to hold the leases must be set; this is
the name used when the database was created (see
First-Time Creation of the MySQL Database, First-Time Creation of the PostgreSQL Database, or
First-Time Creation of the Cassandra Database).

"Dhcp6": { "lease-database": { "name": "database-name" , ... }, ... }

For Cassandra:

"Dhcp6": { "lease-database": { "keyspace": "database-name" , ... }, ... }

If the database is located on a different system from the DHCPv6 server,
the database host name must also be specified:

"Dhcp6": { "lease-database": { "host": "remote-host-name", ... }, ... }

(It should be noted that this configuration may have a severe impact on server performance.)

For Cassandra, multiple contact points can be provided:

"Dhcp6": { "lease-database": { "contact-points": "remote-host-name[, ...]" , ... }, ... }

Normally, the database will be on the same machine as the DHCPv6 server.
In this case, set the value to the empty string:

"Dhcp6": { "lease-database": { "host" : "", ... }, ... }

For Cassandra:

"Dhcp6": { "lease-database": { "contact-points": "", ... }, ... }

Should the database use a port other than the default, it may be
specified as well:

"Dhcp6": { "lease-database": { "port" : 12345, ... }, ... }

Should the database be located on a different system, the administrator may need to
specify a longer interval for the connection timeout:

"Dhcp6": { "lease-database": { "connect-timeout" : timeout-in-seconds, ... }, ... }

The default value of five seconds should be more than adequate for local
connections. If a timeout is given, though, it should be an integer
greater than zero.

The maximum number of times the server will automatically attempt to
reconnect to the lease database after connectivity has been lost may be
specified:

"Dhcp6": { "lease-database": { "max-reconnect-tries" : number-of-tries, ... }, ... }

If the server is unable to reconnect to the database after making the
maximum number of attempts, the server will exit. A value of zero (the
default) disables automatic recovery and the server will exit
immediately upon detecting a loss of connectivity (MySQL and PostgreSQL
only).

The number of milliseconds the server will wait between attempts to
reconnect to the lease database after connectivity has been lost may
also be specified:

"Dhcp6": { "lease-database": { "reconnect-wait-time" : number-of-milliseconds, ... }, ... }

The default value for MySQL and PostgreSQL is 0, which disables automatic
recovery and causes the server to exit immediately upon detecting the
loss of connectivity. The default value for Cassandra is 2000 ms.

Note

Automatic reconnection to database backends is configured
individually per backend. This allows users to tailor the recovery
parameters to each backend they use. We do suggest that users enable it
either for all backends or none, so behavior is consistent.
Losing connectivity to a backend for which reconnect is
disabled will result in the server shutting itself down. This
includes cases when the lease database backend and the hosts database
backend are connected to the same database instance.

Note

Note that the host parameter is used by the MySQL and PostgreSQL backends.
Cassandra has a concept of contact points that can be used to
contact the cluster, instead of a single IP or hostname. It takes a
list of comma-separated IP addresses, which may be specified as:

"Dhcp6": { "lease-database": { "contact-points" : "192.0.2.1,192.0.2.2", ... }, ... }

Finally, the credentials of the account under which the server will
access the database should be set:

"Dhcp6": { "lease-database": { "user": "user-name",
 "password": "password",
 ... },
 ... }

If there is no password to the account, set the password to the empty
string “”. (This is also the default.)

9.2.2.3. Cassandra-Specific Parameters

The parameters are the same for both DHCPv4 and DHCPv6. See
Cassandra-Specific Parameters for details.

9.2.3. Hosts Storage

Kea is also able to store information about host reservations in the
database. The hosts database configuration uses the same syntax as the
lease database. In fact, a Kea server opens independent connections for
each purpose, be it lease or hosts information. This arrangement gives
the most flexibility. Kea can keep leases and host reservations
separately, but can also point to the same database. Currently the
supported hosts database types are MySQL, PostgreSQL, and Cassandra.

For example, the following configuration can be used to configure a
connection to MySQL:

"Dhcp6": {
 "hosts-database": {
 "type": "mysql",
 "name": "kea",
 "user": "kea",
 "password": "secret123",
 "host": "localhost",
 "port": 3306
 }
}

Note that depending on the database configuration, many of the
parameters may be optional.

Please note that usage of hosts storage is optional. A user can define
all host reservations in the configuration file, and that is the
recommended way if the number of reservations is small. However, when
the number of reservations grows, it is more convenient to use host
storage. Please note that both storage methods (configuration file and
one of the supported databases) can be used together. If hosts are
defined in both places, the definitions from the configuration file are
checked first and external storage is checked later, if necessary.

In fact, host information can be placed in multiple stores. Operations
are performed on the stores in the order they are defined in the
configuration file, although this leads to a restriction in ordering in
the case of a host reservation addition; read-only stores must be
configured after a (required) read-write store, or the addition will
fail.

9.2.3.1. DHCPv6 Hosts Database Configuration

Hosts database configuration is controlled through the
Dhcp6/hosts-database parameters. If enabled, the type of database must
be set to “mysql” or “postgresql”.

"Dhcp6": { "hosts-database": { "type": "mysql", ... }, ... }

Next, the name of the database to hold the reservations must be set;
this is the name used when the lease database was created (see
Supported Backends for instructions on how to set up the
desired database type):

"Dhcp6": { "hosts-database": { "name": "database-name" , ... }, ... }

If the database is located on a different system than the DHCPv6 server,
the database host name must also be specified:

"Dhcp6": { "hosts-database": { "host": remote-host-name, ... }, ... }

(Again, it should be noted that this configuration may have a severe impact on server performance.)

Normally, the database will be on the same machine as the DHCPv6 server.
In this case, set the value to the empty string:

"Dhcp6": { "hosts-database": { "host" : "", ... }, ... }

"Dhcp6": { "hosts-database": { "port" : 12345, ... }, ... }

The maximum number of times the server will automatically attempt to
reconnect to the host database after connectivity has been lost may be
specified:

"Dhcp6": { "host-database": { "max-reconnect-tries" : number-of-tries, ... }, ... }

If the server is unable to reconnect to the database after making the
maximum number of attempts, the server will exit. A value of zero (the
default) disables automatic recovery and the server will exit
immediately upon detecting a loss of connectivity (MySQL and PostgreSQL
only). For Cassandra, Kea uses a Cassandra interface that connects to
all nodes in a cluster at the same time. Any connectivity issues should
be handled by internal Cassandra mechanisms.

The number of milliseconds the server will wait between attempts to
reconnect to the host database after connectivity has been lost may also
be specified:

"Dhcp6": { "hosts-database": { "reconnect-wait-time" : number-of-milliseconds, ... }, ... }

The default value for MySQL and PostgreSQL is 0, which disables automatic
recovery and causes the server to exit immediately upon detecting the
loss of connectivity. The default value for Cassandra is 2000 ms.

Note

Automatic reconnection to database backends is configured
individually per backend. This allows users to tailor the recovery
parameters to each backend they use. We do suggest that users enable it
either for all backends or none, so behavior is consistent.
Losing connectivity to a backend for which reconnect is
disabled will result in the server shutting itself down. This
includes cases when the lease database backend and the hosts database
backend are connected to the same database instance.

Finally, the credentials of the account under which the server will
access the database should be set:

"Dhcp6": { "hosts-database": { "user": "user-name",
 "password": "password",
 ... },
 ... }

If there is no password to the account, set the password to the empty
string “”. (This is also the default.)

The multiple storage extension uses a similar syntax; a configuration is
placed into a “hosts-databases” list instead of into a “hosts-database”
entry, as in:

"Dhcp6": { "hosts-databases": [{ "type": "mysql", ... }, ...], ... }

For additional Cassandra-specific parameters, see
Cassandra-Specific Parameters.

9.2.3.2. Using Read-Only Databases for Host Reservations with DHCPv6

In some deployments the database user whose name is specified in the
database backend configuration may not have write privileges to the
database. This is often required by the policy within a given network to
secure the data from being unintentionally modified. In many cases
administrators have deployed inventory databases, which contain
substantially more information about the hosts than just the static
reservations assigned to them. The inventory database can be used to
create a view of a Kea hosts database and such a view is often
read-only.

Kea host database backends operate with an implicit configuration to
both read from and write to the database. If the database user does not
have write access to the host database, the backend will fail to start
and the server will refuse to start (or reconfigure). However, if access
to a read-only host database is required for retrieving reservations
for clients and/or assigning specific addresses and options, it is
possible to explicitly configure Kea to start in “read-only” mode. This
is controlled by the readonly boolean parameter as follows:

"Dhcp6": { "hosts-database": { "readonly": true, ... }, ... }

Setting this parameter to false configures the database backend to
operate in “read-write” mode, which is also the default configuration if
the parameter is not specified.

Note

The readonly parameter is currently only supported for MySQL and
PostgreSQL databases.

9.2.4. Interface Configuration

The DHCPv6 server must be configured to listen on specific network
interfaces. The simplest network interface configuration tells the
server to listen on all available interfaces:

"Dhcp6": {
 "interfaces-config": {
 "interfaces": ["*"]
 }
 ...
}

The asterisk plays the role of a wildcard and means “listen on all
interfaces.” However, it is usually a good idea to explicitly specify
interface names:

"Dhcp6": {
 "interfaces-config": {
 "interfaces": ["eth1", "eth3"]
 },
 ...
}

It is possible to use a wildcard interface name (asterisk) concurrently
with explicit interface names:

"Dhcp6": {
 "interfaces-config": {
 "interfaces": ["eth1", "eth3", "*"]
 },
 ...
}

It is anticipated that this form of usage will only be used when it is
desired to temporarily override a list of interface names and listen on
all interfaces.

As with the DHCPv4 server, binding to specific addresses and disabling
re-detection of interfaces are supported. But dhcp-socket-type is
not supported, because DHCPv6 uses UDP/IPv6 sockets only. The following example
shows how to disable the interface detection:

"Dhcp6": {
 "interfaces-config": {
 "interfaces": ["eth1", "eth3"],
 "re-detect": false
 },
 ...
}

The loopback interfaces (i.e. the “lo” or “lo0” interface) are not
configured by default, unless explicitly mentioned in the
configuration. Note that Kea requires a link-local address (which does
not exist on all systems) or a specified unicast address, as in:

"Dhcp6": {
 "interfaces-config": {
 "interfaces": ["enp0s2/2001:db8::1234:abcd"]
 },
 ...
}

9.2.5. IPv6 Subnet Identifier

The subnet identifier is a unique number associated with a particular
subnet. In principle, it is used to associate clients’ leases with their
respective subnets. When a subnet identifier is not specified for a
subnet being configured, it will be automatically assigned by the
configuration mechanism. The identifiers are assigned from 1 and are
monotonically increased for each subsequent subnet: 1, 2, 3 ….

If there are multiple subnets configured with auto-generated identifiers
and one of them is removed, the subnet identifiers may be renumbered.
For example: if there are four subnets and the third is removed, the
last subnet will be assigned the identifier that the third subnet had
before removal. As a result, the leases stored in the lease database for
subnet 3 are now associated with subnet 4, something that may have
unexpected consequences. The only remedy for this issue at present is to
manually specify a unique identifier for each subnet.

Note

Subnet IDs must be greater than zero and less than 4294967295.

The following configuration will assign the specified subnet identifier
to a newly configured subnet:

"Dhcp6": {
 "subnet6": [
 {
 "subnet": "2001:db8:1::/64",
 "id": 1024,
 ...
 }
]
}

This identifier will not change for this subnet unless the “id”
parameter is removed or set to 0. The value of 0 forces auto-generation
of the subnet identifier.

9.2.6. IPv6 Subnet Prefix

The subnet prefix is the second way to identify a subnet. It does not
need to have the address part to match the prefix length, for instance
this configuration is accepted:

"Dhcp6": {
 "subnet6": [
 {
 "subnet": "2001:db8:1::1/64",
 ...
 }
]
}

Even there is another subnet with the “2001:db8:1::/64” prefix:
only the textual form of subnets are compared to avoid duplicates.

Note

Abuse of this feature can lead to incorrect subnet selection
(see IPv6 Subnet Selection).

9.2.7. Unicast Traffic Support

When the DHCPv6 server starts, by default it listens to the DHCP traffic
sent to multicast address ff02::1:2 on each interface that it is
configured to listen on (see Interface Configuration). In some cases it is
useful to configure a server to handle incoming traffic sent to global
unicast addresses as well; the most common reason for this is to have
relays send their traffic to the server directly. To configure the
server to listen on a specific unicast address, add a slash after the interface name,
followed by the global unicast
address on which the server should listen. The server will listen to this
address in addition to normal link-local binding and listening on the
ff02::1:2 address. The sample configuration below shows how to listen on
2001:db8::1 (a global address) configured on the eth1 interface.

"Dhcp6": {
 "interfaces-config": {
 "interfaces": ["eth1/2001:db8::1"]
 },
 ...
 "option-data": [
 {
 "name": "unicast",
 "data": "2001:db8::1"
 }],
 ...
}

This configuration will cause the server to listen on eth1 on the
link-local address, the multicast group (ff02::1:2), and 2001:db8::1.

Usually unicast support is associated with a server unicast option which
allows clients to send unicast messages to the server. The example above
includes a server unicast option specification which will cause the
client to send messages to the specified unicast address.

It is possible to mix interface names, wildcards, and interface
names/addresses in the list of interfaces. It is not possible, however,
to specify more than one unicast address on a given interface.

Care should be taken to specify proper unicast addresses. The server
will attempt to bind to the addresses specified without any additional
checks. This approach was selected on purpose, to allow the software to
communicate over uncommon addresses if so desired.

9.2.8. Configuration of IPv6 Address Pools

The main role of a DHCPv6 server is address assignment. For this, the
server must be configured with at least one subnet and one pool of
dynamic addresses to be managed. For example, assume that the server is
connected to a network segment that uses the 2001:db8:1::/64 prefix. The
administrator of that network decides that addresses from range
2001:db8:1::1 to 2001:db8:1::ffff are going to be managed by the Dhcp6
server. Such a configuration can be achieved in the following way:

"Dhcp6": {
 "subnet6": [
 {
 "subnet": "2001:db8:1::/64",
 "pools": [
 {
 "pool": "2001:db8:1::1-2001:db8:1::ffff"
 }
],
 ...
 }
]
}

Note that subnet is defined as a simple string, but the pools
parameter is actually a list of pools; for this reason, the pool
definition is enclosed in square brackets, even though only one range of
addresses is specified.

Each pool is a structure that contains the parameters that describe
a single pool. Currently there is only one parameter, pool, which
gives the range of addresses in the pool.

It is possible to define more than one pool in a subnet; continuing the
previous example, further assume that 2001:db8:1:0:5::/80 should also be
managed by the server. It could be written as 2001:db8:1:0:5:: to
2001:db8:1::5:ffff:ffff:ffff, but typing so many ‘f’s is cumbersome. It
can be expressed more simply as 2001:db8:1:0:5::/80. Both formats are
supported by Dhcp6 and can be mixed in the pool list. For example, one
could define the following pools:

"Dhcp6": {
 "subnet6": [
 {
 "subnet": "2001:db8:1::/64",
 "pools": [
 { "pool": "2001:db8:1::1-2001:db8:1::ffff" },
 { "pool": "2001:db8:1:05::/80" }
],
 ...
 }
]
}

White space in pool definitions is ignored, so spaces before and after
the hyphen are optional. They can be used to improve readability.

The number of pools is not limited, but for performance reasons it is
recommended to use as few as possible.

The server may be configured to serve more than one subnet. To add a
second subnet, use a command similar to the following:

"Dhcp6": {
 "subnet6": [
 {
 "subnet": "2001:db8:1::/64",
 "pools": [
 { "pool": "2001:db8:1::1-2001:db8:1::ffff" }
]
 },
 {
 "subnet": "2001:db8:2::/64",
 "pools": [
 { "pool": "2001:db8:2::/64" }
]
 },

 ...
]
}

In this example, we allow the server to dynamically assign all addresses
available in the whole subnet. Although rather wasteful, it is certainly
a valid configuration to dedicate the whole /64 subnet for that purpose.
Note that the Kea server does not preallocate the leases, so there is no
danger in using gigantic address pools.

When configuring a DHCPv6 server using prefix/length notation, please
pay attention to the boundary values. When specifying that the server
can use a given pool, it will also be able to allocate the first
(typically a network address) address from that pool. For example, for
pool 2001:db8:2::/64, the 2001:db8:2:: address may be assigned as well.
To avoid this, use the “min-max” notation.

9.2.9. Subnet and Prefix Delegation Pools

Subnets may also be configured to delegate prefixes, as defined in RFC
8415 [https://tools.ietf.org/html/rfc8415], section 6.3. A subnet may
have one or more prefix delegation pools. Each pool has a prefixed
address, which is specified as a prefix (prefix) and a prefix length
(prefix-len), as well as a delegated prefix length
(delegated-len). The delegated length must not be shorter than (that
is, it must be numerically greater than or equal to) the prefix length.
If both the delegated and prefix lengths are equal, the server will be
able to delegate only one prefix. The delegated prefix does not have to
match the subnet prefix.

Below is a sample subnet configuration which enables prefix delegation
for the subnet:

"Dhcp6": {
 "subnet6": [
 {
 "subnet": "2001:d8b:1::/64",
 "pd-pools": [
 {
 "prefix": "3000:1::",
 "prefix-len": 64,
 "delegated-len": 96
 }
]
 }
],
 ...
}

9.2.10. Prefix Exclude Option

For each delegated prefix, the delegating router may choose to exclude a
single prefix out of the delegated prefix as specified in RFC
6603 [https://tools.ietf.org/html/rfc6603]. The requesting router must
not assign the excluded prefix to any of its downstream interfaces, and
it is intended to be used on a link through which the delegating router
exchanges DHCPv6 messages with the requesting router. The configuration
example below demonstrates how to specify an excluded prefix within a
prefix pool definition. The excluded prefix
“2001:db8:1:8000:cafe:80::/72” will be sent to a requesting router which
includes the Prefix Exclude option in the Option Request option (ORO),
and which is delegated a prefix from this pool.

"Dhcp6": {
 "subnet6": [
 {
 "subnet": "2001:db8:1::/48",
 "pd-pools": [
 {
 "prefix": "2001:db8:1:8000::",
 "prefix-len": 48,
 "delegated-len": 64,
 "excluded-prefix": "2001:db8:1:8000:cafe:80::",
 "excluded-prefix-len": 72
 }
]
 }
]
}

9.2.11. Standard DHCPv6 Options

One of the major features of the DHCPv6 server is the ability to provide
configuration options to clients. Although there are several options
that require special behavior, most options are sent by the server only
if the client explicitly requests them. The following example shows how
to configure the addresses of DNS servers, one of the most frequently used options.
Options specified in this way are considered global and apply to all configured subnets.

"Dhcp6": {
 "option-data": [
 {
 "name": "dns-servers",
 "code": 23,
 "space": "dhcp6",
 "csv-format": true,
 "data": "2001:db8::cafe, 2001:db8::babe"
 },
 ...
]
}

The option-data line creates a new entry in the option-data table.
This table contains information on all global options that the server is
supposed to configure in all subnets. The name line specifies the
option name. (For a complete list of currently supported names, see
List of Standard DHCPv6 Options.) The next line specifies the
option code, which must match one of the values from that list. The line
beginning with space specifies the option space, which must always
be set to “dhcp6” as these are standard DHCPv6 options. For other name
spaces, including custom option spaces, see Nested DHCPv6 Options (Custom Option Spaces). The following line
specifies the format in which the data will be entered; use of CSV
(comma-separated values) is recommended. Finally, the data line
gives the actual value to be sent to clients. The data parameter is specified as
normal text, with values separated by commas if more than one value is
allowed.

Options can also be configured as hexadecimal values. If “csv-format” is
set to false, the option data must be specified as a hexadecimal string.
The following commands configure the DNS-SERVERS option for all subnets
with the following addresses: 2001:db8:1::cafe and 2001:db8:1::babe.

"Dhcp6": {
 "option-data": [
 {
 "name": "dns-servers",
 "code": 23,
 "space": "dhcp6",
 "csv-format": false,
 "data": "20 01 0D B8 00 01 00 00 00 00 00 00 00 00 CA FE
 20 01 0D B8 00 01 00 00 00 00 00 00 00 00 BA BE"
 },
 ...
]
}

Note

The value for the setting of the “data” element is split across two
lines in this example for clarity; when entering the command, the
whole string should be entered on the same line.

Kea supports the following formats when specifying hexadecimal data:

	Delimited octets - one or more octets separated by either colons or
spaces (‘:’ or ‘ ‘). While each octet may contain one or two digits,
we strongly recommend always using two digits. Valid examples are
“ab:cd:ef” and “ab cd ef”.

	String of digits - a continuous string of hexadecimal digits with
or without a “0x” prefix. Valid examples are “0xabcdef” and “abcdef”.

Care should be taken to use proper encoding when using hexadecimal
format; Kea’s ability to validate data correctness in hexadecimal is
limited.

As of Kea 1.6.0, it is also possible to specify data for binary options as
a single-quoted text string within double quotes as shown (note that
csv-format must be set to false):

"Dhcp6": {
 "option-data": [
 {
 "name": "subscriber-id",
 "code": 38,
 "space": "dhcp6",
 "csv-format": false,
 "data": "'convert this text to binary'"
 },
 ...
],
 ...
}

Most of the parameters in the “option-data” structure are optional and
can be omitted in some circumstances, as discussed in Unspecified Parameters for DHCPv6 Option Configuration.
Only one of name or code
is required; it is not necessary to specify both. Space has a default value
of “dhcp6”, so this can be skipped as well if a regular (not
encapsulated) DHCPv6 option is defined. Finally, csv-format defaults to “true”, so it
too can be skipped, unless the option value is specified as
hexstring. Therefore, the above example can be simplified to:

"Dhcp6": {
 "option-data": [
 {
 "name": "dns-servers",
 "data": "2001:db8::cafe, 2001:db8::babe"
 },
 ...
]
}

Defined options are added to the response when the client requests them,
as well as any options required by a protocol. An administrator can also
specify that an option is always sent, even if a client did not
specifically request it. To enforce the addition of a particular option,
set the “always-send” flag to true as in:

"Dhcp6": {
 "option-data": [
 {
 "name": "dns-servers",
 "data": "2001:db8::cafe, 2001:db8::babe",
 "always-send": true
 },
 ...
]
}

The effect is the same as if the client added the option code in the
Option Request option (or its equivalent for vendor options), as in:

"Dhcp6": {
 "option-data": [
 {
 "name": "dns-servers",
 "data": "2001:db8::cafe, 2001:db8::babe",
 "always-send": true
 },
 ...
],
 "subnet6": [
 {
 "subnet": "2001:db8:1::/64",
 "option-data": [
 {
 "name": "dns-servers",
 "data": "2001:db8:1::cafe, 2001:db8:1::babe"
 },
 ...
],
 ...
 },
 ...
],
 ...
}

The DNS servers option is always added to responses (the always-send is
“sticky”), but the value is the subnet one when the client is localized
in the subnet.

It is possible to override options on a per-subnet basis. If clients
connected to most subnets are expected to get the same values of
a given option, administrators should use global options; it is possible to override
specific values for a small number of subnets. On the other hand, if
different values are used in each subnet, it does not make sense to specify
global option values; rather, only subnet-specific ones should be set.

The following commands override the global DNS servers option for a
particular subnet, setting a single DNS server with address
2001:db8:1::3.

"Dhcp6": {
 "subnet6": [
 {
 "option-data": [
 {
 "name": "dns-servers",
 "code": 23,
 "space": "dhcp6",
 "csv-format": true,
 "data": "2001:db8:1::3"
 },
 ...
],
 ...
 },
 ...
],
 ...
}

In some cases it is useful to associate some options with an address or
prefix pool from which a client is assigned a lease. Pool-specific
option values override subnet-specific and global option values. If the
client is assigned multiple leases from different pools, the server will
assign options from all pools from which the leases have been obtained.
However, if the particular option is specified in multiple pools from
which the client obtains the leases, only one instance of this option
will be handed out to the client. The server’s administrator must not
try to prioritize assignment of pool-specific options by trying to order
pools declarations in the server configuration.

The following configuration snippet demonstrates how to specify the DNS
servers option, which will be assigned to a client only if the client
obtains an address from the given pool:

"Dhcp6": {
 "subnet6": [
 {
 "pools": [
 {
 "pool": "2001:db8:1::100-2001:db8:1::300",
 "option-data": [
 {
 "name": "dns-servers",
 "data": "2001:db8:1::10"
 }
]
 }
]
 },
 ...
],
 ...
}

Options can also be specified in class or host reservation scope. The
current Kea options precedence order is (from most important): host
reservation, pool, subnet, shared network, class, global.

The currently supported standard DHCPv6 options are listed in
List of Standard DHCPv6 Options. “Name” and “Code” are the
values that should be used as a name/code in the option-data structures.
“Type” designates the format of the data; the meanings of the various
types are given in List of Standard DHCP Option Types.

When a data field is a string and that string contains the comma (,;
U+002C) character, the comma must be escaped with two backslashes (;
U+005C). This double escape is required because both the routine
splitting CSV data into fields and JSON use the same escape character; a
single escape (,) would make the JSON invalid. For example, the string
“EST5EDT4,M3.2.0/02:00,M11.1.0/02:00” must be represented as:

"Dhcp6": {
 "subnet6": [
 {
 "pools": [
 {
 "option-data": [
 {
 "name": "new-posix-timezone",
 "data": "EST5EDT4\\,M3.2.0/02:00\\,M11.1.0/02:00"
 }
]
 },
 ...
],
 ...
 },
 ...
],
 ...
}

Some options are designated as arrays, which means that more than one
value is allowed in such an option. For example, the option dns-servers
allows the specification of more than one IPv6 address, enabling clients
to obtain the addresses of multiple DNS servers.

Custom DHCPv6 Options describes the
configuration syntax to create custom option definitions (formats).
Creation of custom definitions for standard options is generally not
permitted, even if the definition being created matches the actual
option format defined in the RFCs. There is an exception to this rule
for standard options for which Kea currently does not provide a
definition. In order to use such options, a server administrator must
create a definition as described in Custom DHCPv6 Options in the ‘dhcp6’ option space. This
definition should match the option format described in the relevant RFC,
but the configuration mechanism will allow any option format as it
currently has no means to validate it.

List of Standard DHCPv6 Options

	Name

	Code

	Type

	Array?

	preference

	7

	uint8

	false

	unicast

	12

	ipv6-address

	false

	vendor-opts

	17

	uint32

	false

	sip-server-dns

	21

	fqdn

	true

	sip-server-addr

	22

	ipv6-address

	true

	dns-servers

	23

	ipv6-address

	true

	domain-search

	24

	fqdn

	true

	nis-servers

	27

	ipv6-address

	true

	nisp-servers

	28

	ipv6-address

	true

	nis-domain-name

	29

	fqdn

	true

	nisp-domain-name

	30

	fqdn

	true

	sntp-servers

	31

	ipv6-address

	true

	information-refresh-time

	32

	uint32

	false

	bcmcs-server-dns

	33

	fqdn

	true

	bcmcs-server-addr

	34

	ipv6-address

	true

	geoconf-civic

	36

	record (uint8,
uint16, binary)

	false

	remote-id

	37

	record (uint32,
binary)

	false

	subscriber-id

	38

	binary

	false

	client-fqdn

	39

	record (uint8,
fqdn)

	false

	pana-agent

	40

	ipv6-address

	true

	new-posix-timezone

	41

	string

	false

	new-tzdb-timezone

	42

	string

	false

	ero

	43

	uint16

	true

	lq-query (1)

	44

	record (uint8,
ipv6-address)

	false

	client-data (1)

	45

	empty

	false

	clt-time (1)

	46

	uint32

	false

	lq-relay-data (1)

	47

	record
(ipv6-address,
binary)

	false

	lq-client-link (1)

	48

	ipv6-address

	true

	v6-lost

	51

	fqdn

	false

	capwap-ac-v6

	52

	ipv6-address

	true

	relay-id

	53

	binary

	false

	v6-access-domain

	57

	fqdn

	false

	sip-ua-cs-list

	58

	fqdn

	true

	bootfile-url

	59

	string

	false

	bootfile-param

	60

	tuple

	true

	client-arch-type

	61

	uint16

	true

	nii

	62

	record (uint8,
uint8, uint8)

	false

	aftr-name

	64

	fqdn

	false

	erp-local-domain-name

	65

	fqdn

	false

	rsoo

	66

	empty

	false

	pd-exclude

	67

	binary

	false

	rdnss-selection

	74

	record
(ipv6-address,
uint8, fqdn)

	true

	client-linklayer-addr

	79

	binary

	false

	link-address

	80

	ipv6-address

	false

	solmax-rt

	82

	uint32

	false

	inf-max-rt

	83

	uint32

	false

	dhcp4o6-server-addr

	88

	ipv6-address

	true

	s46-rule

	89

	record (uint8,
uint8, uint8,
ipv4-address,
ipv6-prefix)

	false

	s46-br

	90

	ipv6-address

	false

	s46-dmr

	91

	ipv6-prefix

	false

	s46-v4v6bind

	92

	record
(ipv4-address,
ipv6-prefix)

	false

	s46-portparams

	93

	record(uint8,
psid)

	false

	s46-cont-mape

	94

	empty

	false

	s46-cont-mapt

	95

	empty

	false

	s46-cont-lw

	96

	empty

	false

	v6-captive-portal

	103

	string

	false

	ipv6-address-andsf

	143

	ipv6-address

	true

Options marked with (1) have option definitions, but the logic behind
them is not implemented. That means that, technically, Kea knows how to
parse them in incoming messages or how to send them if configured to do
so, but not what to do with them. Since the related RFCs require certain
processing, the support for those options is non-functional. However, it
may be useful in some limited lab testing; hence the definition formats
are listed here.

9.2.12. Common Softwire46 Options

Softwire46 options are involved in IPv4 over IPv6 provisioning by means
of tunneling or translation as specified in RFC
7598 [https://tools.ietf.org/html/rfc7598]. The following sections
provide configuration examples of these options.

9.2.12.1. Softwire46 Container Options

Softwire46 (S46) container options group rules and optional port parameters for a
specified domain. There are three container options specified in the
“dhcp6” (top-level) option space: the MAP-E Container option, the MAP-T
Container option, and the S46 Lightweight 4over6 Container option. These
options only contain the encapsulated options specified below; they do not
include any data fields.

To configure the server to send a specific container option along with
all encapsulated options, the container option must be included in the
server configuration as shown below:

"Dhcp6": {
 ...
 "option-data": [
 {
 "name": "s46-cont-mape"
 }],
 ...
}

This configuration will cause the server to include the MAP-E Container
option to the client. Use “s46-cont-mapt” or “s46-cont-lw” for the MAP-T
Container and S46 Lightweight 4over6 Container options, respectively.

All remaining Softwire options described below are included in one of
the container options. Thus, they must be included in appropriate
option spaces by selecting a “space” name, which specifies in which
option they are supposed to be included.

9.2.12.2. S46 Rule Option

The S46 Rule option is used for conveying the Basic Mapping Rule (BMR)
and Forwarding Mapping Rule (FMR).

{
 "space": "s46-cont-mape-options",
 "name": "s46-rule",
 "data": "128, 0, 24, 192.0.2.0, 2001:db8:1::/64"
}

Another possible “space” value is “s46-cont-mapt-options”.

The S46 Rule option conveys a number of parameters:

	flags - an unsigned 8-bit integer, with currently only the
most-significant bit specified. It denotes whether the rule can be
used for forwarding (128) or not (0).

	ea-len - an 8-bit-long Embedded Address length. Allowed values
range from 0 to 48.

	IPv4 prefix length - 8 bits long; expresses the prefix length of
the Rule IPv4 prefix specified in the ipv4-prefix field. Allowed
values range from 0 to 32.

	IPv4 prefix - a fixed-length 32-bit field that specifies the IPv4
prefix for the S46 rule. The bits in the prefix after
a specific number of bits (defined in prefix4-len) are reserved, and MUST
be initialized to zero by the sender and ignored by the receiver.

	IPv6 prefix - in prefix/length notation that specifies the IPv6
domain prefix for the S46 rule. The field is padded on the right with
zero bits up to the nearest octet boundary, when prefix6-len is not
evenly divisible by 8.

9.2.12.3. S46 BR Option

The S46 BR option is used to convey the IPv6 address of the Border
Relay. This option is mandatory in the MAP-E Container option and is not
permitted in the MAP-T and S46 Lightweight 4over6 Container options.

{
 "space": "s46-cont-mape-options",
 "name": "s46-br",
 "data": "2001:db8:cafe::1",
}

Another possible “space” value is “s46-cont-lw-options”.

9.2.12.4. S46 DMR Option

The S46 DMR option is used to convey values for the Default Mapping Rule
(DMR). This option is mandatory in the MAP-T container option and is not
permitted in the MAP-E and S46 Lightweight 4over6 Container options.

{
 "space": "s46-cont-mapt-options",
 "name": "s46-dmr",
 "data": "2001:db8:cafe::/64",
}

This option must not be included in other containers.

9.2.12.5. S46 IPv4/IPv6 Address Binding Option

The S46 IPv4/IPv6 Address Binding option may be used to specify the full
or shared IPv4 address of the Customer Edge (CE). The IPv6 prefix field
is used by the CE to identify the correct prefix to use for the tunnel
source.

{
 "space": "s46-cont-lw",
 "name": "s46-v4v6bind",
 "data": "192.0.2.3, 2001:db8:1:cafe::/64"
}

This option must not be included in other containers.

9.2.12.6. S46 Port Parameters

The S46 Port Parameters option specifies optional port-set information
that MAY be provided to CEs.

{
 "space": "s46-rule-options",
 "name": "s46-portparams",
 "data": "2, 3/4",
}

Another possible “space” value is “s46-v4v6bind”, to include this option
in the S46 IPv4/IPv6 Address Binding option.

Note that the second value in the example above specifies the PSID and
PSID-length fields in the format of PSID/PSID length. This is equivalent
to the values of PSID-len=4 and PSID=12288 conveyed in the S46 Port
Parameters option.

9.2.13. Custom DHCPv6 Options

Kea supports custom (non-standard) DHCPv6 options.
Assume that we want to define a new DHCPv6 option called “foo” which
will have code 100 and which will convey a single, unsigned, 32-bit
integer value. We can define such an option by putting the following entry
in the configuration file:

"Dhcp6": {
 "option-def": [
 {
 "name": "foo",
 "code": 100,
 "type": "uint32",
 "array": false,
 "record-types": "",
 "space": "dhcp6",
 "encapsulate": ""
 }, ...
],
 ...
}

The false value of the array parameter determines that the option
does NOT comprise an array of “uint32” values but is, instead, a single
value. Two other parameters have been left blank: record-types and
encapsulate. The former specifies the comma-separated list of option
data fields, if the option comprises a record of data fields. The
record-types value should be non-empty if type is set to
“record”; otherwise it must be left blank. The latter parameter
specifies the name of the option space being encapsulated by the
particular option. If the particular option does not encapsulate any
option space, the parameter should be left blank. Note that the option-def
configuration statement only defines the format of the new option and does
not set its value(s).

The name, code, and type parameters are required; all
others are optional. The array default value is false. The
record-types and encapsulate default values are blank (i.e. “”).
The default space is “dhcp6”.

Once the new option format is defined, its value is set in the same way
as for a standard option. For example, the following commands set a
global value that applies to all subnets.

"Dhcp6": {
 "option-data": [
 {
 "name": "foo",
 "code": 100,
 "space": "dhcp6",
 "csv-format": true,
 "data": "12345"
 }, ...
],
 ...
}

New options can take more complex forms than simple use of primitives
(uint8, string, ipv6-address, etc.); it is possible to define an option
comprising a number of existing primitives.

For example, assume we want to define a new option that will consist of
an IPv6 address, followed by an unsigned 16-bit integer, followed by a
boolean value, followed by a text string. Such an option could be
defined in the following way:

"Dhcp6": {
 "option-def": [
 {
 "name": "bar",
 "code": 101,
 "space": "dhcp6",
 "type": "record",
 "array": false,
 "record-types": "ipv6-address, uint16, boolean, string",
 "encapsulate": ""
 }, ...
],
 ...
}

The type is set to “record” to indicate that the option contains
multiple values of different types. These types are given as a
comma-separated list in the record-types field and should be ones
from those listed in List of Standard DHCP Option Types.

The values of the options are set in an option-data statement as
follows:

"Dhcp6": {
 "option-data": [
 {
 "name": "bar",
 "space": "dhcp6",
 "code": 101,
 "csv-format": true,
 "data": "2001:db8:1::10, 123, false, Hello World"
 }
],
 ...
}

csv-format is set to true to indicate that the data field
comprises a comma-separated list of values. The values in data
must correspond to the types set in the record-types field of the
option definition.

When array is set to true and type is set to “record”, the
last field is an array, i.e. it can contain more than one value, as in:

"Dhcp6": {
 "option-def": [
 {
 "name": "bar",
 "code": 101,
 "space": "dhcp6",
 "type": "record",
 "array": true,
 "record-types": "ipv6-address, uint16",
 "encapsulate": ""
 }, ...
],
 ...
}

The new option content is one IPv6 address followed by one or more 16-bit
unsigned integers.

Note

In general, boolean values are specified as true or false,
without quotes. Some specific boolean parameters may accept also
"true", "false", 0, 1, "0", and "1".

9.2.14. DHCPv6 Vendor-Specific Options

Currently there are two option spaces defined for the DHCPv6 daemon:
“dhcp6” (for the top-level DHCPv6 options) and “vendor-opts-space”, which is
empty by default but in which options can be defined. Those options are
carried in the Vendor-Specific Information option (code 17). The
following examples show how to define an option “foo” with code 1 that
consists of an IPv6 address, an unsigned 16-bit integer, and a string.
The “foo” option is conveyed in a Vendor-Specific Information option,
which comprises a single uint32 value that is set to “12345”. The
sub-option “foo” follows the data field holding this value.

The first step is to define the format of the option:

"Dhcp6": {
 "option-def": [
 {
 "name": "foo",
 "code": 1,
 "space": "vendor-opts-space",
 "type": "record",
 "array": false,
 "record-types": "ipv6-address, uint16, string",
 "encapsulate": ""
 }
],
 ...
}

(Note that the option space is set to vendor-opts-space.) Once the
option format is defined, the next step is to define actual values for
that option:

"Dhcp6": {
 "option-data": [
 {
 "name": "foo",
 "space": "vendor-opts-space",
 "data": "2001:db8:1::10, 123, Hello World"
 },
 ...
],
 ...
}

We should also define a value (enterprise-number) for the
Vendor-Specific Information option, that conveys our option “foo”.

"Dhcp6": {
 "option-data": [
 ...,
 {
 "name": "vendor-opts",
 "data": "12345"
 }
],
 ...
}

Alternatively, the option can be specified using its code.

"Dhcp6": {
 "option-data": [
 ...,
 {
 "code": 17,
 "data": "12345"
 }
],
 ...
}

9.2.15. Nested DHCPv6 Options (Custom Option Spaces)

It is sometimes useful to define completely new option spaces, such as
when a user creates a new option to convey sub-options that
use a separate numbering scheme, for example sub-options with codes 1
and 2. Those option codes conflict with standard DHCPv6 options, so a
separate option space must be defined.

Note that the creation of a new option space is not required when
defining sub-options for a standard option, because one is created by
default if the standard option is meant to convey any sub-options (see
DHCPv6 Vendor-Specific Options).

Assume that we want to have a DHCPv6 option called “container” with code
102 that conveys two sub-options with codes 1 and 2. First we need to
define the new sub-options:

"Dhcp6": {
 "option-def": [
 {
 "name": "subopt1",
 "code": 1,
 "space": "isc",
 "type": "ipv6-address",
 "record-types": "",
 "array": false,
 "encapsulate": ""
 },
 {
 "name": "subopt2",
 "code": 2,
 "space": "isc",
 "type": "string",
 "record-types": "",
 "array": false
 "encapsulate": ""
 }
],
 ...
}

Note that we have defined the options to belong to a new option space
(in this case, “isc”).

The next step is to define a regular DHCPv6 option with the desired code
and specify that it should include options from the new option space:

"Dhcp6": {
 "option-def": [
 ...,
 {
 "name": "container",
 "code": 102,
 "space": "dhcp6",
 "type": "empty",
 "array": false,
 "record-types": "",
 "encapsulate": "isc"
 }
],
 ...
}

The name of the option space in which the sub-options are defined is set
in the encapsulate field. The type field is set to empty,
which limits this option to only carrying data in sub-options.

Finally, we can set values for the new options:

"Dhcp6": {
 "option-data": [
 {
 "name": "subopt1",
 "code": 1,
 "space": "isc",
 "data": "2001:db8::abcd"
 },
 }
 "name": "subopt2",
 "code": 2,
 "space": "isc",
 "data": "Hello world"
 },
 {
 "name": "container",
 "code": 102,
 "space": "dhcp6"
 }
],
 ...
}

Note that it is possible to create an option which carries some data in
addition to the sub-options defined in the encapsulated option space.
For example, if the “container” option from the previous example were
required to carry a uint16 value as well as the sub-options, the
type value would have to be set to “uint16” in the option
definition. (Such an option would then have the following data
structure: DHCP header, uint16 value, sub-options.) The value specified
with the data parameter — which should be a valid integer enclosed
in quotes, e.g. “123” — would then be assigned to the uint16 field in
the “container” option.

9.2.16. Unspecified Parameters for DHCPv6 Option Configuration

In many cases it is not required to specify all parameters for an option
configuration, and the default values can be used. However, it is
important to understand the implications of not specifying some of them,
as it may result in configuration errors. The list below explains the
behavior of the server when a particular parameter is not explicitly
specified:

	name - the server requires an option name or an option code to
identify an option. If this parameter is unspecified, the option code
must be specified.

	code - the server requires either an option name or an option code to
identify an option. This parameter may be left unspecified if the
name parameter is specified. However, this also requires that the
particular option have a definition (either as a standard option or
an administrator-created definition for the option using an
‘option-def’ structure), as the option definition associates an
option with a particular name. It is possible to configure an option
for which there is no definition (unspecified option format).
Configuration of such options requires the use of the option code.

	space - if the option space is unspecified it will default to
‘dhcp6’, which is an option space holding standard DHCPv6 options.

	data - if the option data is unspecified it defaults to an empty
value. The empty value is mostly used for the options which have no
payload (boolean options), but it is legal to specify empty values
for some options which carry variable-length data and for which the
specification allows a length of 0. For such options, the data
parameter may be omitted in the configuration.

	csv-format - if this value is not specified, the server will
assume that the option data is specified as a list of comma-separated
values to be assigned to individual fields of the DHCP option.

9.2.17. Controlling the Values Sent for T1 and T2 Times

According to RFC 8415, section 21.4, the recommended T1 and T2 values
are 50% and 80% of the preferred
lease time, respectively. Kea can be configured to send values that are
specified explicitly or that are calculated as percentages of the
preferred lease time. The server’s behavior is governed by a combination
of configuration parameters, two of which have already been mentioned.

Beginning with Kea 1.6.0 lease preferred and valid lifetime are extended from
single values to triplets with minimum, default and maximum values using:

	min-preferred-lifetime - specifies the minimum preferred lifetime (optional).

	preferred-lifetime - specifies the default preferred lifetime.

	max-preferred-lifetime - specifies the maximum preferred lifetime (optional).

	min-valid-lifetime - specifies the minimum valid lifetime (optional).

	valid-lifetime - specifies the default valid lifetime.

	max-valid-lifetime - specifies the maximum valid lifetime (optional).

When the client does not specify lifetimes the default is used. When
it specifies a lifetime using IAADDR or IAPREFIX sub option with not
zero values these values are used when they are between configured
minimum (lower values are round up) and maximal (larger values are
round down) bounds.

To send specific, fixed values use the following two parameters:

	renew-timer - specifies the value of T1 in seconds.

	rebind-timer - specifies the value of T2 in seconds.

Any value greater than or equal to zero may be specified for T2. When
specifying T1 it must be less than T2. This flexibility is allowed to
support a use case where administrators want to suppress client renewals and
rebinds by deferring them beyond the lifespan of the lease. This should
cause the lease to expire, rather than get renewed by clients. If T1 is
specified as larger than T2, T1 will be set to zero in the outbound IA.

In the great majority of cases the values should follow this rule: T1 < T2 <
preferred lifetime < valid lifetime. Alternatively, both T1 and T2
values can be configured to 0, which is a signal to DHCPv6 clients that
they may renew at their own discretion. However, there are known broken
client implementations in use that will start renewing immediately.
Administrators who plan to use T1=T2=0 values should test first and make sure
their clients behave rationally.

In some rare cases there may be a need to disable a client’s ability to
renew addresses. This is undesired from a protocol perspective and should
be avoided if possible. However, if necessary, administrators can
configure the T1 and T2 values to be equal or greater to the valid
lifetime. Be advised that this will cause clients to occasionally
lose their addresses, which is generally perceived as poor service.
However, there may be some rare business cases when this is desired
(e.g. when it is desirable to intentionally break long-lasting connections).

Calculation of the values is controlled by the following three parameters:

	calculate-tee-times - when true, T1 and T2 will be calculated as
percentages of the valid lease time. It defaults to true.

	t1-percent - the percentage of the valid lease time to use for
T1. It is expressed as a real number between 0.0 and 1.0 and must be
less than t2-percent. The default value is 0.5 per RFC 8415.

	t2-percent - the percentage of the valid lease time to use for
T2. It is expressed as a real number between 0.0 and 1.0 and must be
greater than t1-percent. The default value is 0.8 per RFC 8415.

Note

In the event that both explicit values are specified and
calculate-tee-times is true, the server will use the explicit values.
Administrators with a setup where some subnets or share-networks
will use explicit values and some will use calculated values must
not define the explicit values at any level higher than where they
will be used. Inheriting them from too high a scope, such as
global, will cause them to have values at every level underneath
(shared-networks and subnets), effectively disabling calculated
values.

9.2.18. IPv6 Subnet Selection

The DHCPv6 server may receive requests from local (connected to the same
subnet as the server) and remote (connected via relays) clients. As the
server may have many subnet configurations defined, it must select an
appropriate subnet for a given request.

In IPv4, the server can determine which of the configured subnets are
local, as there is a reasonable expectation that the server will have a
(global) IPv4 address configured on the interface. That assumption is not
true in IPv6; the DHCPv6 server must be able to operate while only using
link-local addresses. Therefore, an optional interface parameter is
available within a subnet definition to designate that a given subnet is
local, i.e. reachable directly over the specified interface. For
example, a server that is intended to serve a local subnet over eth0
may be configured as follows:

"Dhcp6": {
 "subnet6": [
 {
 "subnet": "2001:db8:beef::/48",
 "pools": [
 {
 "pool": "2001:db8:beef::/48"
 }
],
 "interface": "eth0"
 }
],
 ...
}

9.2.19. Rapid Commit

The Rapid Commit option, described in RFC
8415 [https://tools.ietf.org/html/rfc8415], is supported by the Kea
DHCPv6 server. However, support is disabled by default. It can be
enabled on a per-subnet basis using the rapid-commit parameter as
shown below:

"Dhcp6": {
 "subnet6": [
 {
 "subnet": "2001:db8:beef::/48",
 "rapid-commit": true,
 "pools": [
 {
 "pool": "2001:db8:beef::1-2001:db8:beef::10"
 }
],
 }
],
 ...
}

This setting only affects the subnet for which rapid-commit is
set to true. For clients connected to other subnets, the server will
ignore the Rapid Commit option sent by the client and will follow the
4-way exchange procedure, i.e. respond with an Advertise for a Solicit
containing a Rapid Commit option.

9.2.20. DHCPv6 Relays

A DHCPv6 server with multiple subnets defined must select the
appropriate subnet when it receives a request from a client. For clients
connected via relays, two mechanisms are used:

The first uses the linkaddr field in the RELAY_FORW message. The name of
this field is somewhat misleading in that it does not contain a
link-layer address; instead, it holds an address (typically a global
address) that is used to identify a link. The DHCPv6 server checks to
see whether the address belongs to a defined subnet and, if it does,
that subnet is selected for the client’s request.

The second mechanism is based on interface-id options. While forwarding
a client’s message, relays may insert an interface-id option into the
message that identifies the interface on the relay that received the
message. (Some relays allow configuration of that parameter, but it is
sometimes hardcoded and may range from the very simple (e.g. “vlan100”)
to the very cryptic; one example seen on real hardware was
“ISAM144|299|ipv6|nt:vp:1:110”). The server can use this information to
select the appropriate subnet. The information is also returned to the
relay, which then knows the interface to use to transmit the response to
the client. For this to work successfully, the relay interface IDs must
be unique within the network and the server configuration must match
those values.

When configuring the DHCPv6 server, it should be noted that two
similarly named parameters can be configured for a subnet:

	interface defines which local network interface can be used to
access a given subnet.

	interface-id specifies the content of the interface-id option
used by relays to identify the interface on the relay to which the
response packet is sent.

The two are mutually exclusive; a subnet cannot be reachable both
locally (direct traffic) and via relays (remote traffic). Specifying
both is a configuration error and the DHCPv6 server will refuse such a
configuration.

The following example configuration shows how to specify an interface-id
with a value of “vlan123”:

"Dhcp6": {
 "subnet6": [
 {
 "subnet": "2001:db8:beef::/48",
 "pools": [
 {
 "pool": "2001:db8:beef::/48"
 }
],
 "interface-id": "vlan123"
 }
],
 ...
}

9.2.21. Relay-Supplied Options

RFC 6422 [https://tools.ietf.org/html/rfc6422] defines a mechanism
called Relay-Supplied DHCP Options. In certain cases relay agents are
the only entities that may have specific information, and they can
insert options when relaying messages from the client to the server. The
server will then do certain checks and copy those options to the
response sent to the client.

There are certain conditions that must be met for the option to be
included. First, the server must not provide the option itself; in other
words, if both relay and server provide an option, the server always
takes precedence. Second, the option must be RSOO-enabled. (RSOO is the
“Relay Supplied Options option.”) IANA maintains a list of RSOO-enabled
options
here [https://www.iana.org/assignments/dhcpv6-parameters/dhcpv6-parameters.xhtml#options-relay-supplied].
However, there may be cases when system administrators want to echo
other options. Kea can be instructed to treat other options as
RSOO-enabled. For example, to mark options 110, 120, and 130 as
RSOO-enabled, the following syntax should be used:

"Dhcp6": {
 "relay-supplied-options": ["110", "120", "130"],
 ...
}

As of February 2019, only option 65 is RSOO-enabled by IANA. This option
will always be treated as such, so there is no need to explicitly mark
it. Also, when enabling standard options, it is possible to use their
names rather than their option code, e.g. use dns-servers instead of
23. See ref:dhcp6-std-options-list for the names. In
certain cases this may also work for custom options, but due to the
nature of the parser code this may be unreliable and should be avoided.

9.2.22. Client Classification in DHCPv6

The DHCPv6 server includes support for client classification. For a
deeper discussion of the classification process see Client Classification.

In certain cases it is useful to configure the server to differentiate
between DHCP client types and treat them accordingly. Client
classification can be used to modify the behavior of almost any part of
the DHCP message processing. Kea currently offers
three mechanisms that take advantage of client classification in DHCPv6:
subnet selection, address pool selection, and DHCP options assignment.

Kea can be instructed to limit access to given subnets based on class
information. This is particularly useful for cases where two types of
devices share the same link and are expected to be served from two
different subnets. The primary use case for such a scenario is cable
networks, where there are two classes of devices: the cable modem
itself, which should be handed a lease from subnet A; and all other
devices behind the modem, which should get a lease from subnet B. That
segregation is essential to prevent overly curious users from playing
with their cable modems. For details on how to set up class restrictions
on subnets, see Configuring Subnets With Class Information.

When subnets belong to a shared network, the classification applies to
subnet selection but not to pools; that is, a pool in a subnet limited to a
particular class can still be used by clients which do not belong to the
class, if the pool they are expected to use is exhausted. So the limit
on access based on class information is also available at the
address/prefix pool level; see Configuring Pools With Class Information, within a
subnet. This is useful when segregating clients belonging to the same
subnet into different address ranges.

In a similar way, a pool can be constrained to serve only known clients,
i.e. clients which have a reservation, using the built-in “KNOWN” or
“UNKNOWN” classes. Addresses can be assigned to registered clients
without giving a different address per reservation, for instance when
there are not enough available addresses. The determination whether
there is a reservation for a given client is made after a subnet is
selected, so it is not possible to use “KNOWN”/”UNKNOWN” classes to select a
shared network or a subnet.

The process of classification is conducted in five steps. The first step
is to assess an incoming packet and assign it to zero or more classes.
The second step is to choose a subnet, possibly based on the class
information. When the incoming packet is in the special class, “DROP,
it is dropped and an debug message logged.
The next step is to evaluate class expressions depending on the built-in
“KNOWN”/”UNKNOWN” classes after host reservation lookup, using them for
pool/pd-pool selection and assigning classes from host reservations. The
list of required classes is then built and each class of the list has
its expression evaluated; when it returns “true” the packet is added as
a member of the class. The last step is to assign options, again possibly
based on the class information. More complete and detailed information
is available in Client Classification.

There are two main methods of classification. The first is automatic and
relies on examining the values in the vendor class options or the
existence of a host reservation. Information from these options is
extracted, and a class name is constructed from it and added to the
class list for the packet. The second specifies an expression that is
evaluated for each packet. If the result is “true”, the packet is a
member of the class.

Note

Care should be taken with client classification, as it is easy for
clients that do not meet class criteria to be denied all service.

9.2.22.1. Defining and Using Custom Classes

The following example shows how to configure a class using an expression
and a subnet using that class. This configuration defines the class
named “Client_enterprise”. It is comprised of all clients whose client
identifiers start with the given hex string (which would indicate a DUID
based on an enterprise id of 0xAABBCCDD). Members of this class will be given an address
from 2001:db8:1::0 to 2001:db8:1::FFFF and the addresses of their DNS
servers set to 2001:db8:0::1 and 2001:db8:2::1.

"Dhcp6": {
 "client-classes": [
 {
 "name": "Client_enterprise",
 "test": "substring(option[1].hex,0,6) == 0x0002AABBCCDD",
 "option-data": [
 {
 "name": "dns-servers",
 "code": 23,
 "space": "dhcp6",
 "csv-format": true,
 "data": "2001:db8:0::1, 2001:db8:2::1"
 }
]
 },
 ...
],
 "subnet6": [
 {
 "subnet": "2001:db8:1::/64",
 "pools": [{ "pool": "2001:db8:1::-2001:db8:1::ffff" }],
 "client-class": "Client_enterprise"
 }
],
 ...
}

This example shows a configuration using an automatically generated
“VENDOR_CLASS_” class. The administrator of the network has decided that
addresses in the range 2001:db8:1::1 to 2001:db8:1::ffff are to be
managed by the DHCP6 server and that only clients belonging to the
eRouter1.0 client class are allowed to use that pool.

"Dhcp6": {
 "subnet6": [
 {
 "subnet": "2001:db8:1::/64",
 "pools": [
 {
 "pool": "2001:db8:1::-2001:db8:1::ffff"
 }
],
 "client-class": "VENDOR_CLASS_eRouter1.0"
 }
],
 ...
}

9.2.22.2. Required Classification

In some cases it is useful to limit the scope of a class to a
shared network, subnet, or pool. There are two parameters which are used
to limit the scope of the class by instructing the server to evaluate
test expressions when required.

The first one is the per-class only-if-required flag, which is false
by default. When it is set to true, the test expression of the class
is not evaluated at the reception of the incoming packet but later, and
only if the class evaluation is required.

The second is require-client-classes, which takes a list of class
names and is valid in shared-network, subnet, and pool scope. Classes in
these lists are marked as required and evaluated after selection of this
specific shared-network/subnet/pool and before output option processing.

In this example, a class is assigned to the incoming packet when the
specified subnet is used:

"Dhcp6": {
 "client-classes": [
 {
 "name": "Client_foo",
 "test": "member('ALL')",
 "only-if-required": true
 },
 ...
],
 "subnet6": [
 {
 "subnet": "2001:db8:1::/64"
 "pools": [
 {
 "pool": "2001:db8:1::-2001:db8:1::ffff"
 }
],
 "require-client-classes": ["Client_foo"],
 ...
 },
 ...
],
 ...
}

Required evaluation can be used to express complex dependencies like
subnet membership. It can also be used to reverse the
precedence; if an option-data is set in a subnet it takes precedence
over an option-data in a class. When option-data is moved to a
required class and required in the subnet, a class evaluated earlier
may take precedence.

Required evaluation is also available at shared-network and pool/pd-pool
levels. The order in which required classes are considered is:
shared-network, subnet, and (pd-)pool, i.e. in the opposite order in which
option-data is processed.

9.2.23. DDNS for DHCPv6

As mentioned earlier, kea-dhcp6 can be configured to generate requests
to the DHCP-DDNS server (referred to here as “D2”) to update DNS
entries. These requests are known as Name Change Requests or NCRs. Each
NCR contains the following information:

	Whether it is a request to add (update) or remove DNS entries

	Whether the change requests forward DNS updates (AAAA records),
reverse DNS updates (PTR records), or both

	The Fully Qualified Domain Name (FQDN), lease address, and DHCID
(information identifying the client associated with the FQDN)

Prior to Kea 1.7.1, all parameters for controlling DDNS were within the
global dhcp-ddns section of the kea-dhcp6. Beginning with Kea 1.7.1
DDNS related parameters were split into two groups:

	Connectivity Parameters

These are parameters which specify where and how kea-dhcp6 connects to
and communicates with D2. These parameters can only be specified
within the top-level dhcp-ddns section in the kea-dhcp6
configuration. The connectivity parameters are listed below:

	enable-updates

	server-ip

	server-port

	sender-ip

	sender-port

	max-queue-size

	ncr-protocol

	ncr-format"

	Behavioral Parameters

These parameters influence behavior such as how client host names and
FQDN options are handled. They have been moved out of the dhcp-ddns
section so that they may be specified at the global, shared-network,
and/or subnet levels. Furthermore, they are inherited downward from global to
shared-network to subnet. In other words, if a parameter is not specified at
a given level, the value for that level comes from the level above it.
The behavioral parameter as follows:

	ddns-send-updates

	ddns-override-no-update

	ddns-override-client-update

	ddns-replace-client-name"

	ddns-generated-prefix

	ddns-qualifying-suffix

	hostname-char-set

	hostname-char-replacement

Note

For backward compatibility, configuration parsing will still recognize
the original behavioral parameters specified in dhcp-ddns. It will
do so by translating the parameter into its global equivalent. If a
parameter is specified both globally and in dhcp-ddns, the latter
value will be ignored. In either case, a log will be emitted explaining
what has occurred. Specifying these values within dhcp-ddns is
deprecated and support for it will be removed at some future date.

The default configuration and values would appear as follows:

"Dhcp6": {
 "dhcp-ddns": {
 // Connectivity parameters
 "enable-updates": false,
 "server-ip": "127.0.0.1",
 "server-port":53001,
 "sender-ip":"",
 "sender-port":0,
 "max-queue-size":1024,
 "ncr-protocol":"UDP",
 "ncr-format":"JSON"
 },

 // Behavioral parameters (global)
 "ddns-send-updates": true,
 "ddns-override-no-update": false,
 "ddns-override-client-update": false,
 "ddns-replace-client-name": "never",
 "ddns-generated-prefix": "myhost",
 "ddns-qualifying-suffix": "",
 "hostname-char-set": "",
 "hostname-char-replacement": ""
 ...
}

As of Kea 1.7.1, there are two parameters which determine if kea-dhcp6
can generate DDNS requests to D2. The existing, dhcp-ddns:enable-updates
parameter which now only controls whether kea-dhcp6 connects to D2.
And the new behavioral parameter, ddns-send-updates, which determines
if DDNS updates are enabled at a given level (i.e global, shared-network,
or subnet). The following table shows how the two parameters function
together:

Enabling and Disabling DDNS Updates

	dhcp-ddns:
enable-updates

	Global
ddns-send-udpates

	Outcome

	false (default)

	false

	no updates at any scope

	false

	true (default)

	no updates at any scope

	true

	false

	updates only at scopes with
a local value of true for
ddns-enable-updates

	true

	true

	updates at all scopes except
those with a local value of
false for ddns-enable-updates

9.2.23.1. DHCP-DDNS Server Connectivity

For NCRs to reach the D2 server, kea-dhcp6 must be able to communicate
with it. kea-dhcp6 uses the following configuration parameters to
control this communication:

	enable-updates - As of Kea 1.7.1, this parameter only enables
connectivity to kea-dhcp-ddns such that DDNS updates can be constructed
and sent. It must be true for NCRs to be generated and sent to D2.
It defaults to false.

	server-ip - IP address on which D2 listens for requests. The
default is the local loopback interface at address 127.0.0.1.
Either an IPv4 or IPv6 address may be specified.

	server-port - port on which D2 listens for requests. The default
value is 53001.

	sender-ip - the IP address which kea-dhcp6 uses to send requests to
D2. The default value is blank, which instructs kea-dhcp6 to select a
suitable address.

	sender-port - the port which kea-dhcp6 uses to send requests to D2.
The default value of 0 instructs kea-dhcp6 to select a suitable port.

	max-queue-size - the maximum number of requests allowed to queue
waiting to be sent to D2. This value guards against requests
accumulating uncontrollably if they are being generated faster than
they can be delivered. If the number of requests queued for
transmission reaches this value, DDNS updating will be turned off
until the queue backlog has been sufficiently reduced. The intent is
to allow the kea-dhcp6 server to continue lease operations without running the
risk that its memory usage grows without limit. The default value is
1024.

	ncr-protocol - the socket protocol to use when sending requests to
D2. Currently only UDP is supported.

	ncr-format - the packet format to use when sending requests to D2.
Currently only JSON format is supported.

By default, kea-dhcp-ddns is assumed to be running on the same machine
as kea-dhcp6, and all of the default values mentioned above should be
sufficient. If, however, D2 has been configured to listen on a different
address or port, these values must be altered accordingly. For example, if
D2 has been configured to listen on 2001:db8::5 port 900, the following
configuration is required:

"Dhcp6": {
 "dhcp-ddns": {
 "server-ip": "2001:db8::5",
 "server-port": 900,
 ...
 },
 ...
}

9.2.23.2. When Does the kea-dhcp6 Server Generate a DDNS Request?

kea-dhcp6 follows the behavior prescribed for DHCP servers in RFC
4704 [https://tools.ietf.org/html/rfc4704]. It is important to keep in
mind that kea-dhcp6 makes the initial decision of when and what to
update and forwards that information to D2 in the form of NCRs. Carrying
out the actual DNS updates and dealing with such things as conflict
resolution are within the purview of D2 itself
(see The DHCP-DDNS Server). This section describes when kea-dhcp6
will generate NCRs and the configuration parameters that can be used to
influence this decision. It assumes that the enable-updates
parameter is true.

Note

Currently the interface between kea-dhcp6 and D2 only supports
requests which update DNS entries for a single IP address. If a lease
grants more than one address, kea-dhcp6 will create the DDNS update
request for only the first of these addresses.

In general, kea-dhcp6 will generate DDNS update requests when:

	A new lease is granted in response to a DHCPREQUEST;

	An existing lease is renewed but the FQDN associated with it has
changed; or

	An existing lease is released in response to a DHCPRELEASE.

In the second case, lease renewal, two DDNS requests will be issued: one
request to remove entries for the previous FQDN, and a second request to
add entries for the new FQDN. In the last case, a lease release, a
single DDNS request to remove its entries will be made.

As for the first case, the decisions involved when granting a new lease are
more complex. When a new lease is granted, kea-dhcp6 will generate a
DDNS update request only if the DHCPREQUEST contains the FQDN option
(code 39). By default, kea-dhcp6 will respect the FQDN N and S flags
specified by the client as shown in the following table:

Default FQDN Flag Behavior

	Client
Flags:N-S

	Client Intent

	Server Response

	Server
Flags:N-S-O

	0-0

	Client wants to
do forward
updates, server
should do
reverse updates

	Server
generates
reverse-only
request

	1-0-0

	0-1

	Server should
do both forward
and reverse
updates

	Server
generates
request to
update both
directions

	0-1-0

	1-0

	Client wants no
updates done

	Server does not
generate a
request

	1-0-0

The first row in the table above represents “client delegation.” Here
the DHCP client states that it intends to do the forward DNS updates and
the server should do the reverse updates. By default, kea-dhcp6 will
honor the client’s wishes and generate a DDNS request to D2 to update
only reverse DNS data. The parameter ddns-override-client-update can be
used to instruct the server to override client delegation requests. When
this parameter is “true”, kea-dhcp6 will disregard requests for client
delegation and generate a DDNS request to update both forward and
reverse DNS data. In this case, the N-S-O flags in the server’s response
to the client will be 0-1-1 respectively.

(Note that the flag combination N=1, S=1 is prohibited according to RFC
4702 [https://tools.ietf.org/html/rfc4702]. If such a combination is
received from the client, the packet will be dropped by kea-dhcp6.)

To override client delegation, set the following values in the
configuration file:

"Dhcp6": {
 ...
 "ddns-override-client-update": true,
 ...
}

The third row in the table above describes the case in which the client
requests that no DNS updates be done. The parameter,
ddns-override-no-update, can be used to instruct the server to disregard
the client’s wishes. When this parameter is true, kea-dhcp6 will
generate DDNS update requests to kea-dhcp-ddns even if the client
requests that no updates be done. The N-S-O flags in the server’s response to
the client will be 0-1-1.

To override client delegation, issue the following commands:

"Dhcp6": {
 ...
 "ddns-override-no-update": true,
 ...
}

9.2.23.3. kea-dhcp6 Name Generation for DDNS Update Requests

Each Name Change Request must of course include the fully qualified
domain name whose DNS entries are to be affected. kea-dhcp6 can be
configured to supply a portion or all of that name, based upon what it
receives from the client in the DHCPREQUEST.

The default rules for constructing the FQDN that will be used for DNS
entries are:

	If the DHCPREQUEST contains the client FQDN option, take the
candidate name from there.

	If the candidate name is a partial (i.e. unqualified) name, then add
a configurable suffix to the name and use the result as the FQDN.

	If the candidate name provided is empty, generate an FQDN using a
configurable prefix and suffix.

	If the client provides neither option, then take no DNS action.

These rules can be amended by setting the ddns-replace-client-name
parameter, which provides the following modes of behavior:

	never - use the name the client sent. If the client sent no name,
do not generate one. This is the default mode.

	always - replace the name the client sent. If the client sent no
name, generate one for the client.

	when-present - replace the name the client sent. If the client
sent no name, do not generate one.

	when-not-present - use the name the client sent. If the client
sent no name, generate one for the client.

Note

Note that in early versions of Kea, this parameter was a boolean and
permitted only values of true and false.
Boolean values have been deprecated and are no longer accepted.
Administrators currently using booleans must replace them with the
desired mode name. A value of true maps to "when-present", while
false maps to "never".

For example, to instruct kea-dhcp6 to always generate the FQDN for a
client, set the parameter ddns-replace-client-name to always as
follows:

"Dhcp6": {
 ...
 "ddsn-replace-client-name": "always",
 ...
}

The prefix used in the generation of an FQDN is specified by the
ddns-generated-prefix parameter. The default value is “myhost”. To alter
its value, simply set it to the desired string:

"Dhcp6": {
 ...
 "ddns-generated-prefix": "another.host",
 ...
}

The suffix used when generating an FQDN, or when qualifying a partial
name, is specified by the ddns-qualifying-suffix parameter. This
parameter has no default value; thus, it is mandatory when DDNS updates
are enabled. To set its value simply set it to the desired string:

"Dhcp6": {
 ...
 "ddns-qualifying-suffix": "foo.example.org",
 ...
}

When qualifying a partial name, kea-dhcp6 will construct the name in the
format:

[candidate-name].[ddns-qualifying-suffix].

where candidate-name is the partial name supplied in the DHCPREQUEST.
For example, if the FQDN domain name value is “some-computer” and the
ddsn-qualifying-suffix “example.com”, the generated FQDN is:

some-computer.example.com.

When generating the entire name, kea-dhcp6 will construct the name in
the format:

[ddns-generated-prefix]-[address-text].[ddns-qualifying-suffix].

where address-text is simply the lease IP address converted to a
hyphenated string. For example, if the lease address is 3001:1::70E, the
qualifying suffix “example.com”, and the default value is used for
ddns-generated-prefix, the generated FQDN is:

myhost-3001-1–70E.example.com.

9.2.23.4. Sanitizing Client FQDN Names

Some DHCP clients may provide values in the name
component of the FQDN option (option code 39) that contain undesirable
characters. It is possible to configure kea-dhcp6 to sanitize these
values. The most typical use case is ensuring that only characters that
are permitted by RFC 1035 be included: A-Z, a-z, 0-9, and ‘-’. This may be
accomplished with the following two parameters:

	hostname-char-set - a regular expression describing the invalid
character set. This can be any valid, regular expression using POSIX
extended expression syntax. Embedded nuls (0x00) will always be
considered an invalid character to be replaced (or omitted).

	hostname-char-replacement - a string of zero or more characters
with which to replace each invalid character in the host name. An empty
string and will cause invalid characters to be OMITTED rather than replaced.

Note

Starting with Kea 1.7.5, the default values are as follows:

	“hostname-char-set”: “[^A-Za-z0-9.-]”,

	“hostname-char-replacement”: “”

This enables sanitizing and will omit any character that is not
a letter,digit, hyphen, dot or nul.

The following configuration will replace anything other than a letter,
digit, hyphen, or dot with the letter ‘x’:

"Dhcp6": {
 ...
 "hostname-char-set": "[^A-Za-z0-9.-]",
 "hostname-char-replacement": "x",
 ...
}

Thus, a client-supplied value of “myhost-$[123.org” would become
“myhost-xx123.org”. Sanitizing is performed only on the portion of the
name supplied by the client, and it is performed before applying a
qualifying suffix (if one is defined and needed).

Note

The following are some considerations to keep in mind:
Name sanitizing is meant to catch the more common cases of invalid
characters through a relatively simple character-replacement scheme.
It is difficult to devise a scheme that works well in all cases.
Administrators who find they have clients with odd corner cases of
character combinations that cannot be readily handled with this
mechanism should consider writing a hook that can carry out
sufficiently complex logic to address their needs.

Do not include dots in the hostname-char-set expression. When
scrubbing FQDNs, dots are treated as delimiters and used to separate
the option value into individual domain labels that are scrubbed and
then re-assembled.

If clients are sending values that differ only by characters
considered as invalid by the hostname-char-set, be aware that
scrubbing them will yield identical values. In such cases, DDNS
conflict rules will permit only one of them to register the name.

Finally, given the latitude clients have in the values they send, it
is virtually impossible to guarantee that a combination of these two
parameters will always yield a name that is valid for use in DNS. For
example, using an empty value for hostname-char-replacement could
yield an empty domain label within a name, if that label consists
only of invalid characters.

Note

Since the 1.6.0 Kea release it is possible to specify hostname-char-set
and/or hostname-char-replacement at the global scope. This allows
to sanitize host names without requiring a dhcp-ddns entry. When
a hostname-char parameter is defined at the global scope and
in a dhcp-ddns entry the second (local) value is used.

9.2.24. DHCPv4-over-DHCPv6: DHCPv6 Side

The support of DHCPv4-over-DHCPv6 transport is described in RFC
7341 [https://tools.ietf.org/html/rfc7341] and is implemented using
cooperating DHCPv4 and DHCPv6 servers. This section is about the
configuration of the DHCPv6 side (the DHCPv4 side is described in
DHCPv4-over-DHCPv6: DHCPv4 Side).

Note

DHCPv4-over-DHCPv6 support is experimental and the details of the
inter-process communication may change; both the DHCPv4 and DHCPv6
sides should be running the same version of Kea. For instance, the
support of port relay (RFC 8357) introduced an incompatible change.

There is only one specific parameter for the DHCPv6 side:
dhcp4o6-port, which specifies the first of the two consecutive ports
of the UDP sockets used for the communication between the DHCPv6 and
DHCPv4 servers. The DHCPv6 server is bound to ::1 on port and
connected to ::1 on port + 1.

Two other configuration entries are generally required: unicast traffic
support (see Unicast Traffic Support) and DHCP 4o6
server address option (name “dhcp4o6-server-addr”, code 88).

The following configuration was used during some tests:

{

DHCPv6 conf
"Dhcp6": {

 "interfaces-config": {
 "interfaces": ["eno33554984/2001:db8:1:1::1"]
 },

 "lease-database": {
 "type": "memfile",
 "name": "leases6"
 },

 "preferred-lifetime": 3000,
 "valid-lifetime": 4000,
 "renew-timer": 1000,
 "rebind-timer": 2000,

 "subnet6": [{
 "subnet": "2001:db8:1:1::/64",
 "interface": "eno33554984",
 "pools": [{ "pool": "2001:db8:1:1::1:0/112" }]
 }],

 "dhcp4o6-port": 6767,

 "option-data": [{
 "name": "dhcp4o6-server-addr",
 "code": 88,
 "space": "dhcp6",
 "csv-format": true,
 "data": "2001:db8:1:1::1"
 }],

 "loggers": [{
 "name": "kea-dhcp6",
 "output_options": [{
 "output": "/tmp/kea-dhcp6.log"
 }],
 "severity": "DEBUG",
 "debuglevel": 0
 }]
}

}

Note

Relayed DHCPv4-QUERY DHCPv6 messages are not supported.

9.2.25. Sanity Checks in DHCPv6

An important aspect of a well-running DHCP system is an assurance that
the data remain consistent. However, in some cases it may be convenient
to tolerate certain inconsistent data. For example, a network
administrator that temporarily removed a subnet from a configuration
would not want all the leases associated with it to disappear from the lease
database. Kea has a mechanism to control sanity checks for situations
such as this.

Kea supports a configuration scope called sanity-checks. It
currently allows only a single parameter, called lease-checks, which
governs the verification carried out when a new lease is loaded from a
lease file. This mechanism permits Kea to attempt to correct
inconsistent data.

Every subnet has a subnet-id value; this is how Kea internally
identifies subnets. Each lease has a subnet-id parameter as well, which
identifies which subnet it belongs to. However, if the configuration has
changed, it is possible that a lease could exist with a subnet-id, but
without any subnet that matches it. Also, it may be possible that the
subnet’s configuration has changed and the subnet-id now belongs to a
subnet that does not match the lease. Kea’s corrective algorithm first
checks to see if there is a subnet with the subnet-id specified by the
lease. If there is, it verifies whether the lease belongs to that
subnet. If not, depending on the lease-checks setting, the lease is
discarded, a warning is displayed, or a new subnet is selected for the
lease that matches it topologically.

Since delegated prefixes do not have to belong to a subnet in which
they are offered, there is no way to implement such a mechanism for IPv6
prefixes. As such, the mechanism works for IPv6 addresses only.

There are five levels which are supported:

	none - do no special checks; accept the lease as is.

	warn - if problems are detected display a warning, but
accept the lease data anyway. This is the default value.

	fix - if a data inconsistency is discovered, try to
correct it. If the correction is not successful, the incorrect data
will be inserted anyway.

	fix-del - if a data inconsistency is discovered, try to
correct it. If the correction is not successful, reject the lease.
This setting ensures the data’s correctness, but some
incorrect data may be lost. Use with care.

	del - this is the strictest mode. If any inconsistency is
detected, reject the lease. Use with care.

This feature is currently implemented for the memfile backend.

An example configuration that sets this parameter looks as follows:

"Dhcp6": {
 "sanity-checks": {
 "lease-checks": "fix-del"
 },
 ...
}

9.2.26. Storing Extended Lease Information

In order to support such features as DHCPv6 Reconfigure
(RFC 3315 [https://tools.ietf.org/html/rfc3315]) and LeaseQuery
(RFC 5007 [https://tools.ietf.org/html/rfc5007]) it is necessary to
store additional information with each lease. Because the amount
of information stored for each lease has ramifications in terms of
performance and system resource consumption, storing this additional
information is configurable through the “store-extended-info” parameter.
It defaults to false and may be set at the global, shared-network, and
subnet levels.

"Dhcp6": {
 "store-extended-info": true,
 ...
}

When enabled, information relevant to the DHCPv6 query (e.g. REQUEST, RENEW,
or REBIND) asking for the lease is added into the lease’s user-context as a
map element labeled “ISC”. Currently the information contained in the map
will be a list of relays, one for each relay message layer that encloses the
client query. Other values may be added at a future date. The lease’s
user-context for a two-hop query might look something like this (shown
pretty-printed for clarity):

{
 "ISC": {
 "relays": [
 {
 "hop": 2,
 "link": "2001:db8::1",
 "peer": "2001:db8::2"
 },
 {
 "hop": 1,
 "link": "2001:db8::3",
 "options": "0x00C800080102030405060708",
 "peer": "2001:db8::4"
 }]
 }
}

Note

This feature is intended to be used in conjunction with an upcoming
LeaseQuery hook library and at this time there is other use for this
information within Kea.

Note

It is possible that other hook libraries are already making use of
user-context. Enabling store-extended-info should not interfere with
any other user-context content so long as it does not also use an element
labled “ISC”. In other words, user-context is intended to be a flexible
container serving mulitple purposes. As long as no other purpose also
writes an “ISC” element to user-context there should not be a conflict.

9.2.27. Multi-threading settings

The Kea server can be configured to process packets in parallel using multiple
threads. These settings can be found under multi-threading structure and are
represented by:

	enable-multi-threading - use multiple threads to process packets in
parallel (default false).

	thread-pool-size - specify the number of threads to process packets in
parallel. Supported values are: 0 (auto detect), any positive number sets
thread count explicitly (default 0).

	packet-queue-size - specify the size of the queue used by the thread
pool to process packets. Supported values are: 0 (unlimited), any positive
number sets queue size explicitly (default 64).

An example configuration that sets these parameter looks as follows:

"Dhcp6": {
 "multi-threading": {
 "enable-multi-threading": true,
 "thread-pool-size": 4,
 "packet-queue-size": 16
 }
 ...
}

9.3. Host Reservation in DHCPv6

There are many cases where it is useful to provide a configuration on a
per-host basis. The most obvious one is to reserve a specific, static
IPv6 address or/and prefix for exclusive use by a given client (host);
the returning client will receive the same address or/and prefix every time,
and other clients will never get that address. Another situation when host
reservations are applicable is when a host has specific requirements,
e.g. a printer that needs additional DHCP options or a cable modem that
needs specific parameters. Yet another possible use case is to define
unique names for hosts.

Note that there may be cases when a new reservation has been made for a
client for an address or prefix currently in use by another client. We
call this situation a “conflict.” These conflicts get resolved
automatically over time as described in subsequent sections. Once the
conflict is resolved, the correct client will receive the reserved
configuration when it renews.

Host reservations are defined as parameters for each subnet. Each host
must be identified by either DUID or its hardware/MAC address; see
MAC/Hardware Addresses in DHCPv6 for details. There
is an optional reservations array in the subnet6 structure; each
element in that array is a structure that holds information about a
single host. In particular, the structure has an identifier that
uniquely identifies a host. In the DHCPv6 context, the identifier is
usually a DUID, but it can also be a hardware or MAC address. One or more
addresses or prefixes may also be specified, and it is possible to
specify a hostname and DHCPv6 options for a given host.

The following example shows how to reserve addresses and prefixes for
specific hosts:

"subnet6": [
 {
 "subnet": "2001:db8:1::/48",
 "pools": [{ "pool": "2001:db8:1::/80" }],
 "pd-pools": [
 {
 "prefix": "2001:db8:1:8000::",
 "prefix-len": 48,
 "delegated-len": 64
 }
],
 "reservations": [
 {
 "duid": "01:02:03:04:05:0A:0B:0C:0D:0E",
 "ip-addresses": ["2001:db8:1::100"]
 },
 {
 "hw-address": "00:01:02:03:04:05",
 "ip-addresses": ["2001:db8:1::101", "2001:db8:1::102"]
 },
 {
 "duid": "01:02:03:04:05:06:07:08:09:0A",
 "ip-addresses": ["2001:db8:1::103"],
 "prefixes": ["2001:db8:2:abcd::/64"],
 "hostname": "foo.example.com"
 }
]
 }
]

This example includes reservations for three different clients. The
first reservation is for the address 2001:db8:1::100 for a client using
DUID 01:02:03:04:05:0A:0B:0C:0D:0E. The second reservation is for two
addresses, 2001:db8:1::101 and 2001:db8:1::102, for a client using MAC
address 00:01:02:03:04:05. Lastly, address 2001:db8:1::103 and prefix
2001:db8:2:abcd::/64 are reserved for a client using DUID
01:02:03:04:05:06:07:08:09:0A. The last reservation also assigns a
hostname to this client.

Note that DHCPv6 allows a single client to lease multiple addresses and
multiple prefixes at the same time. Therefore ip-addresses and
prefixes are plural and are actually arrays. When the client sends
multiple IA options (IA_NA or IA_PD), each reserved address or prefix is
assigned to an individual IA of the appropriate type. If the number of
IAs of a specific type is lower than the number of reservations of that
type, the number of reserved addresses or prefixes assigned to the
client is equal to the number of IA_NAs or IA_PDs sent by the client;
that is, some reserved addresses or prefixes are not assigned. However,
they still remain reserved for this client and the server will not
assign them to any other client. If the number of IAs of a specific type
sent by the client is greater than the number of reserved addresses or
prefixes, the server will try to assign all reserved addresses or
prefixes to the individual IAs and dynamically allocate addresses or
prefixes to the remaining IAs. If the server cannot assign a reserved
address or prefix because it is in use, the server will select the next
reserved address or prefix and try to assign it to the client. If the
server subsequently finds that there are no more reservations that can
be assigned to the client at that moment, the server will try to assign
leases dynamically.

Making a reservation for a mobile host that may visit multiple subnets
requires a separate host definition in each subnet that host is expected to
visit. It is not possible to define multiple host definitions with the
same hardware address in a single subnet. Multiple host definitions with
the same hardware address are valid if each is in a different subnet.
The reservation for a given host should include only one identifier,
either DUID or hardware address; defining both for the same host is
considered a configuration error.

Adding host reservations incurs a performance penalty. In principle,
when a server that does not support host reservation responds to a
query, it needs to check whether there is a lease for a given address
being considered for allocation or renewal. The server that does
support host reservation has to perform additional checks: not only
whether the address is currently used (i.e., if there is a lease for
it), but also whether the address could be used by someone else (i.e.,
if there is a reservation for it). That additional check incurs extra
overhead.

9.3.1. Address/Prefix Reservation Types

In a typical scenario there is an IPv6 subnet defined, with a certain
part of it dedicated for dynamic address allocation by the DHCPv6
server. There may be an additional address space defined for prefix
delegation. Those dynamic parts are referred to as dynamic pools,
address and prefix pools, or simply pools. In principle, a host
reservation can reserve any address or prefix that belongs to the
subnet. The reservations that specify addresses that belong to
configured pools are called “in-pool reservations.” In contrast, those
that do not belong to dynamic pools are called “out-of-pool
reservations.” There is no formal difference in the reservation syntax
and both reservation types are handled uniformly.

Kea supports global host reservations. These are reservations that are
specified at the global level within the configuration and that do not
belong to any specific subnet. Kea will still match inbound client
packets to a subnet as before, but when the subnet’s reservation mode is
set to "global", Kea will look for host reservations only among the
global reservations defined. Typically, such reservations would be used
to reserve hostnames for clients which may move from one subnet to
another.

Note

Global reservations, while useful in certain circumstances, have aspects
that must be given due consideration. Please see
Conflicts in DHCPv6 Reservations for more details.

9.3.2. Conflicts in DHCPv6 Reservations

As reservations and lease information are stored separately, conflicts
may arise. Consider the following series of events: the server has
configured the dynamic pool of addresses from the range of 2001:db8::10
to 2001:db8::20. Host A requests an address and gets 2001:db8::10. Now
the system administrator decides to reserve address 2001:db8::10 for
Host B. In general, reserving an address that is currently assigned to
someone else is not recommended, but there are valid use cases where
such an operation is warranted.

The server now has a conflict to resolve. If Host B boots up and
requests an address, the server is not able to assign the reserved
address 2001:db8::10. A naive approach would to be immediately remove
the lease for Host A and create a new one for Host B. That would not
solve the problem, though, because as soon as Host B gets the address,
it will detect that the address is already in use (by Host
A) and will send a DHCPDECLINE message. Therefore, in this situation,
the server has to temporarily assign a different address from the
dynamic pool (not matching what has been reserved) to Host B.

When Host A renews its address, the server will discover that the
address being renewed is now reserved for someone else - Host B.
The server will remove the lease for 2001:db8::10, select a
new address, and create a new lease for it. It will send two addresses
in its response: the old address, with lifetime set to 0 to explicitly
indicate that it is no longer valid; and the new address, with a
non-zero lifetime. When Host B tries to renew its temporarily assigned address,
the server will detect that the existing lease does not match the
reservation, so it will release the current address Host B has and will
create a new lease matching the reservation. As before, the server will
send two addresses: the temporarily assigned one with zeroed lifetimes,
and the new one that matches the reservation with proper lifetimes set.

This recovery will succeed, even if other hosts attempt to get the
reserved address. If Host C requests the address 2001:db8::10 after the
reservation is made, the server will propose a different address.

This recovery mechanism allows the server to fully recover from a case
where reservations conflict with existing leases; however, this procedure
will take roughly take as long as the value set for renew-timer. The
best way to avoid such recovery is not to define new reservations that
conflict with existing leases. Another recommendation is to use
out-of-pool reservations. If the reserved address does not belong to a
pool, there is no way that other clients can get it.

Note

The conflict-resolution mechanism does not work for global
reservations. Although the global address reservations feature may be useful
in certain settings, it is generally recommended not to use
global reservations for addresses. Administrators who do choose
to use global reservations must manually ensure that the reserved
addresses are not in dynamic pools.

9.3.3. Reserving a Hostname

When the reservation for a client includes the hostname, the server
will assign this hostname to the client and send it back in the Client
FQDN, if the client sent the FQDN option to the server. The reserved
hostname always takes precedence over the hostname supplied by the
client (via the FQDN option) or the autogenerated (from the IPv6
address) hostname.

The server qualifies the reserved hostname with the value of the
ddns-qualifying-suffix parameter. For example, the following subnet
configuration:

"subnet6": [
 {
 "subnet": "2001:db8:1::/48",
 "pools": [{ "pool": "2001:db8:1::/80" }],
 "ddns-qualifying-suffix": "example.isc.org.",
 "reservations": [
 {
 "duid": "01:02:03:04:05:0A:0B:0C:0D:0E",
 "ip-addresses": ["2001:db8:1::100"]
 "hostname": "alice-laptop"
 }
]
 }
],
"dhcp-ddns": {
 "enable-updates": true
}

will result in assigning the “alice-laptop.example.isc.org.” hostname to
the client using the DUID “01:02:03:04:05:0A:0B:0C:0D:0E”. If the
ddns-qualifying-suffix is not specified, the default (empty) value will
be used, and in this case the value specified as a hostname will be
treated as a fully qualified name. Thus, by leaving the
ddns-qualifying-suffix empty it is possible to qualify hostnames for
different clients with different domain names:

"subnet6": [
 {
 "subnet": "2001:db8:1::/48",
 "pools": [{ "pool": "2001:db8:1::/80" }],
 "reservations": [
 {
 "duid": "01:02:03:04:05:0A:0B:0C:0D:0E",
 "ip-addresses": ["2001:db8:1::100"]
 "hostname": "mark-desktop.example.org."
 }
]
 }
],
"dhcp-ddns": {
 "enable-updates": true,
}

The above example results in the assignment of the
“mark-desktop.example.org.” hostname to the client using the DUID
“01:02:03:04:05:0A:0B:0C:0D:0E”.

9.3.4. Including Specific DHCPv6 Options in Reservations

Kea offers the ability to specify options on a per-host basis. These
options follow the same rules as any other options. These can be
standard options (see Standard DHCPv6 Options),
custom options (see Custom DHCPv6 Options),
or vendor-specific options (see DHCPv6 Vendor-Specific Options). The following
example demonstrates how standard options can be defined.

"reservations": [
{
 "duid": "01:02:03:05:06:07:08",
 "ip-addresses": ["2001:db8:1::2"],
 "option-data": [
 {
 "option-data": [{
 "name": "dns-servers",
 "data": "3000:1::234"
 },
 {
 "name": "nis-servers",
 "data": "3000:1::234"
 }
 }]
}]

Vendor-specific options can be reserved in a similar manner:

"reservations": [
{
 "duid": "aa:bb:cc:dd:ee:ff",
 "ip-addresses": ["2001:db8::1"],
 "option-data": [
 {
 "name": "vendor-opts",
 "data": 4491
 },
 {
 "name": "tftp-servers",
 "space": "vendor-4491",
 "data": "3000:1::234"
 }]
}]

Options defined at host level have the highest priority. In other words,
if there are options defined with the same type on global, subnet,
class, and host levels, the host-specific values will be used.

9.3.5. Reserving Client Classes in DHCPv6

Using Expressions in Classification explains how to configure
the server to assign classes to a client, based on the content of the
options that this client sends to the server. Host reservations
mechanisms also allow for the static assignment of classes to clients.
The definitions of these classes are placed in the Kea configuration or
a database. The following configuration snippet shows how to specify that
a client belongs to classes reserved-class1 and reserved-class2. Those
classes are associated with specific options sent to the clients which belong
to them.

{
 "client-classes": [
 {
 "name": "reserved-class1",
 "option-data": [
 {
 "name": "dns-servers",
 "data": "2001:db8:1::50"
 }
]
 },
 {
 "name": "reserved-class2",
 "option-data": [
 {
 "name": "nis-servers",
 "data": "2001:db8:1::100"
 }
]
 }
],
 "subnet6": [
 { "pools": [{ "pool": "2001:db8:1::/64" }],
 "subnet": "2001:db8:1::/48",
 "reservations": [
 {
 "duid": "01:02:03:04:05:06:07:08",

 "client-classes": ["reserved-class1", "reserved-class2"]

 }]
 }]
 }

In some cases the host reservations can be used in conjuction with client
classes specified within the Kea configuration. In particular, when a
host reservation exists for a client within a given subnet, the “KNOWN”
built-in class is assigned to the client. Conversely, when there is no
static assignment for the client, the “UNKNOWN” class is assigned to the
client. Class expressions within the Kea configuration file can
refer to “KNOWN” or “UNKNOWN” classes using using the “member” operator.
For example:

{
 "client-classes": [
 {
 "name": "dependent-class",
 "test": "member('KNOWN')",
 "only-if-required": true
 }
]
}

Note that the only-if-required parameter is needed here to force
evaluation of the class after the lease has been allocated and thus the
reserved class has been also assigned.

Note

Be aware that the classes specified in non global host reservations
are assigned to the processed packet after all classes with the
only-if-required parameter set to false have been evaluated.
This has an implication that these classes must not depend on the
statically assigned classes from the host reservations. If there
is a need to create such dependency, the only-if-required must
be set to true for the dependent classes. Such classes are
evaluated after the static classes have been assigned to the packet.
This, however, imposes additional configuration overhead, because
all classes marked as only-if-required must be listed in the
require-client-classes list for every subnet where they are used.

Note

Client classes specified within the Kea configuration file may
depend on the classes specified within the global host reservations.
In such case the only-if-required parameter is not needed.
Refer to the Pool Selection with Client Class Reservations and
Subnet Selection with Client Class Reservations
for the specific use cases.

9.3.6. Storing Host Reservations in MySQL, PostgreSQL, or Cassandra

It is possible to store host reservations in MySQL, PostgreSQL, or
Cassandra. See Hosts Storage for information on
how to configure Kea to use reservations stored in MySQL, PostgreSQL, or
Cassandra. Kea provides a dedicated hook for managing reservations in a
database; section host_cmds: Host Commands provides detailed information.
The Kea wiki [https://gitlab.isc.org/isc-projects/kea/wikis/designs/commands#23-host-reservations-hr-management]
provides some examples of how to conduct common host reservations
operations.

Note

In Kea, the maximum length of an option specified per-host is
arbitrarily set to 4096 bytes.

9.3.7. Fine-Tuning DHCPv6 Host Reservation

The host reservation capability introduces additional restrictions for
the allocation engine (the component of Kea that selects an address for
a client) during lease selection and renewal. In particular, three major
checks are necessary. First, when selecting a new lease, it is not
sufficient for a candidate lease to simply not be in use by another DHCP
client; it also must not be reserved for another client. Second, when
renewing a lease, an additional check must be performed to see whether
the address being renewed is reserved for another client. Finally, when
a host renews an address or a prefix, the server must check whether
there is a reservation for this host, so the existing (dynamically
allocated) address should be revoked and the reserved one be used
instead.

Some of those checks may be unnecessary in certain deployments and not
performing them may improve performance. The Kea server provides the
reservation-mode configuration parameter to select the types of
reservations allowed for a particular subnet. Each reservation type has
different constraints for the checks to be performed by the server when
allocating or renewing a lease for the client. Allowed values are:

	all - enables both in-pool and out-of-pool host reservation
types. This setting is the default value, and is the safest and most
flexible. However, as all checks are conducted, it is also the
slowest. It does not check against global reservations.

	out-of-pool - allows only out-of-pool host reservations. With
this setting in place, the server may assume that all host
reservations are for addresses that do not belong to the dynamic
pool. Therefore, it can skip the reservation checks when dealing with
in-pool addresses, thus improving performance. Do not use this mode
if any reservations use in-pool addresses. Caution is advised
when using this setting; Kea does not sanity-check the reservations
against reservation-mode and misconfiguration may cause problems.

	global - allows only global host reservations. With this setting
in place, the server searches for reservations for a client only
among the defined global reservations. If an address is specified,
the server skips the reservation checks carried out when dealing
in other modes, thus improving performance. Caution is advised when
using this setting; Kea does not sanity-check the reservations when
global and misconfiguration may cause problems.

	disabled - host reservation support is disabled. As there are no
reservations, the server will skip all checks. Any reservations
defined will be completely ignored. As the checks are skipped, the
server may operate faster in this mode.

The parameter can be specified at global, subnet, and shared-network
levels.

An example configuration that disables reservation looks as follows:

"Dhcp6": {
 "subnet6": [
 {
 "subnet": "2001:db8:1::/64",
 "reservation-mode": "disabled",
 ...
 }
]
}

An example configuration using global reservations is shown below:

"Dhcp6": {

 "reservation-mode": "global",
 "reservations": [
 {
 "duid": "00:03:00:01:11:22:33:44:55:66",
 "hostname": "host-one"
 },
 {
 "duid": "00:03:00:01:99:88:77:66:55:44",
 "hostname": "host-two"
 }
],

 "subnet6": [
 {
 "subnet": "2001:db8:1::/64",
 ...
 }
]
}

For more details regarding global reservations, see Global Reservations in DHCPv6.

Another aspect of host reservations is the different types of
identifiers. Kea currently supports two types of identifiers in DHCPv6:
hardware address and DUID. This is beneficial from a usability
perspective; however, there is one drawback. For each incoming packet
Kea has to extract each identifier type and then query the database
to see if there is a reservation by this particular identifier. If
nothing is found, the next identifier is extracted and the next query is
issued. This process continues until either a reservation is found or
all identifier types have been checked. Over time, with an increasing
number of supported identifier types, Kea would become slower and
slower.

To address this problem, a parameter called
host-reservation-identifiers is available. It takes a list of
identifier types as a parameter. Kea will check only those identifier
types enumerated in host-reservation-identifiers. From a performance
perspective, the number of identifier types should be kept to a minimum,
ideally one. If the deployment uses several reservation types, please
enumerate them from most- to least-frequently used, as this increases
the chances of Kea finding the reservation using the fewest queries. An
example of host reservation identifiers looks as follows:

"host-reservation-identifiers": ["duid", "hw-address"],
"subnet6": [
 {
 "subnet": "2001:db8:1::/64",
 ...
 }
]

If not specified, the default value is:

"host-reservation-identifiers": ["hw-address", "duid"]

9.3.8. Global Reservations in DHCPv6

In some deployments, such as mobile, clients can roam within the network
and certain parameters must be specified regardless of the client’s
current location. To facilitate such a need, a global reservation
mechanism has been implemented. The idea behind it is that regular host
reservations are tied to specific subnets, by using a specific
subnet-id. Kea can specify a global reservation that can be used in
every subnet that has global reservations enabled.

This feature can be used to assign certain parameters, such as hostname
or other dedicated, host-specific options. It can also be used to assign
addresses or prefixes. However, global reservations that assign either
of these bypass the whole topology determination provided by DHCP logic
implemented in Kea. It is very easy to misuse this feature and get a
configuration that is inconsistent. To give a specific example, imagine
a global reservation for an address 2001:db8:1111::1 and two subnets
2001:db8:1111::/48 and 2001:db8:ffff::/48. If global reservations are
used in both subnets and a device matching global host reservations
visits part of the network that is covered by 2001:db8:ffff::/48, it
will get an IP address 2001:db8:ffff::1, which will be outside of the
prefix announced by its local router using Router Advertisements. Such a
configuration is unusable or, at the very least, riddled with
issues, such as downlink traffic not reaching the device.

To use global host reservations, a configuration similar to the
following can be used:

"Dhcp6:" {
 # This specifies global reservations.
 # They will apply to all subnets that
 # have global reservations enabled.

 "reservations": [
 {
 "hw-address": "aa:bb:cc:dd:ee:ff",
 "hostname": "hw-host-dynamic"
 },
 {
 "hw-address": "01:02:03:04:05:06",
 "hostname": "hw-host-fixed",

 # Use of IP address in global reservation is risky.
 # If used outside of matching subnet, such as 3001::/64,
 # it will result in a broken configuration being handed
 # to the client.
 "ip-address": "2001:db8:ff::77"
 },
 {
 "duid": "01:02:03:04:05",
 "hostname": "duid-host"
 }
],
 "valid-lifetime": 600,
 "subnet4": [{
 "subnet": "2001:db8:1::/64",
 "reservation-mode": "global",
 "pools": [{ "pool": "2001:db8:1::-2001:db8:1::100" }]
 }]
}

When using database backends, the global host reservations are
distinguished from regular reservations by using subnet-id value of
zero.

9.3.9. Pool Selection with Client Class Reservations

Client classes can be specified both in the Kea configuration file and/or
host reservations. The classes specified in the Kea configuration file are
evaluated immediately after receiving the DHCP packet and therefore can be
used to influence subnet selection using the client-class parameter
specified in the subnet scope. The classes specified within the host
reservations are fetched and assigned to the packet after the server has
already selected a subnet for the client. This means that the client
class specified within a host reservation cannot be used to influence
subnet assignment for this client, unless the subnet belongs to a
shared network. If the subnet belongs to a shared network, the server may
dynamically change the subnet assignment while trying to allocate a lease.
If the subnet does not belong to a shared network, once selected, the subnet
is not changed.

If the subnet does not belong to a shared network, it is possible to
use host reservation based client classification to select an address pool
within the subnet as follows:

"Dhcp6": {
 "client-classes": [
 {
 "name": "reserved_class"
 },
 {
 "name": "unreserved_class",
 "test": "not member('reserved_class')"
 }
],
 "subnet6": [
 {
 "subnet": "2001:db8:1::/64",
 "reservations": [{"
 "hw-address": "aa:bb:cc:dd:ee:fe",
 "client-classes": ["reserved_class"]
 }],
 "pools": [
 {
 "pool": "2001:db8:1::10-2001:db8:1::20",
 "client-class": "reserved_class"
 },
 {
 "pool": "2001:db8:1::30-2001:db8:1::40",
 "client-class": "unreserved_class"
 }
]
 }
]
}

The reserved_class is declared without the test parameter because
it may be only assigned to the client via host reservation mechanism. The
second class, unreserved_class, is assigned to the clients which do not
belong to the reserved_class. The first pool within the subnet is only
used for the clients having a reservation for the reserved_class. The
second pool is used for the clients not having such reservation. The
configuration snippet includes one host reservation which causes the client
having the MAC address of aa:bb:cc:dd:ee:fe to be assigned to the
reserved_class. Thus, this client will be given an IP address from the
first address pool.

9.3.10. Subnet Selection with Client Class Reservations

There is one specific use case when subnet selection may be influenced by
client classes specified within host reservations. This is the case when the
client belongs to a shared network. In such case it is possible to use
classification to select a subnet within this shared network. Consider the
following example:

"Dhcp6": {
 "client-classes": [
 {
 "name": "reserved_class"
 },
 {
 "name: "unreserved_class",
 "test": "not member('reserved_class")
 }
],
 "reservations": [{"
 "hw-address": "aa:bb:cc:dd:ee:fe",
 "client-classes": ["reserved_class"]
 }],
 "reservation-mode": "global",
 "shared-networks": [{
 "subnet6": [
 {
 "subnet": "2001:db8:1::/64",
 "pools": [
 {
 "pool": "2001:db8:1::10-2001:db8:1::20",
 "client-class": "reserved_class"
 }
]
 },
 {
 "subnet": "2001:db8:2::/64",
 "pools": [
 {
 "pool": "2001:db8:2::10-2001:db8:2::20",
 "client-class": "unreserved_class"
 }
]
 }
]
 }]
}

This is similar to the example described in the
Pool Selection with Client Class Reservations. This time, however, there
are two subnets, each of them having a pool associated with a different
class. The clients which don’t have a reservation for the reserved_class
will be assigned an address from the subnet 2001:db8:2::/64. Clients having
a reservation for the reserved_class will be assigned an address from
the subnet 2001:db8:1::/64. The subnets must belong to the same shared network.
In addition, the reservation for the client class must be specified at the
global scope (global reservation) and the reservation-mode must be
set to global.

In the example above the client-class could also be specified at the
subnet level rather than pool level yielding the same effect.

9.4. Shared Networks in DHCPv6

DHCP servers use subnet information in two ways. First, it is used to
determine the point of attachment, or where the client is
connected to the network. Second, the subnet information is used to
group information pertaining to a specific location in the network. This
approach works well in general, but there are scenarios where the
boundaries are blurred. Sometimes it is useful to have more than one
logical IP subnet being deployed on the same physical link.
Understanding that two or more subnets are used on the same link requires
additional logic in the DHCP server. This capability is called “shared
networks” in the Kea and ISC DHCP projects. (It is sometimes also
called “shared subnets”; in Microsoft’s nomenclature it is called
“multinet.”)

There are many use cases where the feature is useful; the most common
example in IPv4 is when the server is running out of available
addresses in a subnet. This is less common in IPv6, but shared networks
are still useful in IPv6. One of the use cases is an exhaustion of IPv6-
delegated prefixes within a subnet; another is an
experiment with an addressing scheme. With the advent of IPv6 deployment
and a vast address space, many organizations split the address space
into subnets, deploy it, and then after a while discover that they want
to split it differently. In the transition period, they want both old
and new addressing to be available; thus the need for more than one
subnet on the same physical link.

Finally, the case of cable networks is directly applicable in IPv6.
There are two types of devices in cable networks: cable modems and the
end-user devices behind them. It is a common practice to use different
subnets for cable modems to prevent users from tinkering with them. In
this case, the distinction is based on the type of device, rather than
on address-space exhaustion.

A client connected to a shared network may be assigned a lease (address
or prefix) from any of the pools defined within the subnets belonging to
the shared network. Internally, the server selects one of the subnets
belonging to a shared network and tries to allocate a lease from this
subnet. If the server is unable to allocate a lease from the selected
subnet (e.g., due to pools exhaustion), it will use another subnet from
the same shared network and will try to allocate a lease from this subnet,
etc. Therefore, the server will typically allocate all leases
available in a given subnet before it starts allocating leases from
other subnets belonging to the same shared network. However, in certain
situations the client can be allocated a lease from the other subnets
before the pools in the first subnet get exhausted; this sometimes occurs
when the client provides a hint that belongs to another subnet, or the client has
reservations in a subnet other than the default.

Note

Deployments should not assume that Kea waits until it has allocated
all the addresses from the first subnet in a shared network before
allocating addresses from other subnets.

In order to define a shared network an additional configuration scope is
introduced:

"Dhcp6": {
 "shared-networks": [{
 # Name of the shared network. It may be an arbitrary string
 # and it must be unique among all shared networks.
 "name": "ipv6-lab-1",

 # The subnet selector can be specified on the shared network
 # level. Subnets from this shared network will be selected
 # for clients communicating via relay agent having
 # the specified IP address.
 "relay": {
 "ip-addresses": ["2001:db8:2:34::1"]
 },

 # This starts a list of subnets in this shared network.
 # There are two subnets in this example.
 "subnet6": [{
 "subnet": "2001:db8::/48",
 "pools": [{ "pool": "2001:db8::1 - 2001:db8::ffff" }]
 }, {
 "subnet": "3ffe:ffe::/64",
 "pools": [{ "pool": "3ffe:ffe::/64" }]
 }]
 }], # end of shared-networks

 # It is likely that in the network there will be a mix of regular,
 # "plain" subnets and shared networks. It is perfectly valid
 # to mix them in the same configuration file.
 #
 # This is a regular subnet. It is not part of any shared-network.
 "subnet6": [{
 "subnet": "2001:db9::/48",
 "pools": [{ "pool": "2001:db9::/64" }],
 "relay": {
 "ip-addresses": ["2001:db8:1:2::1"]
 }
 }]
} # end of Dhcp6

As demonstrated in the example, it is possible to mix shared and regular
(“plain”) subnets. Each shared network must have a unique name. This is
similar to the ID for subnets, but gives administrators more
flexibility. It is used for logging, but also internally for
identifying shared networks.

In principle it makes sense to define only shared networks that consist
of two or more subnets. However, for testing purposes, an empty subnet
or a network with just a single subnet is allowed. This
is not a recommended practice in production networks, as the shared
network logic requires additional processing and thus lowers the
server’s performance. To avoid unnecessary performance degradation, the
shared subnets should only be defined when required by the deployment.

Shared networks provide an ability to specify many parameters in the
shared network scope that apply to all subnets within it. If
necessary, it is possible to specify a parameter in the shared network scope and
then override its value in the subnet scope. For example:

"shared-networks": [
 {
 "name": "lab-network3",
 "relay": {
 "ip-addresses": ["2001:db8:2:34::1"]
 },

 # This applies to all subnets in this shared network, unless
 # values are overridden on subnet scope.
 "valid-lifetime": 600,

 # This option is made available to all subnets in this shared
 # network.
 "option-data": [{
 "name": "dns-servers",
 "data": "2001:db8::8888"
 }],

 "subnet6": [
 {
 "subnet": "2001:db8:1::/48",
 "pools": [{ "pool": "2001:db8:1::1 - 2001:db8:1::ffff" }],

 # This particular subnet uses different values.
 "valid-lifetime": 1200,
 "option-data": [
 {
 "name": "dns-servers",
 "data": "2001:db8::1:2"
 },
 {
 "name": "unicast",
 "data": "2001:abcd::1"
 }]
 },
 {
 "subnet": "2001:db8:2::/48",
 "pools": [{ "pool": "2001:db8:2::1 - 2001:db8:2::ffff" }],

 # This subnet does not specify its own valid-lifetime value,
 # so it is inherited from shared network scope.
 "option-data": [
 {
 "name": "dns-servers",
 "data": "2001:db8:cafe::1"
 }]
 }
],
 }]

In this example, there is a dns-servers option defined that is available
to clients in both subnets in this shared network. Also, the valid
lifetime is set to 10 minutes (600s). However, the first subnet
overrides some of the values (valid lifetime is 20 minutes, different IP
address for dns-servers), but also adds its own option (unicast
address). Assuming a client asking for a server unicast and dns-servers
options is assigned a lease from this subnet, it will get a lease for 20
minutes and dns-servers, and be allowed to use server unicast at address
2001:abcd::1. If the same client is assigned to the second subnet, it
will get a 10-minute lease, a dns-servers value of 2001:db8:cafe::1, and
no server unicast.

Some parameters must be the same in all subnets in the same shared
network. This restriction applies to the interface and
rapid-commit settings. The most convenient way is to define them on
the shared network scope, but they can be specified for each subnet.
However, care should be taken for each subnet to have the same value.

9.4.1. Local and Relayed Traffic in Shared Networks

It is possible to specify an interface name at the shared network level
to tell the server that this specific shared network is reachable
directly (not via relays) using the local network interface. As all
subnets in a shared network are expected to be used on the same physical
link, it is a configuration error to attempt to define a shared network
using subnets that are reachable over different interfaces. In other
words, all subnets within the shared network must have the same value
of the “interface” parameter. The following configuration is wrong.

"shared-networks": [
 {
 "name": "office-floor-2",
 "subnet6": [
 {
 "subnet": "2001:db8::/64",
 "pools": [{ "pool": "2001:db8::1 - 2001:db8::ffff" }],
 "interface": "eth0"
 },
 {
 "subnet": "3ffe:abcd::/64",
 "pools": [{ "pool": "3ffe:abcd::1 - 3ffe:abcd::ffff" }],

 # Specifying the different interface name is a configuration
 # error. This value should rather be "eth0" or the interface
 # name in the other subnet should be "eth1".
 # "interface": "eth1"
 }
],
 }]

To minimize the chance of the configuration errors, it is often more convenient
to simply specify the interface name once, at the shared network level, like
shown in the example below.

"shared-networks": [
 {
 "name": "office-floor-2",

 # This tells Kea that the whole shared network is reachable over a
 # local interface. This applies to all subnets in this network.
 "interface": "eth0",

 "subnet6": [
 {
 "subnet": "2001:db8::/64",
 "pools": [{ "pool": "2001:db8::1 - 2001:db8::ffff" }],
 },
 {
 "subnet": "3ffe:abcd::/64",
 "pools": [{ "pool": "3ffe:abcd::1 - 3ffe:abcd::ffff" }]
 }
],
 }]

In case of the relayed traffic, the subnets are typically selected using
the relay agents’ addresses. If the subnets are used independently (not
grouped within a shared network) it is allowed to specify different relay
address for each of these subnets. When multiple subnets belong to a
shared network they must be selected via the same relay address and,
similarly to the case of the local traffic described above, it is a
configuration error to specify different relay addresses for the respective
subnets in the shared network. The following configuration is wrong.

"shared-networks": [
 {
 "name": "kakapo",
 "subnet6": [
 {
 "subnet": "2001:db8::/64",
 "relay": {
 "ip-addresses": ["2001:db8::1234"]
 },
 "pools": [{ "pool": "2001:db8::1 - 2001:db8::ffff" }]
 },
 {
 "subnet": "3ffe:abcd::/64",
 "pools": [{ "pool": "3ffe:abcd::1 - 3ffe:abcd::ffff" }],
 "relay": {
 # Specifying a different relay address for this
 # subnet is a configuration error. In this case
 # it should be 2001:db8::1234 or the relay address
 # in the previous subnet should be 3ffe:abcd::cafe.
 "ip-addresses": ["3ffe:abcd::cafe"]
 }
 }
]
 }
]

Again, it is better to specify the relay address at the shared network
level and this value will be inherited by all subnets belonging to the
shared network.

"shared-networks": [
 {
 "name": "kakapo",
 "relay": {
 # This relay address is inherited by both subnets.
 "ip-addresses": ["2001:db8::1234"]
 },
 "subnet6": [
 {
 "subnet": "2001:db8::/64",
 "pools": [{ "pool": "2001:db8::1 - 2001:db8::ffff" }]
 },
 {
 "subnet": "3ffe:abcd::/64",
 "pools": [{ "pool": "3ffe:abcd::1 - 3ffe:abcd::ffff" }]
 }
]
 }
]

Even though it is technically possible to configure two (or more) subnets
within the shared network to use different relay addresses, this will almost
always lead to a different behavior than what the user would expect. In this
case, the Kea server will initially select one of the subnets by matching
the relay address in the client’s packet with the subnet’s conifguration.
However, it MAY end up using the other subnet (even though it does not match
the relay address) if the client already has a lease in this subnet, has a
host reservation in this subnet or simply the initially selected subnet has no
more addresses available. Therefore, it is strongly recommended to always
specify subnet selectors (interface or a relay address) at shared network
level if the subnets belong to a shared network, as it is rarely useful to
specify them at the subnet level and it may lead to the configurtion errors
described above.

9.4.2. Client Classification in Shared Networks

Sometimes it is desirable to segregate clients into specific subnets
based on certain properties. This mechanism is called client
classification and is described in Client Classification. Client
classification can be applied to subnets belonging to shared networks in
the same way as it is used for subnets specified outside of shared
networks. It is important to understand how the server selects subnets
for clients when client classification is in use, to ensure that the
desired subnet is selected for a given client type.

If a subnet is associated with a class, only the clients belonging to
this class can use this subnet. If there are no classes specified for a
subnet, any client connected to a given shared network can use this
subnet. A common mistake is to assume that the subnet including a client
class is preferred over subnets without client classes. Consider the
following example:

{
 "client-classes": [
 {
 "name": "b-devices",
 "test": "option[1234].hex == 0x0002"
 }
],
 "shared-networks": [
 {
 "name": "galah",
 "relay": {
 "ip-address": ["2001:db8:2:34::1"]
 },
 "subnet6": [
 {
 "subnet": "2001:db8:1::/64",
 "pools": [{ "pool": "2001:db8:1::20 - 2001:db8:1::ff" }],
 },
 {
 "subnet": "2001:db8:3::/64",
 "pools": [{ "pool": "2001:db8:3::20 - 2001:db8:3::ff" }],
 "client-class": "b-devices"
 }
]
 }
]
}

If the client belongs to the “b-devices” class (because it includes
option 1234 with a value of 0x0002), that does not guarantee that the
subnet 2001:db8:3::/64 will be used (or preferred) for this client. The
server can use either of the two subnets, because the subnet
2001:db8:1::/64 is also allowed for this client. The client
classification used in this case should be perceived as a way to
restrict access to certain subnets, rather than a way to express subnet
preference. For example, if the client does not belong to the “b-devices”
class it may only use the subnet 2001:db8:1::/64 and will never use the
subnet 2001:db8:3::/64.

A typical use case for client classification is in a cable network,
where cable modems should use one subnet and other devices should use
another subnet within the same shared network. In this case it is
necessary to apply classification on all subnets. The following example
defines two classes of devices, and the subnet selection is made based
on option 1234 values.

{
 "client-classes": [
 {

 "name": "a-devices",
 "test": "option[1234].hex == 0x0001"
 },
 {
 "name": "b-devices",
 "test": "option[1234].hex == 0x0002"
 }
],
 "shared-networks": [
 {
 "name": "galah",
 "relay": {
 "ip-addresses": ["2001:db8:2:34::1"]
 },
 "subnet6": [
 {
 "subnet": "2001:db8:1::/64",
 "pools": [{ "pool": "2001:db8:1::20 - 2001:db8:1::ff" }],
 "client-class": "a-devices"
 },
 {
 "subnet": "2001:db8:3::/64",
 "pools": [{ "pool": "2001:db8:3::20 - 2001:db8:3::ff" }],
 "client-class": "b-devices"
 }
]
 }
]
}

In this example each class has its own restriction. Only clients that
belong to class “a-devices” will be able to use subnet 2001:db8:1::/64
and only clients belonging to “b-devices” will be able to use subnet
2001:db8:3::/64. Care should be taken not to define too-restrictive
classification rules, as clients that are unable to use any subnets will
be refused service. However, this may be a desired outcome if one wishes
to provide service only to clients with known properties (e.g. only VoIP
phones allowed on a given link).

Note that it is possible to achieve an effect similar to the one
presented in this section without the use of shared networks. If the
subnets are placed in the global subnets scope, rather than in the
shared network, the server will still use classification rules to pick
the right subnet for a given class of devices. The major benefit of
placing subnets within the shared network is that common parameters for
the logically grouped subnets can be specified once, in the shared
network scope, e.g. the “interface” or “relay” parameter. All subnets
belonging to this shared network will inherit those parameters.

9.4.3. Host Reservations in Shared Networks

Subnets that are part of a shared network allow host reservations,
similar to regular subnets:

{
 "shared-networks": [
 {
 "name": "frog",
 "relay": {
 "ip-addresses": ["2001:db8:2:34::1"]
 },
 "subnet6": [
 {
 "subnet": "2001:db8:1::/64",
 "id": 100,
 "pools": [{ "2001:db8:1::1 - 2001:db8:1::64" }],
 "reservations": [
 {
 "duid": "00:03:00:01:11:22:33:44:55:66",
 "ip-addresses": ["2001:db8:1::28"]
 }
]
 },
 {
 "subnet": "2001:db8:3::/64",
 "id": 101,
 "pools": [{ "pool": "2001:db8:3::1 - 2001:db8:3::64" }],
 "reservations": [
 {
 "duid": "00:03:00:01:aa:bb:cc:dd:ee:ff",
 "ip-addresses": ["2001:db8:2::28"]
 }
]
 }
]
 }
]
}

It is worth noting that Kea conducts additional checks when processing a
packet if shared networks are defined. First, instead of simply checking
whether there’s a reservation for a given client in its initially
selected subnet, Kea looks through all subnets in a shared network for a
reservation. This is one of the reasons why defining a shared network
may impact performance. If there is a reservation for a client in any
subnet, that particular subnet will be picked for the client. Although
it is technically not an error, it is considered a bad practice to define
reservations for the same host in multiple subnets belonging to the same
shared network.

While not strictly mandatory, it is strongly recommended to use explicit
“id” values for subnets if database storage will be used for host
reservations. If an ID is not specified, the values for it are
autogenerated, i.e. it assigns increasing integer values starting from
1. Thus, the autogenerated IDs are not stable across configuration
changes.

9.5. Server Identifier in DHCPv6

The DHCPv6 protocol uses a “server identifier” (also known as a DUID) to
allow clients to discriminate between several servers present on the
same link. RFC 8415 [https://tools.ietf.org/html/rfc8415] currently
defines four DUID types: DUID-LLT, DUID-EN, DUID-LL, and DUID-UUID.

The Kea DHCPv6 server generates a server identifier once, upon the first
startup, and stores it in a file. This identifier is not modified across
restarts of the server and so is a stable identifier.

Kea follows the recommendation from RFC
8415 [https://tools.ietf.org/html/rfc8415] to use DUID-LLT as the
default server identifier. However, ISC has received reports that some
deployments require different DUID types, and there is a need to
administratively select both the DUID type and/or its contents.

The server identifier can be configured using parameters within the
server-id map element in the global scope of the Kea configuration
file. The following example demonstrates how to select DUID-EN as a
server identifier:

"Dhcp6": {
 "server-id": {
 "type": "EN"
 },
 ...
}

Currently supported values for the type parameter are: “LLT”, “EN”, and
“LL”, for DUID-LLT, DUID-EN, and DUID-LL respectively.

When a new DUID type is selected, the server generates its value and
replaces any existing DUID in the file. The server then uses the new
server identifier in all future interactions with the clients.

Note

If the new server identifier is created after some clients have
obtained their leases, the clients using the old identifier are not
able to renew the leases; the server will ignore messages containing
the old server identifier. Clients will continue sending Renew until
they transition to the rebinding state. In this state, they will
start sending Rebind messages to the multicast address without a
server identifier. The server will respond to the Rebind messages
with a new server identifier, and the clients will associate the new
server identifier with their leases. Although the clients will be
able to keep their leases and will eventually learn the new server
identifier, this will be at the cost of an increased number of
renewals and multicast traffic due to a need to rebind. Therefore, it
is recommended that modification of the server identifier type and
value be avoided if the server has already assigned leases and these
leases are still valid.

There are cases when an administrator needs to explicitly specify a DUID
value rather than allow the server to generate it. The following example
demonstrates how to explicitly set all components of a DUID-LLT.

"Dhcp6": {
 "server-id": {
 "type": "LLT",
 "htype": 8,
 "identifier": "A65DC7410F05",
 "time": 2518920166
 },
 ...
}

where:

	htype is a 16-bit unsigned value specifying hardware type,

	identifier is a link-layer address, specified as a string of
hexadecimal digits, and

	time is a 32-bit unsigned time value.

The hexadecimal representation of the DUID generated as a result of the
configuration specified above is:

 00:01:00:08:96:23:AB:E6:A6:5D:C7:41:0F:05
|type |htype| time | identifier |

A special value of 0 for “htype” and “time” is allowed, which indicates
that the server should use ANY value for these components. If the server
already uses a DUID-LLT, it will use the values from this DUID; if the
server uses a DUID of a different type or doesn’t yet use any DUID, it
will generate these values. Similarly, if the “identifier” is assigned
an empty string, the value of the identifier will be generated. Omitting
any of these parameters is equivalent to setting them to those special
values.

For example, the following configuration:

"Dhcp6": {
 "server-id": {
 "type": "LLT",
 "htype": 0,
 "identifier": "",
 "time": 2518920166
 },
 ...
}

indicates that the server should use ANY link-layer address and hardware
type. If the server is already using DUID-LLT, it will use the
link-layer address and hardware type from the existing DUID. If the
server is not yet using any DUID, it will use the link-layer address and
hardware type from one of the available network interfaces. The server
will use an explicit value of time; if it is different than a time value
present in the currently used DUID, that value will be replaced,
effectively modifying the current server identifier.

The following example demonstrates an explicit configuration of a
DUID-EN:

"Dhcp6": {
 "server-id": {
 "type": "EN",
 "enterprise-id": 2495,
 "identifier": "87ABEF7A5BB545"
 },
 ...
}

where:

	enterprise-id is a 32-bit unsigned value holding an enterprise
number, and

	identifier is a variable- length identifier within DUID-EN.

The hexadecimal representation of the DUID-EN created according to the
configuration above is:

 00:02:00:00:09:BF:87:AB:EF:7A:5B:B5:45
|type | ent-id | identifier |

As in the case of the DUID-LLT, special values can be used for the
configuration of the DUID-EN. If the enterprise-id is 0, the server
will use a value from the existing DUID-EN. If the server is not using
any DUID or the existing DUID has a different type, the ISC enterprise
id will be used. When an empty string is entered for identifier, the
identifier from the existing DUID-EN will be used. If the server is not
using any DUID-EN, a new 6-byte-long identifier will be generated.

DUID-LL is configured in the same way as DUID-LLT except that the
time parameter has no effect for DUID-LL, because this DUID type
only comprises a hardware type and link-layer address. The following
example demonstrates how to configure DUID-LL:

"Dhcp6": {
 "server-id": {
 "type": "LL",
 "htype": 8,
 "identifier": "A65DC7410F05"
 },
 ...
}

which will result in the following server identifier:

 00:03:00:08:A6:5D:C7:41:0F:05
|type |htype| identifier |

The server stores the generated server identifier in the following
location: [kea-install-dir]/var/lib/kea/kea-dhcp6-serverid.

In some uncommon deployments where no stable storage is available, the
server should be configured not to try to store the server identifier.
This choice is controlled by the value of the persist boolean
parameter:

"Dhcp6": {
 "server-id": {
 "type": "EN",
 "enterprise-id": 2495,
 "identifier": "87ABEF7A5BB545",
 "persist": false
 },
 ...
}

The default value of the “persist” parameter is true, which
configures the server to store the server identifier on a disk.

In the example above, the server is configured not to store the
generated server identifier on a disk. But if the server identifier is
not modified in the configuration, the same value will be used after
server restart, because the entire server identifier is explicitly
specified in the configuration.

9.6. DHCPv6 data directory

The Kea DHCPv6 server puts the server identifier file and the default
memory lease file into its data directory. By default this directory is
prefix/var/lib/kea but this location can be changed using the
data-directory global parameter as in:

"Dhcp6": {
 "data-directory": "/var/tmp/kea-server6",
 ...
}

9.7. Stateless DHCPv6 (Information-Request Message)

Typically DHCPv6 is used to assign both addresses and options. These
assignments (leases) have a state that changes over time, hence their
description as stateful. DHCPv6 also supports a stateless mode, where clients
request configuration options only. This mode is considered lightweight
from the server perspective, as it does not require any state tracking,
and carries the stateless name.

The Kea server supports stateless mode. Clients can send
Information-Request messages and the server sends back answers with the
requested options, providing the options are available in the server
configuration. The server attempts to use per-subnet options first; if
that fails for any reason, it then tries to provide options
defined in the global scope.

Stateless and stateful mode can be used together. No special
configuration directives are required to handle this; simply use the
configuration for stateful clients and the stateless clients will get
only the options they requested.

This usage of global options allows for an interesting case. It is
possible to run a server that provides only options and no addresses or
prefixes. If the options have the same value in each subnet, the
configuration can define required options in the global scope and skip
subnet definitions altogether. Here’s a simple example of such a
configuration:

"Dhcp6": {
 "interfaces-config": {
 "interfaces": ["ethX"]
 },
 "option-data": [{
 "name": "dns-servers",
 "data": "2001:db8::1, 2001:db8::2"
 }],
 "lease-database": {
 "type": "memfile"
 }
 }

This very simple configuration provides DNS server information to
all clients in the network, regardless of their location. Note the
specification of the memfile lease database; this is needed as Kea
requires a lease database to be specified even if it is not used.

9.8. Support for RFC 7550 (now part of RFC 8415)

RFC 7550 [https://tools.ietf.org/html/rfc7550] introduced some
changes to the previous DHCPv6 specifications, RFC
3315 [https://tools.ietf.org/html/rfc3315] and RFC
3633 [https://tools.ietf.org/html/rfc3633], to resolve a few issues
with the coexistence of multiple stateful options in the messages sent
between clients and servers. Those changes were later included in
the most recent DHCPv6 protocol specification, RFC
8415 [https://tools.ietf.org/html/rfc8415], which obsoleted RFC
7550 [https://tools.ietf.org/html/rfc7550]. Kea supports RFC
8415 [https://tools.ietf.org/html/rfc8415] along with these protocol
changes, which are briefly described below.

When a client, such as a requesting router, requests an allocation of
both addresses and prefixes during the 4-way (SARR) exchange with the
server, and the server is not configured to allocate any prefixes but it
can allocate some addresses, it will respond with the IA_NA(s)
containing allocated addresses and the IA_PD(s) containing the
NoPrefixAvail status code. According to the updated specifications, if
the client can operate without prefixes it should accept allocated
addresses and transition to the “bound” state. When the client
subsequently sends Renew/Rebind messages to the server, according to the
T1 and T2 times, to extend the lifetimes of the allocated addresses, and
if the client is still interested in obtaining prefixes from the server,
it may also include an IA_PD in the Renew/Rebind to request allocation
of the prefixes. If the server still cannot allocate the prefixes, it
will respond with the IA_PD(s) containing the NoPrefixAvail status code.
However, if the server can allocate the prefixes it will allocate and
send them in the IA_PD(s) to the client. A similar situation occurs when
the server is unable to allocate addresses for the client but can
delegate prefixes. The client may request allocation of the addresses
while renewing the delegated prefixes. Allocating leases for other IA
types while renewing existing leases is by default supported by the Kea
DHCPv6 server, and the server provides no configuration mechanisms to
disable this behavior.

The following are the other behaviors first introduced in RFC
7550 [https://tools.ietf.org/html/rfc7550] (now part of RFC
8415 [https://tools.ietf.org/html/rfc8415]) and supported by the Kea
DHCPv6 server:

	Set T1/T2 timers to the same value for all stateful (IA_NA and IA_PD)
options to facilitate renewal of all of a client’s leases at the same
time (in a single message exchange).

	Place NoAddrsAvail and NoPrefixAvail status codes in the IA_NA and
IA_PD options in the Advertise message, rather than as the top-level
options.

9.9. Using a Specific Relay Agent for a Subnet

The relay must have an interface connected to the link on which the
clients are being configured. Typically the relay has a global IPv6
address configured on that interface, which belongs to the subnet from
which the server will assign addresses. Normally, the server is able to
use the IPv6 address inserted by the relay (in the link-addr field in
RELAY-FORW message) to select the appropriate subnet.

However, that is not always the case. The relay address may not match
the subnet in certain deployments. This usually means that there is more
than one subnet allocated for a given link. The two most common examples
where this is the case are long-lasting network renumbering (where both
old and new address space is still being used) and a cable network. In a
cable network, both cable modems and the devices behind them are
physically connected to the same link, yet they use distinct addressing.
In such a case, the DHCPv6 server needs additional information (like the
value of the interface-id option or the IPv6 address inserted in the
link-addr field in the RELAY-FORW message) to properly select an
appropriate subnet.

The following example assumes that there is a subnet 2001:db8:1::/64
that is accessible via a relay that uses 3000::1 as its IPv6 address.
The server is able to select this subnet for any incoming packets that
come from a relay that has an address in the 2001:db8:1::/64 subnet. It also
selects that subnet for a relay with address 3000::1.

"Dhcp6": {
 "subnet6": [
 {
 "subnet": "2001:db8:1::/64",
 "pools": [
 {
 "pool": "2001:db8:1::1-2001:db8:1::ffff"
 }
],
 "relay": {
 "ip-addresses": ["3000::1"]
 }
 }
]
}

If “relay” is specified, the “ip-addresses” parameter within it is
mandatory.

Note

The current version of Kea uses the “ip-addresses” parameter, which
supports specifying a list of addresses.

9.10. Segregating IPv6 Clients in a Cable Network

In certain cases, it is useful to mix relay address information
(introduced in Using a Specific Relay Agent for a Subnet), with client classification, explained
in Client Classification. One specific example is in a cable network,
where modems typically get addresses from a different subnet than all
the devices connected behind them.

Let us assume that there is one CMTS (Cable Modem Termination System)
with one CM MAC (a physical link that modems are connected to). We want
the modems to get addresses from the 3000::/64 subnet, while everything
connected behind the modems should get addresses from another subnet
(2001:db8:1::/64). The CMTS that acts as a relay uses address 3000::1.
The following configuration can serve that configuration:

"Dhcp6": {
 "subnet6": [
 {
 "subnet": "3000::/64",
 "pools": [
 { "pool": "3000::2 - 3000::ffff" }
],
 "client-class": "VENDOR_CLASS_docsis3.0",
 "relay": {
 "ip-addresses": ["3000::1"]
 }
 },

 {
 "subnet": "2001:db8:1::/64",
 "pools": [
 {
 "pool": "2001:db8:1::1-2001:db8:1::ffff"
 }
],
 "relay": {
 "ip-addresses": ["3000::1"]
 }
 }
]
}

9.11. MAC/Hardware Addresses in DHCPv6

MAC/hardware addresses are available in DHCPv4 messages from the
clients, and administrators frequently use that information to perform
certain tasks like per-host configuration and address reservation for
specific MAC addresses. Unfortunately, the DHCPv6 protocol does not
provide any completely reliable way to retrieve that information. To
mitigate that issue, a number of mechanisms have been implemented in
Kea. Each of these mechanisms works in certain cases, but may fail in
others. Whether the mechanism works in a particular deployment is
somewhat dependent on the network topology and the technologies used.

Kea allows specification of which of the supported methods should be
used and in what order. This configuration may be considered a fine
tuning of the DHCP deployment. In a typical deployment the default value
of "any" is sufficient and there is no need to select specific
methods. Changing the value of this parameter is most useful in
cases when an administrator wants to disable certain methods; for
example, if the administrator trusts the network infrastructure more
than the information provided by the clients themselves, they may prefer
information provided by the relays over that provided by clients.

The configuration is controlled by the mac-sources parameter as
follows:

"Dhcp6": {
 "mac-sources": ["method1", "method2", "method3", ...],

 "subnet6": [...],

 ...
}

When not specified, a special value of “any” is used, which instructs
the server to attempt to try all the methods in sequence and use the
value returned by the first one that succeeds. If specified, it must
have at least one value.

Supported methods are:

	any - not an actual method, just a keyword that instructs Kea to
try all other methods and use the first one that succeeds. This is
the default operation if no mac-sources are defined.

	raw - in principle, a DHCPv6 server could use raw sockets to
receive incoming traffic and extract MAC/hardware address
information. This is currently not implemented for DHCPv6 and this
value has no effect.

	duid - DHCPv6 uses DUID identifiers instead of MAC addresses.
There are currently four DUID types defined, and two of them
(DUID-LLT, which is the default, and DUID-LL) convey MAC address
information. Although RFC 8415 [https://tools.ietf.org/html/rfc8415]
forbids it, it is possible to
parse those DUIDs and extract necessary information from them. This
method is not completely reliable, as clients may use other DUID
types, namely DUID-EN or DUID-UUID.

	ipv6-link-local - another possible acquisition method comes from
the source IPv6 address. In typical usage, clients are sending their
packets from IPv6 link-local addresses. There is a good chance that
those addresses are based on EUI-64, which contains a MAC address.
This method is not completely reliable, as clients may use other
link-local address types. In particular, privacy extensions, defined
in RFC 4941 [https://tools.ietf.org/html/rfc4941], do not use MAC
addresses. Also note that successful extraction requires that the
address’s u-bit must be set to 1 and its g-bit set to 0, indicating
that it is an interface identifier as per RFC 2373, section
2.5.1 [https://tools.ietf.org/html/rfc2373#section-2.5.1].

	client-link-addr-option - one extension defined to alleviate
missing MAC issues is the client link-layer address option, defined
in RFC 6939 [https://tools.ietf.org/html/rfc6939]. This is an
option that is inserted by a relay and contains information about a
client’s MAC address. This method requires a relay agent that
supports the option and is configured to insert it. This method is
useless for directly connected clients. This parameter can also be
specified as rfc6939, which is an alias for
client-link-addr-option.

	remote-id - RFC 4649 [https://tools.ietf.org/html/rfc4649]
defines a remote-id option that is inserted by a relay agent.
Depending on the relay agent configuration, the inserted option may
convey the client’s MAC address information. This parameter can also
be specified as rfc4649, which is an alias for remote-id.

	subscriber-id - Another option that is somewhat similar to the
previous one is subscriber-id, defined in RFC
4580 [https://tools.ietf.org/html/rfc4580]. It, too, is inserted by
a relay agent that is configured to insert it. This parameter can
also be specified as rfc4580, which is an alias for
subscriber-id. This method is currently not implemented.

	docsis-cmts - Yet another possible source of MAC address
information are the DOCSIS options inserted by a CMTS that acts as a
DHCPv6 relay agent in cable networks. This method attempts to extract
MAC address information from sub-option 1026 (cm mac) of the
vendor-specific option with vendor-id=4491. This vendor option is
extracted from the relay-forward message, not the original client’s
message.

	docsis-modem - The final possible source of MAC address
information are the DOCSIS options inserted by the cable modem
itself. This method attempts to extract MAC address information from
sub-option 36 (device id) of the vendor-specific option with
vendor-id=4491. This vendor option is extracted from the original
client’s message, not from any relay options.

Empty mac-sources is not allowed. Administrators who do not want to specify it
should either simply omit the mac-sources definition or specify it with the
“any” value, which is the default.

9.12. Duplicate Addresses (DECLINE Support)

The DHCPv6 server is configured with a certain pool of addresses that it
is expected to hand out to DHCPv6 clients. It is assumed that the server
is authoritative and has complete jurisdiction over those addresses.
However, for various reasons, such as misconfiguration or a faulty
client implementation that retains its address beyond the valid
lifetime, there may be devices connected that use those addresses
without the server’s approval or knowledge.

Such an unwelcome event can be detected by legitimate clients (using
Duplicate Address Detection) and reported to the DHCPv6 server using a
DHCPDECLINE message. The server will do a sanity check (to see whether
the client declining an address really was supposed to use it), and then
will conduct a clean-up operation and confirm it by sending back a REPLY
message. Any DNS entries related to that address will be removed, the
fact will be logged, and hooks will be triggered. After that is
complete, the address will be marked as declined (which indicates that
it is used by an unknown entity and thus not available for assignment)
and a probation time will be set on it. Unless otherwise configured, the
probation period lasts 24 hours; after that period, the server will
recover the lease (i.e. put it back into the available state) and the
address will be available for assignment again. It should be noted that
if the underlying issue of a misconfigured device is not resolved, the
duplicate-address scenario will repeat. If reconfigured correctly, this
mechanism provides an opportunity to recover from such an event
automatically, without any system administrator intervention.

To configure the decline probation period to a value other than the
default, the following syntax can be used:

 "Dhcp6": {
 "decline-probation-period": 3600,
 "subnet6": [...],
 ...
}

The parameter is expressed in seconds, so the example above will
instruct the server to recycle declined leases after one hour.

There are several statistics and hook points associated with the Decline
handling procedure. The lease6_decline hook is triggered after the
incoming DHCPDECLINE message has been sanitized and the server is about
to decline the lease. The declined-addresses statistic is increased
after the hook returns (both global and subnet-specific variants). (See
Statistics in the DHCPv6 Server and Hooks Libraries
for more details on DHCPv6 statistics and Kea hook points.)

Once the probation time elapses, the declined lease is recovered using
the standard expired-lease reclamation procedure, with several
additional steps. In particular, both declined-addresses statistics
(global and subnet-specific) are decreased. At the same time,
reclaimed-declined-addresses statistics (again in two variants, global
and subnet-specific) are increased.

A note about statistics: The server does not decrease the
assigned-nas statistics when a DHCPDECLINE message is received and
processed successfully. While technically a declined address is no
longer assigned, the primary usage of the assigned-nas statistic
is to monitor pool utilization. Most people would forget to include
declined-addresses in the calculation, and simply use
assigned-nas/total-nas. This would cause a bias towards
under-representing pool utilization. As this has a potential for major
issues, ISC decided not to decrease assigned-nas immediately after
receiving DHCPDECLINE, but to do it later when Kea recovers the address
back to the available pool.

9.13. Statistics in the DHCPv6 Server

The DHCPv6 server supports the following statistics:

DHCPv6 Statistics

	Statistic

	Data Type

	Description

	pkt6-received

	integer

	Number of DHCPv6
packets received.
This includes all
packets: valid,
bogus, corrupted,
rejected, etc. This
statistic is expected
to grow rapidly.

	pkt6-receive-drop

	integer

	Number of incoming
packets that were
dropped. The exact
reason for dropping
packets is logged,
but the most common
reasons may be: an
unacceptable or not
supported packet type
is received, direct
responses are
forbidden, the
server-id sent by the
client does not match
the server’s
server-id, or the
packet is malformed.

	pkt6-parse-failed

	integer

	Number of incoming
packets that could
not be parsed. A
non-zero value of
this statistic
indicates that the
server received a
malformed or
truncated packet.
This may indicate
problems in the
network, faulty
clients, faulty relay
agents, or a bug in
the server.

	pkt6-solicit-received

	integer

	Number of SOLICIT
packets received.
This statistic is
expected to grow; its
increase means that
clients that just
booted started their
configuration process
and their initial
packets reached the
Kea server.

	pkt6-advertise-received

	integer

	Number of ADVERTISE
packets received.
Advertise packets are
sent by the server
and the server is
never expected to
receive them. A
non-zero value of
this statistic
indicates an error
occurring in the
network. One likely
cause would be a
misbehaving relay
agent that
incorrectly forwards
ADVERTISE messages
towards the server,
rather than back to
the clients.

	pkt6-request-received

	integer

	Number of DHCPREQUEST
packets received.
This statistic is
expected to grow. Its
increase means that
clients that just
booted received the
server’s response
(DHCPADVERTISE) and
accepted it, and are
now requesting an
address
(DHCPREQUEST).

	pkt6-reply-received

	integer

	Number of REPLY
packets received.
This statistic is
expected to remain
zero at all times, as
REPLY packets are
sent by the server
and the server is
never expected to
receive them. A
non-zero value
indicates an error.
One likely cause
would be a
misbehaving relay
agent that
incorrectly forwards
REPLY messages
towards the server,
rather than back to
the clients.

	pkt6-renew-received

	integer

	Number of RENEW
packets received.
This statistic is
expected to grow; its
increase means that
clients received
their addresses and
prefixes and are
trying to renew them.

	pkt6-rebind-received

	integer

	Number of REBIND
packets received. A
non-zero value
indicates that
clients did not
receive responses to
their RENEW messages
(through the regular
lease-renewal
mechanism) and are
attempting to find
any server that is
able to take over
their leases. It may
mean that some
servers’ REPLY
messages never
reached the clients.

	pkt6-release-received

	integer

	Number of RELEASE
packets received.
This statistic is
expected to grow when
a device is being
shut down in the
network; it indicates
that the address or
prefix assigned is
reported as no longer
needed. Note that
many devices,
especially wireless,
do not send RELEASE
packets either
because of design
choice or due to the
client moving out of
range.

	pkt6-decline-received

	integer

	Number of DECLINE
packets received.
This statistic is
expected to remain
close to zero. Its
increase means that a
client leased an
address, but
discovered that the
address is currently
used by an unknown
device in the
network. If this
statistic is growing,
it may indicate a
misconfigured server
or devices that have
statically assigned
conflicting
addresses.

	pkt6-infrequest-received

	integer

	Number of
INFORMATION-REQUEST
packets received.
This statistic is
expected to grow if
there are devices
that are using
stateless DHCPv6.
INFORMATION-REQUEST
messages are used by
clients that request
stateless
configuration, i.e.
options and
parameters other than
addresses or
prefixes.

	pkt6-dhcpv4-query-received

	integer

	Number of
DHCPv4-QUERY packets
received. This
statistic is expected
to grow if there are
devices that are
using
DHCPv4-over-DHCPv6.
DHCPv4-QUERY messages
are used by DHCPv4
clients on an
IPv6-only line which
encapsulates the
requests over DHCPv6.

	pkt6-dhcpv4-response-received

	integer

	Number of
DHCPv4-RESPONSE
packets received.
This statistic is
expected to remain
zero at all times, as
DHCPv4-RESPONSE
packets are sent by
the server and the
server is never
expected to receive
them. A non-zero
value indicates an
error. One likely
cause would be a
misbehaving relay
agent that
incorrectly forwards
DHCPv4-RESPONSE
message towards the
server rather than
back to the clients.

	pkt6-unknown-received

	integer

	Number of packets
received of an
unknown type. A
non-zero value of
this statistic
indicates that the
server received a
packet that it wasn’t
able to recognize;
either it had an
unsupported type or
was possibly
malformed.

	pkt6-sent

	integer

	Number of DHCPv6
packets sent. This
statistic is expected
to grow every time
the server transmits
a packet. In general,
it should roughly
match pkt6-received,
as most incoming
packets cause the
server to respond.
There are exceptions
(e.g. server
receiving a REQUEST
with server-id
matching other
server), so do not
worry if it is less
than pkt6-received.

	pkt6-advertise-sent

	integer

	Number of ADVERTISE
packets sent. This
statistic is expected
to grow in most cases
after a SOLICIT is
processed. There are
certain uncommon, but
valid, cases where
incoming SOLICIT
packets are dropped,
but in general this
statistic is expected
to be close to
pkt6-solicit-received.

	pkt6-reply-sent

	integer

	Number of REPLY
packets sent. This
statistic is expected
to grow in most cases
after a SOLICIT (with
rapid-commit),
REQUEST, RENEW,
REBIND, RELEASE,
DECLINE, or
INFORMATION-REQUEST
is processed. There
are certain cases
where there is no
response.

	pkt6-dhcpv4-response-sent

	integer

	Number of
DHCPv4-RESPONSE
packets sent. This
statistic is expected
to grow in most cases
after a DHCPv4-QUERY
is processed. There
are certain cases
where there is no
response.

	subnet[id].total-nas

	integer

	Total number of NA
addresses available
for DHCPv6 management
for a given subnet;
in other words, this
is the sum of all
addresses in all
configured pools.
This statistic
changes only during
configuration
changes. Note that it
does not take into
account any addresses
that may be reserved
due to host
reservation. The id
is the subnet-id of a
given subnet. This
statistic is exposed
for each subnet
separately, and is
reset during a
reconfiguration
event.

	cumulative-assigned-nas

	integer

	Cumulative number of
NA addresses that
have been assigned
since server startup.
It is incremented
each time a NA address
is assigned and is not
reset when the server
is reconfigured.

	subnet[id].cumulative-assigned-nas

	integer

	Cumulative number of
NA addresses in a
given subnet that
were assigned. It
increases every time
a new lease is
allocated (as a
result of receiving a
REQUEST message) and
is never decreased.
The id is the
subnet-id of a given
subnet. This
statistic is exposed
for each subnet
separately, and is
reset during a
reconfiguration
event.

	subnet[id].assigned-nas

	integer

	Number of NA
addresses in a given
subnet that are
assigned. It
increases every time
a new lease is
allocated (as a
result of receiving a
REQUEST message) and
is decreased every
time a lease is
released (a RELEASE
message is received)
or expires. The id
is the subnet-id of a
given subnet. This
statistic is exposed
for each subnet
separately, and is
reset during a
reconfiguration
event.

	subnet[id].total-pds

	integer

	Total number of PD
prefixes available
for DHCPv6 management
for a given subnet;
in other words, this
is the sum of all
prefixes in all
configured pools.
This statistic
changes only during
configuration
changes. Note it does
not take into account
any prefixes that may
be reserved due to
host reservation. The
id is the subnet-id
of a given subnet.
This statistic is
exposed for each
subnet separately,
and is reset during a
reconfiguration
event.

	cumulative-assigned-pds

	integer

	Cumulative number of
PD prefixes that
have been assigned
since server startup.
It is incremented
each time a PD prefix
is assigned and is not
reset when the server
is reconfigured.

	subnet[id].cumulative-assigned-pds

	integer

	Cumulative number of
PD prefixes in a
given subnet that
were assigned. It
increases every time
a new lease is
allocated (as a
result of receiving a
REQUEST message) and
is never decreased.
The id is the
subnet-id of a given
subnet. This
statistic is exposed
for each subnet
separately, and is
reset during a
reconfiguration
event.

	subnet[id].assigned-pds

	integer

	Number of PD prefixes
in a given subnet
that are assigned. It
increases every time
a new lease is
allocated (as a
result of receiving a
REQUEST message) and
is decreased every
time a lease is
released (a RELEASE
message is received)
or expires. The id
is the subnet-id of a
given subnet. This
statistic is exposed
for each subnet
separately, and is
reset during a
reconfiguration
event.

	reclaimed-leases

	integer

	Number of expired
leases that have been
reclaimed since
server startup. It is
incremented each time
an expired lease is
reclaimed (counting
both NA and PD
reclamations) and is
reset when the server
is reconfigured.

	subnet[id].reclaimed-leases

	integer

	Number of expired
leases associated
with a given subnet
(“id” is the
subnet-id) that have
been reclaimed since
server startup. It is
incremented each time
an expired lease is
reclaimed (counting
both NA and PD
reclamations) and is
reset when the server
is reconfigured.

	declined-addresses

	integer

	Number of IPv6
addresses that are
currently declined; a
count of the number
of leases currently
unavailable. Once a
lease is recovered,
this statistic will
be decreased;
ideally, this
statistic should be
zero. If this
statistic is non-zero
or increasing, a
network administrator
should investigate
whether there is a
misbehaving device in
the network. This is
a global statistic
that covers all
subnets.

	subnet[id].declined-addresses

	integer

	Number of IPv6
addresses that are
currently declined in
a given subnet; a
count of the number
of leases currently
unavailable. Once a
lease is recovered,
this statistic will
be decreased;
ideally, this
statistic should be
zero. If this
statistic is non-zero
or increasing, a
network administrator
should investigate
whether there is a
misbehaving device in
the network. The id
is the subnet-id of a
given subnet. This
statistic is exposed
for each subnet
separately.

	reclaimed-declined-addresses

	integer

	Number of IPv6
addresses that were
declined, but have
now been recovered.
Unlike
declined-addresses,
this statistic never
decreases. It can be
used as a long-term
indicator of how many
actual valid Declines
were processed and
recovered from. This
is a global statistic
that covers all
subnets.

	subnet[id].reclaimed-declined-addresses

	integer

	Number of IPv6
addresses that were
declined, but have
now been recovered.
Unlike
declined-addresses,
this statistic never
decreases. It can be
used as a long-term
indicator of how many
actual valid Declines
were processed and
recovered from. The
id is the subnet-id
of a given subnet.
This statistic is
exposed for each
subnet separately.

Note

This section describes DHCPv6-specific statistics. For a general
overview and usage of statistics, see Statistics.

Beginning with Kea 1.7.7 the DHCPv6 server provides two global
parameters to control statistics default sample limits:

	statistic-default-sample-count - determines the default maximum
number of samples which will be kept. The special value of zero
means to use a default maximum age.

	statistic-default-sample-age - determines the default maximum
age in seconds of samples which will be kept.

For instance to reduce the statistic keeping overhead you can set
the default maximum sample count to 1 so only one sample will be kept by:

 "Dhcp6": {
 "statistic-default-sample-count": 1,
 "subnet6": [...],
 ...
}

Statistics can be retrieved periodically to gain more insight into Kea operations. One tool that
leverages that capability is ISC Stork. See Monitoring Kea with Stork for details.

9.14. Management API for the DHCPv6 Server

The management API allows the issuing of specific management commands,
such as statistics retrieval, reconfiguration, or shutdown. For more
details, see Management API. Currently, the only supported
communication channel type is UNIX stream socket. By default there are
no sockets open; to instruct Kea to open a socket, the following entry
in the configuration file can be used:

"Dhcp6": {
 "control-socket": {
 "socket-type": "unix",
 "socket-name": "/path/to/the/unix/socket"
 },

 "subnet6": [
 ...
],
 ...
}

The length of the path specified by the socket-name parameter is
restricted by the maximum length for the UNIX socket name on the administrator’s
operating system, i.e. the size of the sun_path field in the
sockaddr_un structure, decreased by 1. This value varies on
different operating systems between 91 and 107 characters. Typical
values are 107 on Linux and 103 on FreeBSD.

Communication over the control channel is conducted using JSON
structures. See the
Control Channel section in the Kea Developer’s Guide [https://jenkins.isc.org/job/Kea_doc/doxygen/d2/d96/ctrlSocket.html]
for more details.

The DHCPv6 server supports the following operational commands:

	build-report

	config-get

	config-reload

	config-set

	config-test

	config-write

	dhcp-disable

	dhcp-enable

	leases-reclaim

	list-commands

	shutdown

	status-get

	version-get

as described in Commands Supported by Both the DHCPv4 and DHCPv6 Servers. In addition, it supports the
following statistics-related commands:

	statistic-get

	statistic-reset

	statistic-remove

	statistic-get-all

	statistic-reset-all

	statistic-remove-all

	statistic-sample-age-set

	statistic-sample-age-set-all

	statistic-sample-count-set

	statistic-sample-count-set-all

as described in Commands for Manipulating Statistics.

9.15. User Contexts in IPv6

Kea allows loading hook libraries that can sometimes benefit from
additional parameters. If such a parameter is specific to the whole
library, it is typically defined as a parameter for the hook library.
However, sometimes there is a need to specify parameters that are
different for each pool.

See Comments and User Context for additional background regarding the user
context idea. See User Contexts in Hooks for a discussion from the
hooks perspective.

User contexts can be specified at global scope, shared network, subnet,
pool, client class, option data, or definition level, and via host
reservation. One other useful feature is the ability to store comments or
descriptions.

Let’s consider a lightweight 4over6 deployment as an example. It is an
IPv6 transition technology that allows mapping IPv6 prefixes into full
or partial IPv4 addresses. In the DHCP context, these are specific
parameters that are supposed to be delivered to clients in the form of
additional options. Values of these options are correlated to delegated
prefixes, so it is reasonable to keep these parameters together with the
PD pool. On the other hand, lightweight 4over6 is not a commonly used
feature, so it is not a part of the base Kea code. The solution to this
problem is to specify a user context. For each PD pool that is expected to be
used for lightweight 4over6, a user context with extra parameters is
defined. Those extra parameters will be used by a hook library
and loaded only when dynamic calculation of the lightweight 4over6
option is actually needed. An example configuration looks as follows:

"Dhcp6": {
 "subnet6": [{
 "pd-pools": [
 {
 "prefix": "2001:db8::",
 "prefix-len": 56,
 "delegated-len": 64,

 # This is a pool specific context.
 "user-context": {
 "threshold-percent": 85,
 "v4-network": "192.168.0.0/16",
 "v4-overflow": "10.0.0.0/16",
 "lw4over6-sharing-ratio": 64,
 "lw4over6-v4-pool": "192.0.2.0/24",
 "lw4over6-sysports-exclude": true,
 "lw4over6-bind-prefix-len": 56
 }
 }],
 "subnet": "2001:db8::/32",

 # This is a subnet-specific context. Any type of
 # information can be entered here as long as it is valid JSON.
 "user-context": {
 "comment": "Those v4-v6 migration technologies are tricky.",
 "experimental": true,
 "billing-department": 42,
 "contact-points": ["Alice", "Bob"]
 }
 }],
 ...
}

Kea does not interpret or use the user context information; it simply
stores it and makes it available to the hook libraries. It is up to each
hook library to extract that information and use it. The parser
translates a “comment” entry into a user context with the entry, which
allows a comment to be attached inside the configuration itself.

9.16. Supported DHCPv6 Standards

The following standards are currently supported:

	Dynamic Host Configuration Protocol for IPv6, RFC
3315 [https://tools.ietf.org/html/rfc3315]: Supported messages are
SOLICIT, ADVERTISE, REQUEST, RELEASE, RENEW, REBIND,
INFORMATION-REQUEST, CONFIRM, DECLINE and REPLY. The only not
supported message is RECONFIGURE.

	Dynamic Host Configuration Protocol (DHCPv6) Options for
Session Initiation Protocol (SIP) Servers, RFC 3319 [https://tools.ietf.org/html/rfc3319]: All defined options are supported.

	IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP)
version 6, RFC 3633 [https://tools.ietf.org/html/rfc3633]:
Supported options are IA_PD and IA_PREFIX. Also supported is the
status code NoPrefixAvail.

	DNS Configuration options for Dynamic Host Configuration Protocol for IPv6
(DHCPv6), RFC 3646 [https://tools.ietf.org/html/rfc3646]: All defined
options are supported.

	Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6, RFC
3736 [https://tools.ietf.org/html/rfc3736]: The server operation in
stateless mode is supported. Kea is currently server only, so the client side
is not implemented.

	Information Refresh Time Option for Dynamic Host Configuration Protocol for
IPv6 (DHCPv6), RFC 4242 [https://tools.ietf.org/html/rfc4242]: The
sole defined option (information-refresh-time) is supported.

	The Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Relay
Agent Remote-ID Option, RFC
4649 [https://tools.ietf.org/html/rfc4649]: REMOTE-ID option is
supported.

	Resolution of Fully Qualified Domain Name (FQDN) Conflicts among Dynamic Host
Configuration Protocol (DHCP) Clients, RFC 4703 [https://tools.ietf.org/html/rfc4703]: The DHCPv6 server uses DHCP-DDNS
server to resolve conflicts.

	The Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Client
Fully Qualified Domain Name (FQDN) Option, RFC
4704 [https://tools.ietf.org/html/rfc4704]: Supported option is
CLIENT_FQDN.

	Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Option for
Dual-Stack Lite, RFC 6334 [https://tools.ietf.org/html/rfc6334]:
the AFTR-Name DHCPv6 Option is supported.

	Relay-Supplied DHCP Options, RFC
6422 [https://tools.ietf.org/html/rfc6422]: Full functionality is
supported: OPTION_RSOO, ability of the server to echo back the
options, checks whether an option is RSOO-enabled, ability to mark
additional options as RSOO-enabled.

	Prefix Exclude Option for DHCPv6-based Prefix Delegation, RFC
6603 [https://tools.ietf.org/html/rfc6603]: Prefix Exclude option
is supported.

	Client Link-Layer Address Option in DHCPv6, RFC
6939 [https://tools.ietf.org/html/rfc6939]: Supported option is
client link-layer address option.

	Issues and Recommendations with Multiple Stateful DHCPv6 Options,
RFC 7550 [https://tools.ietf.org/html/rfc7550]: All
recommendations related to the DHCPv6 server operation are supported.

	DHCPv6 Options for Configuration of Softwire Address and Port-Mapped
Clients, RFC 7598 [https://tools.ietf.org/html/rfc7598]: All
options indicated in this specification are supported by the DHCPv6
server.

	Generalized UDP Source Port for DHCP Relay, RFC 8357 [https://tools.ietf.org/html/rfc8357]: The Kea server is able
to handle Relay Source Port option in a received Relay-Forward
message, remembers the UDP port and sends back Relay-Reply with a
copy of the option to the relay agent using this UDP port.

	Dynamic Host Configuration Protocol for IPv6 (DHCPv6), RFC 8415 [https://tools.ietf.org/html/rfc8415]: New DHCPv6 protocol specification
which obsoletes RFC 3315, RFC 3633, RFC 3736, RFC 4242, RFC 7083, RFC 7283,
and RFC 7550. All features, with the exception of Reconfigure mechanism and
the now deprecated temporary addresses (IA_TA) mechanism, are supported.

9.17. DHCPv6 Server Limitations

These are the current limitations of the DHCPv6 server software. Most of
them are reflections of the current stage of development and should be
treated as “not implemented yet”, rather than actual limitations.

	The server will allocate, renew, or rebind a maximum of one lease for
a particular IA option (IA_NA or IA_PD) sent by a client. RFC
8415 [https://tools.ietf.org/html/rfc8415] allows for multiple
addresses or prefixes to be allocated for a single IA.

	Temporary addresses are not supported. There is no intention to ever
implement this feature, as it is deprecated in RFC8415.

	Client reconfiguration (RECONFIGURE) is not yet supported.

9.18. Kea DHCPv6 server examples

A collection of simple-to-use examples for the DHCPv6 component of Kea
is available with the source files, located in the doc/examples/kea6
directory.

9.19. Configuration Backend in DHCPv6

In the Kea Configuration Backend section we have described the Configuration
Backend feature, its applicability, and its limitations. This section focuses
on the usage of the CB with the DHCPv6 server. It lists the supported
parameters, describes limitations, and gives examples of the DHCPv6
server configuration to take advantage of the CB. Please also refer to
the sibling section Configuration Backend in DHCPv4 for the DHCPv4-specific usage of
the CB.

9.19.1. Supported Parameters

The ultimate goal for the CB is to serve as a central configuration
repository for one or multiple Kea servers connected to the database. In
the future it will be possible to store most of the server’s
configuration in the database and reduce the configuration file to a bare
minimum; the only mandatory parameter will be the
config-control, which includes the necessary information to connect
to the database. In the Kea 1.6.0 release, however, only a subset of
the DHCPv4 server parameters can be stored in the database. All other
parameters must be specified in the JSON configuration file, if
required.

The following table lists DHCPv6-specific parameters supported by the
Configuration Backend, with an indication on which level of the hierarchy
it is currently supported. “n/a” is used in cases when a
particular parameter is not applicable on a particular level of the
hierarchy, or in cases when the parameter is not supported by the server
at this level of the hierarchy. “no” is used when the parameter is
supported by the server on the given level of the hierarchy, but is not
configurable via the Configuration Backend.

All supported parameters can be configured via cb_cmds hooks library
described in the cb_cmds: Configuration Backend Commands section. The general rule is that
the scalar global parameters are set using the
remote-global-parameter6-set; the shared network-specific parameters
are set using remote-network6-set; and the subnet- and pool-level
parameters are set using remote-subnet6-set. Whenever
there is an exception to this general rule, it is highlighted in the
table. The non-scalar global parameters have dedicated commands; for example,
the global DHCPv6 options (option-data) are modified using
remote-option6-global-set.

List of DHCPv6 Parameters Supported by the Configuration Backend

	Parameter

	Global

	Shared
Network

	Subnet

	Pool

	Prefix
Delegation
Pool

	calculate-tee-times

	yes

	yes

	yes

	n/a

	n/a

	client-class

	n/a

	yes

	yes

	yes

	yes

	ddns-send-update

	yes

	yes

	yes

	n/a

	n/a

	ddns-override-no-update

	yes

	yes

	yes

	n/a

	n/a

	ddns-override-client-update

	yes

	yes

	yes

	n/a

	n/a

	ddns-replace-client-name

	yes

	yes

	yes

	n/a

	n/a

	ddns-generated-prefix

	yes

	yes

	yes

	n/a

	n/a

	ddns-qualifying-suffix

	yes

	yes

	yes

	n/a

	n/a

	decline-probation-period

	yes

	n/a

	n/a

	n/a

	n/a

	delegated-len

	n/a

	n/a

	n/a

	n/a

	yes

	dhcp4o6-port

	yes

	n/a

	n/a

	n/a

	n/a

	excluded-prefix

	n/a

	n/a

	n/a

	n/a

	yes

	excluded-prefix-len

	n/a

	n/a

	n/a

	n/a

	yes

	hostname-char-set

	no

	no

	no

	n/a

	n/a

	hostname-char-replacement

	no

	no

	no

	n/a

	n/a

	interface

	n/a

	yes

	yes

	n/a

	n/a

	interface-id

	n/a

	yes

	yes

	n/a

	n/a

	option-data

	yes (via
remote-option6-global-set)

	yes

	yes

	yes

	yes

	option-def

	yes (via
remote-option-def6-set)

	n/a

	n/a

	n/a

	n/a

	preferred-lifetime

	yes

	yes

	yes

	n/a

	n/a

	prefix

	n/a

	n/a

	n/a

	n/a

	yes

	prefix-len

	n/a

	n/a

	n/a

	n/a

	yes

	rapid-commit

	yes

	yes

	yes

	n/a

	n/a

	rebind-timer

	yes

	yes

	yes

	n/a

	n/a

	relay

	n/a

	yes

	yes

	n/a

	n/a

	renew-timer

	yes

	yes

	yes

	n/a

	n/a

	require-client-classes

	n/a

	yes

	yes

	yes

	yes

	reservation-mode

	yes

	yes

	yes

	n/a

	n/a

	t1-percent

	yes

	yes

	yes

	n/a

	n/a

	t2-percent

	yes

	yes

	yes

	n/a

	n/a

	valid-lifetime

	yes

	yes

	yes

	n/a

	n/a

9.19.2. Enabling Configuration Backend

The following configuration snippet demonstrates how to enable the MySQL
Configuration Backend for the DHCPv6 server:

{
 "Dhcp6": {
 "server-tag": "my DHCPv6 server",
 "config-control": {
 "config-databases": [
 {
 "type": "mysql",
 "name": "kea",
 "user": "kea",
 "password": "kea",
 "host": "2001:db8:1::1",
 "port": 3302
 }
],
 "config-fetch-wait-time": 20
 },
 "hooks-libraries": [
 {
 "library": "/usr/local/lib/kea/hooks/libdhcp_mysql_cb.so"
 },
 {
 "library": "/usr/local/lib/kea/hooks/libdhcp_cb_cmds.so"
 }
],
 ...
 }
}

The configuration structure is almost identical to that of the DHCPv4 server
(see Enabling Configuration Backend for the detailed description).

10. Lease Expiration

The primary role of the DHCP server is to assign addresses and/or
delegate prefixes to DHCP clients. These addresses and prefixes are
often referred to as “leases.” Leases are typically assigned to clients
for a finite amount of time, known as the “valid lifetime.” DHCP clients
who wish to continue using their assigned leases will periodically renew
them by sending the appropriate message to the DHCP server. The DHCP
server records the time when these leases are renewed and calculates new
expiration times for them.

If the client does not renew a lease before its valid lifetime elapses,
the lease is considered expired. There are many situations when the
client may cease lease renewals; a common scenario is when the machine
running the client shuts down for an extended period of time.

The process through which the DHCP server makes expired leases available
for reassignment is referred to as “lease reclamation” and expired
leases returned to availability through this process are referred to as
“reclaimed.” The DHCP server attempts to reclaim an expired lease as
soon as it detects that it has expired. The server has several possible
ways to detect expiration: it may attempt to allocate a lease to a
client but find this lease already present in the database and expired;
or it can periodically query the lease database for expired leases.
Regardless of how an expired lease is detected, it must be reclaimed
before it can be assigned to a client.

This chapter explains how to configure the server to periodically query
for the expired leases, and how to minimize the impact of the periodic
lease reclamation process on the server’s responsiveness. Finally, it
explains “lease affinity,” which provides the means to assign the same
lease to a returning client after its lease has expired.

Although all configuration examples in this section are provided for the
DHCPv4 server, the same parameters may be used for DHCPv6 server
configuration.

10.1. Lease Reclamation

Lease reclamation is the process through which an expired lease becomes
available for assignment to the same or a different client. This process
involves the following steps for each reclaimed lease:

	Invoke callouts for the lease4_expire or lease6_expire hook
points, if hook libraries supporting those callouts are currently
loaded.

	Update the DNS, i.e. remove any DNS entries associated with the
expired lease.

	Update lease information in the lease database to indicate that the
lease is now available for re-assignment.

	Update counters on the server, a process that includes increasing the
number of reclaimed leases and decreasing the number of assigned
addresses or delegated prefixes.

Please refer to The DHCP-DDNS Server to see how to configure DNS
updates in Kea, and to Hooks Libraries for information about
using hooks libraries.

10.2. Lease Reclamation Configuration Parameters

The following list presents all configuration parameters pertaining to
processing expired leases with their default values:

	reclaim-timer-wait-time - this parameter governs intervals
between the completion of the previous reclaimation cycle and the start of the
next one. Specified in seconds. The default value is 10 [seconds].

	flush-reclaimed-timer-wait-time - this parameter controls how
often the server initiates the lease reclaimation procedure. Expressed in
seconds. The default value is 25 [seconds].

	hold-reclaimed-time - this parameter governs how long the lease
should be kept after it is reclaimed. This enables lease affinity
when set to a non-zero value. Expressed in seconds. The default value
is 3600 [seconds].

	max-reclaim-leases - this parameter specifies the maximum number
of reclaimed leases that can be processed at one time. Zero means
unlimited (i.e. process all reclaimed leases). The default value is
100.

	max-reclaim-time - this parameter specifies an upper limit to the
length of time a lease reclamation procedure can take. Zero means no time
limit. Expressed in milliseconds. The default value is 250
[milliseconds].

	unwarned-reclaim-cycles - if lease reclamation limits are
specified (max-reclaim-leases and/or max-reclaim-time), then
under certain circumstances the server may not be able to deal with
the leases to be reclaimed fast enough. This parameter specifies how many
consecutive clean-up cycles must end with remaining leases to be
processed before a warning is printed. The default is 5 [cycles].

The parameters are explained in more detail in the rest of this chapter.

The default value for any parameter is used when the parameter is not
explicitly specified in the configuration. If the
expired-leases-processing map is omitted entirely in the
configuration, the default values are used for all
parameters listed above.

10.3. Configuring Lease Reclamation

Kea can be configured to periodically detect and reclaim expired leases.
During this process the lease entries in the database are modified or
removed. While this is happening, the server will not process incoming
DHCP messages to avoid issues with concurrent access to database
information. As a result, the server will be unresponsive while lease
reclamation is performed and DHCP queries will accumulate; responses
will be sent once the lease-reclamation cycle is complete.

In deployments where response time is critical, administrators may wish
to minimize the interruptions in service caused by lease reclamation.
To this end, Kea provides configuration parameters to control the
frequency of lease reclamation cycles, the maximum number of leases
processed in a single reclamation cycle, and the maximum amount of time
a single reclamation cycle is allowed to run before being interrupted.
The following examples demonstrate how these parameters can be used:

"Dhcp4": {
 ...

 "expired-leases-processing": {
 "reclaim-timer-wait-time": 5,
 "max-reclaim-leases": 0,
 "max-reclaim-time": 0,
 },

 ...
}

The first parameter is expressed in seconds and specifies an interval
between the two consecutive lease reclamation cycles. This is explained
by the following diagram:

| c1 | | c2 | |c3| | c4 |
|<---->|<---------->|<-->|<---------->|<>|<---------->|<-->|<--
-->
| | 5s | | 5s | | 5s | | time

This diagram shows four lease-reclamation cycles (c1 through c4) of
variable duration. Note that the duration of the reclamation cycle
depends on the number of expired leases detected and processed in the
particular cycle. This duration is usually significantly shorter than
the interval between the cycles.

According to the reclaim-timer-wait-time, the server keeps fixed
intervals of five seconds between the end of one cycle and the start of
the next cycle. This guarantees the presence of 5-second-long periods during
which the server remains responsive to DHCP queries and does not perform
lease reclamation. The max-reclaim-leases and max-reclaim-time
are set to 0, which sets no restriction on the maximum number of leases
reclaimed in the particular cycle, or on the maximum duration of each
cycle.

In deployments with high lease-pool utilization, relatively short valid
lifetimes, and frequently disconnecting clients which allow leases to
expire, the number of expired leases requiring reclamation at any given
time may rise significantly. In this case, it is often desirable to
apply restrictions to the maximum duration of a reclamation cycle or the
maximum number of leases reclaimed in a cycle. The following
configuration demonstrates how this can be done:

"Dhcp4": {
 ...

 "expired-leases-processing": {
 "reclaim-timer-wait-time": 3,
 "max-reclaim-leases": 100,
 "max-reclaim-time": 50,
 "unwarned-reclaim-cycles": 10,
 },

 ...
}

The max-reclaim-leases parameter limits the number of leases
reclaimed in a single cycle to 100. The max-reclaim-time limits the
maximum duration of each cycle to 50ms. The lease-reclamation cycle will
be interrupted if either of these limitations is reached. The
reclamation of any unreclaimed leases will be attempted in subsequent
cycles.

The following diagram illustrates the behavior of the system in the
presence of many expired leases, when the limits are applied for the
reclamation cycles:

| c1 | | c2 | | c3 | | c4 |
|<-->|<-------------->|<-->|<-------------->|<-->|<-------------->|<-->|<--
-->
|50ms| 3s |50ms| 3s |50ms| 3s |50ms| time

This diagram demonstrates the case when each reclamation cycle takes
more than 50ms, and thus is interrupted according to the value of the
max-reclaim-time. This results in equal durations of all reclamation
cycles over time. Note that in this example the limitation of the
maximum 100 leases is not reached. This may be the case when database
transactions or callouts in the hook libraries attached to the
server are slow. Regardless, the chosen values for either the maximum
number of leases or a maximum cycle time strongly depend on the
particular deployment, the lease database backend being used, and any
hooks libraries, etc. Administrators may need to experiment to tune the
system to suit the dynamics of their deployment.

It is important to realize that with the use of these limits, there is a
risk that expired leases will accumulate faster than the server can
reclaim them. This should not be a problem if the server is dealing with
a temporary burst of expirations, because it should be able to
eventually deal with them over time. However, if leases expire at a high
rate for a long period of time, the unreclaimed leases will pile up in
the database. To notify the administrator that the current configuration
does not satisfy the needs for reclamation of expired leases, the server
issues a warning message in the log if it is unable to reclaim all
leases within several reclamation cycles. The number of cycles after
which such a warning is issued is specified with the
unwarned-reclaim-cycles configuration parameter.

Setting the reclaim-timer-wait-time to 0 disables periodic
reclamation of the expired leases.

10.4. Configuring Lease Affinity

Suppose that a laptop goes into sleep mode after a period of user
inactivity. While the laptop is in sleep mode, its DHCP client will not
renew leases obtained from the server and these leases will eventually
expire. When the laptop wakes up, it is often desirable for it to
continue using its previous assigned IP addresses. To facilitate this,
the server needs to correlate returning clients with their expired
leases. When the client returns, the server will first check for those
leases and re-assign them if they have not been assigned to another
client. The ability of the server to re-assign the same lease to a
returning client is referred to as “lease affinity.”

When lease affinity is enabled (i.e. when hold-reclaimed-time is
configured to a value greater than zero), the server will still reclaim
leases according to the parameters described in Configuring Lease Reclamation,
but the reclaimed leases will be
held in the database for a specified amount of
time rather than removed. When the client returns, the server will first verify whether
there are any reclaimed leases associated with this client and will
re-assign them if possible. However, it is important to note that any
reclaimed lease may be assigned to another client if that client
specifically asks for it. Therefore, lease affinity does not guarantee
that the reclaimed lease will be available for the client who used it
before; it merely increases the chances of the client being assigned
the same lease. If the lease pool is small - namely, in
DHCPv4, for which address space is small - there is an increased
likelihood that the expired lease will be assigned to another client.

Consider the following configuration:

"Dhcp4": {
 ...

 "expired-leases-processing": {
 "reclaim-timer-wait-time": 3,
 "hold-reclaimed-time": 1800,
 "flush-reclaimed-timer-wait-time": 5
 },

 ...
}

The hold-reclaim-time specifies how many seconds after an expiration
a reclaimed lease should be held in the database for re-assignment to
the same client. In the example given above, reclaimed leases will be
held for 30 minutes (1800s) after their expiration. During this time,
the server will likely be able to re-assign the same lease to the
returning client, unless another client specifically requests this lease and the
server assigns it.

The server must periodically remove reclaimed leases for which the time
indicated by hold-reclaim-time has elapsed. The
flush-reclaimed-timer-wait-time parameter controls how often the
server removes such leases. In the example provided above, the server
will initiate removal of such leases five seconds after the previous
removal attempt was completed. Setting this value to 0 disables lease
affinity, meaning leases will be removed from the lease database
when they are reclaimed. If lease affinity is enabled, it is recommended
that hold-reclaim-time be set to a value significantly higher than
the reclaim-timer-wait-time, as timely removal of expired-reclaimed
leases is less critical than the removal process, which may impact
server responsiveness.

There is no guarantee that lease affinity will work every time; if a
server is running out of addresses, it will reassign expired addresses
to new clients. Also, clients can request specific addresses and the
server will try to honor such requests if possible. Administrators who want to
ensure a client keeps its address, even after periods of inactivity,
should consider using host reservations or leases with very long lifetimes.

10.5. Reclaiming Expired Leases via Command

The leases-reclaim command can be used to trigger lease reclamation at
any time. Please consult the The leases-reclaim Command section
for details about using this command.

11. Congestion Handling

11.1. What is Congestion?

Congestion occurs when servers are subjected to client queries faster
than those queries can be processed. As a result, the servers begin accumulating
a backlog of pending queries. The longer the high rate of traffic
continues, the farther behind the servers fall. Depending on the client
implementations, those that fail to get leases either give up or simply
continue to retry forever. In the former case, the server may eventually
recover, but the latter case is a vicious cycle from which the server is
unable to escape.

In a well-planned deployment, the number and capacity of servers is
matched to the maximum client loads expected. As long as capacity is
matched to load, congestion does not occur. If the load is routinely too
heavy, then the deployment needs to be re-evaluated. Congestion
typically occurs when there is a network event that causes overly large
numbers of clients to simultaneously need leases, such as recovery after
a network outage.

The goal of congestion handling is to help servers mitigate the peak in
traffic by fulfilling as many of the most relevant requests as possible
until the congestion subsides.

Prior to Kea 1.5, kea-dhcp4 and kea-dhcp6 read inbound packets directly
from the interface sockets in the main application thread, which meant
that packets waiting to be processed were held in socket buffers
themselves. Once these buffers filled, any new packets were discarded.
Under swamped conditions, the servers ended up processing client packets
that were no longer relevant, or worse, were redundant. In other words,
the packets waiting in the FIFO socket buffers became increasingly
stale.

11.2. Configuring Congestion Handling

Kea 1.5 introduced the Congestion Handling feature. Congestion handling
offers the ability to configure the server to use a separate thread to
read packets from the interface socket buffers. As the thread reads
packets from the buffers, they are added to an internal packet queue,
and the server’s main application thread processes packets from this
queue rather than from the socket buffers. By structuring it this way, a
configurable layer has been introduced which can make decisions on which
packets to process, how to store them, and the order in which they are
processed by the server.

The default packet queue implementation for both kea-dhcp4 and kea-dhcp6
is a simple ring buffer. Once it reaches capacity, new packets get added
to the back of the queue by discarding packets from the front of the
queue. Rather than always discarding the newest packets, Kea now always
discards the oldest packets. The capacity of the buffer, i.e the maximum
number of packets the buffer can contain, is configurable. A reasonable
starting point would be to match the capacity to the number of leases
per second a specific installation of Kea can handle. Please note that this
figure varies widely depending on the specifics of an individual deployment.

As there is no one algorithm that will best handle the dynamics of all
sites, and because over time new approaches will evolve, the packet
queue is implemented as a plug-in, which can replaced by a custom queue
implementation via a hook library. This should make it straightforward
for interested parties to experiment with their own solutions.
(Developers can refer to isc::dhcp::PacketQueue and
isc::dhcp::PacketQueueMgr, described in the
Kea Developer’s Guide [https://jenkins.isc.org/job/Kea_doc/doxygen/index.html].)

Packet queue behavior is configured in both kea-dhcp4 and kea-dhcp6
servers through an optional, top-level, configuration element,
dhcp-queue-control. Omitting this element disables packet queueing:

"dhcp-queue-control": {
 "enable-queue": true|false,
 "queue-type": "queue type",
 "capacity" : n
}

where:

	enable-queue true|false - enables or disables packet queueing.
When true, the server processes packets from the packet queue, which
is filled by a separate thread. When false, the server processes
packets directly from the socket buffers in the main thread. It is
disabled by default.

	queue-type - name of the queue implementation to use. This value
exists so that custom implementations can be registered (via a hook
library) and then selected. There is a default packet queue
implementation that is pre-registered during server start up:
“kea-ring4” for kea-dhcp4 and “kea-ring6” for kea-dhcp6.

	capacity = n [packets] - this is the maximum number of packets the
queue can hold before packets are discarded. The optimal value for
this is extremely site-dependent. The default value is 500 for both
kea-ring4 and kea-ring6.

The following example enables the default packet queue for kea-dhcp4,
with a queue capacity of 250 packets:

"Dhcp4":
{
 ...
 "dhcp-queue-control": {
 "enable-queue": true,
 "queue-type": "kea-ring4",
 "capacity" : 250
 },
 ...
}

The following example enables the default packet queue for kea-dhcp6,
with a queue capacity of 300 packets:

"Dhcp6":
{
 ...
 "dhcp-queue-control": {
 "enable-queue": true,
 "queue-type": "kea-ring6",
 "capacity" : 300
 },
 ...
}

12. The DHCP-DDNS Server

12.1. Overview

The DHCP-DDNS Server (kea-dhcp-ddns, known informally as D2) conducts
the client side of the Dynamic DNS protocol (DDNS, defined in RFC
2136 [https://tools.ietf.org/html/rfc2136]) on behalf of the DHCPv4
and DHCPv6 servers (kea-dhcp4 and kea-dhcp6 respectively). The DHCP
servers construct DDNS update requests, known as Name Change Requests
(NCRs), based on DHCP lease change events and then post them to D2. D2
attempts to match each request to the appropriate DNS server(s) and
carries out the necessary conversation with those servers to update the
DNS data.

12.1.1. DNS Server Selection

In order to match a request to the appropriate DNS servers, D2 must have
a catalog of servers from which to select. In fact, D2 has two such
catalogs, one for forward DNS and one for reverse DNS; these catalogs
are referred to as DDNS Domain Lists. Each list consists of one or more
named DDNS Domains. Further, each DDNS Domain has a list of one or more
DNS servers that publish the DNS data for that domain.

When conducting forward domain matching, D2 compares the fully qualified
domain name (FQDN) in the request against the name of each Forward DDNS
Domain in its catalog. The domain whose name matches the longest portion
of the FQDN is considered the best match. For example, if the FQDN is
“myhost.sample.example.com.”, and there are two forward domains in the
catalog, “sample.example.com.” and “example.com.”, the former is
regarded as the best match. In some cases, it may not be possible to
find a suitable match. Given the same two forward domains there would be
no match for the FQDN, “bogus.net”, so the request would be rejected.
Finally, if there are no Forward DDNS Domains defined, D2 simply
disregards the forward update portion of requests.

When conducting reverse domain matching, D2 constructs a reverse FQDN
from the lease address in the request and compares that against the name
of each Reverse DDNS Domain. Again, the domain whose name matches the
longest portion of the FQDN is considered the best match. For instance,
if the lease address is “172.16.1.40” and there are two reverse domains
in the catalog, “1.16.172.in-addr.arpa.” and “16.172.in-addr.arpa”, the
former is the best match. As with forward matching, it may not find a
suitable match. Given the same two domains, there would be no match for
the lease address, “192.168.1.50”, and the request would be rejected.
Finally, if there are no Reverse DDNS Domains defined, D2 simply
disregards the reverse update portion of requests.

12.1.2. Conflict Resolution

D2 implements the conflict resolution strategy prescribed by RFC
4703 [https://tools.ietf.org/html/rfc4703]. Conflict resolution is
intended to prevent different clients from mapping to the same FQDN at
the same time. To make this possible, the RFC requires that forward DNS
entries for a given FQDN must be accompanied by a DHCID resource record
(RR). This record contains a client identifier that uniquely identifies
the client to whom the name belongs. Furthermore, any DNS updater that
wishes to update or remove existing forward entries for an FQDN may only
do so if their client matches that of the DHCID RR.

In other words, the DHCID RR maps an FQDN to the client to whom it
belongs, and thereafter changes to that mapping should only be done by
or at the behest of that client.

Currently, conflict detection is always performed.

12.1.3. Dual-Stack Environments

RFC 4703, section
5.2, [https://tools.ietf.org/html/rfc4703#section-5.2] describes
issues that may arise with dual-stack clients. These are clients that
wish to have have both IPv4 and IPv6 mappings for the same FQDN. For
this to work properly, the clients are required to embed their IPv6 DUID
within their IPv4 client identifier option, as described in RFC
4703 [https://tools.ietf.org/html/rfc4361]. In this way, DNS updates
for both IPv4 and IPv6 can be managed under the same DHCID RR. Kea does not
currently support this feature.

12.2. Starting and Stopping the DHCP-DDNS Server

kea-dhcp-ddns is the Kea DHCP-DDNS server and, due to the nature of
DDNS, it runs alongside either the DHCPv4 or DHCPv6 component (or both).
Like other parts of Kea, it is a separate binary that can be run on its
own or through keactrl (see Managing Kea with keactrl). In normal
operation, controlling kea-dhcp-ddns with keactrl is
recommended; however, it is also possible to run the DHCP-DDNS server
directly. It accepts the following command-line switches:

	-c file - specifies the configuration file. This is the only
mandatory switch.

	-d - specifies whether the server logging should be switched to
debug/verbose mode. In verbose mode, the logging severity and
debuglevel specified in the configuration file are ignored and
“debug” severity and the maximum debuglevel (99) are assumed. The
flag is convenient for temporarily switching the server into maximum
verbosity, e.g. when debugging.

	-v - displays the Kea version and exits.

	-W - displays the Kea configuration report and exits. The report
is a copy of the config.report file produced by ./configure;
it is embedded in the executable binary.

	-t file - specifies the configuration file to be tested.
Kea-dhcp-ddns will attempt to load it and will conduct sanity checks.
Note that certain checks are possible only while running the actual
server. The actual status is reported with an exit code (0 =
configuration looks ok, 1 = error encountered). Kea prints out log
messages to standard output and errors to standard error when testing
the configuration.

The config.report may also be accessed more directly, via the
following command. The binary path may be found in the install
directory or in the .libs subdirectory in the source tree. For
example: kea/src/bin/d2/.libs/kea-dhcp-ddns.

strings path/kea-dhcp-ddns | sed -n 's/;;;; //p'

Upon startup, the module will load its configuration and begin listening
for NCRs based on that configuration.

During startup, the server will attempt to create a PID file of the form:
[runstatedir]/[conf name].kea-dhcp-ddns.pid where:

	runstatedir - is the value as passed into the build configure
script; it defaults to “/usr/local/var/run”. Note that this value may be
overridden at runtime by setting the environment variable
KEA_PIDFILE_DIR. This is intended primarily for testing purposes.

	conf name - is the configuration file name used to start the server,
minus all preceding paths and the file extension. For example, given
a pathname of “/usr/local/etc/kea/myconf.txt”, the portion used would
be “myconf”.

If the file already exists and contains the PID of a live process, the
server will issue a DHCP_DDNS_ALREADY_RUNNING log message and exit. It
is possible, though unlikely, that the file is a remnant of a system
crash and the process to which the PID belongs is unrelated to Kea. In
such a case it is necessary to manually delete the PID file.

12.3. Configuring the DHCP-DDNS Server

Before starting the kea-dhcp-ddns module for the first time, a
configuration file must be created. The following default configuration
is a template that can be customized to individual requirements.

"DhcpDdns": {
 "ip-address": "127.0.0.1",
 "port": 53001,
 "dns-server-timeout": 100,
 "ncr-protocol": "UDP",
 "ncr-format": "JSON",
 "tsig-keys": [],
 "forward-ddns": {
 "ddns-domains": []
 },
 "reverse-ddns": {
 "ddns-domains": []
 }
}

The configuration can be divided into the following sections, each of
which is described below:

	Global Server Parameters - define values which control connectivity and
global server behavior.

	Control Socket - defines the Control Socket type and name.

	TSIG Key Info - defines the TSIG keys used for secure traffic with
DNS servers.

	Forward DDNS - defines the catalog of Forward DDNS Domains.

	Reverse DDNS - defines the catalog of Forward DDNS Domains.

12.3.1. Global Server Parameters

	ip-address - the IP address on which D2 listens for requests. The
default is the local loopback interface at address 127.0.0.1.
Either an IPv4 or IPv6 address may be specified.

	port - the port on which D2 listens for requests. The default value
is 53001.

	dns-server-timeout - the maximum amount of time, in milliseconds,
that D2 will wait for a response from a DNS server to a single DNS
update message.

	ncr-protocol - the socket protocol to use when sending requests to
D2. Currently only UDP is supported.

	ncr-format - the packet format to use when sending requests to D2.
Currently only JSON format is supported.

D2 must listen for change requests on a known address and port. By
default it listens at 127.0.0.1 on port 53001. The following example
illustrates how to change D2’s global parameters so it will listen at
192.168.1.10 port 900:

"DhcpDdns": {
 "ip-address": "192.168.1.10",
 "port": 900,
 ...
 }
}

Warning

It is possible for a malicious attacker to send bogus
NameChangeRequests to the DHCP-DDNS server. Addresses other than the
IPv4 or IPv6 loopback addresses (127.0.0.1 or ::1) should only be
used for testing purposes; note that local users may still
communicate with the DHCP-DDNS server.

Note

If the ip-address and port are changed, the corresponding values in
the DHCP servers’ “dhcp-ddns” configuration section must be changed.

12.3.2. Management API for the D2 Server

The management API allows the issuing of specific management commands,
such as configuration retrieval or shutdown. For more details, see
Management API. Currently, the only supported communication
channel type is UNIX stream socket. By default there are no sockets
open; to instruct Kea to open a socket, the following entry in the
configuration file can be used:

"DhcpDdns": {
 "control-socket": {
 "socket-type": "unix",
 "socket-name": "/path/to/the/unix/socket"
 },
 ...
}

The length of the path specified by the socket-name parameter is
restricted by the maximum length for the UNIX socket name on the
operating system, i.e. the size of the sun_path field in the
sockaddr_un structure, decreased by 1. This value varies on
different operating systems between 91 and 107 characters. Typical
values are 107 on Linux and 103 on FreeBSD.

Communication over the control channel is conducted using JSON structures.
See the Control Channel section in the Kea Developer’s
Guide [https://jenkins.isc.org/job/Kea_doc/doxygen/d2/d96/ctrlSocket.html]
for more details.

The D2 server supports the following operational commands:

	build-report

	config-get

	config-reload

	config-set

	config-test

	config-write

	list-commands

	shutdown

	status-get

	version-get

12.3.3. TSIG Key List

A DDNS protocol exchange can be conducted with or without TSIG (defined
in RFC 2845 [https://tools.ietf/org/html/rfc2845]). This
configuration section allows the administrator to define the set of TSIG
keys that may be used in such exchanges.

To use TSIG when updating entries in a DNS domain, a key must be defined
in the TSIG Key list and referenced by name in that domain’s
configuration entry. When D2 matches a change request to a domain, it
checks whether the domain has a TSIG key associated with it. If so, D2
uses that key to sign DNS update messages sent to and verify
responses received from the domain’s DNS server(s). For each TSIG key
required by the DNS servers that D2 will be working with, there must be
a corresponding TSIG key in the TSIG Key list.

As one might gather from the name, the tsig-key section of the D2
configuration lists the TSIG keys. Each entry describes a TSIG key used
by one or more DNS servers to authenticate requests and sign responses.
Every entry in the list has three parameters:

	name - is a unique text label used to identify this key within the
list. This value is used to specify which key (if any) should be used
when updating a specific domain. As long as the name is unique its
content is arbitrary, although for clarity and ease of maintenance it
is recommended that it match the name used on the DNS server(s). This
field cannot be blank.

	algorithm - specifies which hashing algorithm should be used with
this key. This value must specify the same algorithm used for the key
on the DNS server(s). The supported algorithms are listed below:

	HMAC-MD5

	HMAC-SHA1

	HMAC-SHA224

	HMAC-SHA256

	HMAC-SHA384

	HMAC-SHA512

This value is not case-sensitive.

	digest-bits - is used to specify the minimum truncated length in
bits. The default value 0 means truncation is forbidden; non-zero
values must be an integral number of octets, and be greater than both
80 and half of the full length. (Note that in BIND 9 this parameter
is appended after a dash to the algorithm name.)

	secret - is used to specify the shared secret key code for this
key. This value is case-sensitive and must exactly match the value
specified on the DNS server(s). It is a base64-encoded text value.

As an example, suppose that a domain D2 will be updating is maintained
by a BIND 9 DNS server, which requires dynamic updates to be secured
with TSIG. Suppose further that the entry for the TSIG key in BIND 9’s
named.conf file looks like this:

:
key "key.four.example.com." {
 algorithm hmac-sha224;
 secret "bZEG7Ow8OgAUPfLWV3aAUQ==";
};
:

By default, the TSIG Key list is empty:

"DhcpDdns": {
 "tsig-keys": [],
 ...
}

We must extend the list with a new key:

"DhcpDdns": {
 "tsig-keys": [
 {
 "name": "key.four.example.com.",
 "algorithm": "HMAC-SHA224",
 "secret": "bZEG7Ow8OgAUPfLWV3aAUQ=="
 }
],
 ...
}

These steps would be repeated for each TSIG key needed. Note that the
same TSIG key can be used with more than one domain.

12.3.4. Forward DDNS

The Forward DDNS section is used to configure D2’s forward update
behavior. Currently it contains a single parameter, the catalog of
Forward DDNS Domains, which is a list of structures.

"DhcpDdns": {
 "forward-ddns": {
 "ddns-domains": []
 },
 ...
}

By default, this list is empty, which will cause the server to ignore
the forward update portions of requests.

12.3.4.1. Adding Forward DDNS Domains

A Forward DDNS Domain maps a forward DNS zone to a set of DNS servers
which maintain the forward DNS data (i.e. name-to-address mapping) for
that zone. Each zone served needs one Forward DDNS Domain. It may very
well be that some or all of the zones are maintained by the same
servers, but one DDNS Domain is still needed for each zone. Remember that
matching a request to the appropriate server(s) is done by zone and a
DDNS Domain only defines a single zone.

This section describes how to add Forward DDNS Domains; repeat these
steps for each Forward DDNS Domain desired. Each Forward DDNS Domain has
the following parameters:

	name - the fully qualified domain name (or zone) that this DDNS
Domain can update. This value is compared against the request FQDN
during forward matching. It must be unique within the catalog.

	key-name - if TSIG is used with this domain’s servers, this value
should be the name of the key from the TSIG Key list. If the
value is blank (the default), TSIG will not be used in DDNS
conversations with this domain’s servers.

	dns-servers - a list of one or more DNS servers which can conduct
the server side of the DDNS protocol for this domain. The servers are
used in a first-to-last preference; in other words, when D2 begins to
process a request for this domain, it will pick the first server in
this list and attempt to communicate with it. If that attempt fails,
D2 will move to next one in the list and so on until either it
is successful or the list is exhausted.

To create a new Forward DDNS Domain, add a new domain element and set
its parameters:

"DhcpDdns": {
 "forward-ddns": {
 "ddns-domains": [
 {
 "name": "other.example.com.",
 "key-name": "",
 "dns-servers": [
]
 }
]
 }
}

It is possible to add a domain without any servers; however, if that
domain matches a request, the request will fail. To make the domain
useful, at least one DNS server must be added to it.

12.3.4.1.1. Adding Forward DNS Servers

This section describes how to add DNS servers to a Forward DDNS Domain.
Repeat these instructions as needed for all the servers in each domain.

Forward DNS Server entries represent actual DNS servers which support
the server side of the DDNS protocol. Each Forward DNS Server has the
following parameters:

	hostname - the resolvable host name of the DNS server; this
parameter is not yet implemented.

	ip-address - the IP address at which the server listens for DDNS
requests. This may be either an IPv4 or an IPv6 address.

	port - the port on which the server listens for DDNS requests. It
defaults to the standard DNS service port of 53.

To create a new Forward DNS Server, a new server element must be added to
the domain and its parameters filled in. If, for example, the service is
running at “172.88.99.10”, set the Forward DNS Server as follows:

"DhcpDdns": {
 "forward-ddns": {
 "ddns-domains": [
 {
 "name": "other.example.com.",
 "key-name": "",
 "dns-servers": [
 {
 "hostname": "",
 "ip-address": "172.88.99.10",
 "port": 53
 }
]
 }
]
 }
}

Note

Since “hostname” is not yet supported, the parameter “ip-address”
must be set to the address of the DNS server.

12.3.5. Reverse DDNS

The Reverse DDNS section is used to configure D2’s reverse update
behavior, and the concepts are the same as for the forward DDNS section.
Currently it contains a single parameter, the catalog of Reverse DDNS
Domains, which is a list of structures.

"DhcpDdns": {
 "reverse-ddns": {
 "ddns-domains": []
 }
 ...
}

By default, this list is empty, which will cause the server to ignore
the reverse update portions of requests.

12.3.5.1. Adding Reverse DDNS Domains

A Reverse DDNS Domain maps a reverse DNS zone to a set of DNS servers
which maintain the reverse DNS data (address-to-name mapping) for that
zone. Each zone served needs one Reverse DDNS Domain. It may very well
be that some or all of the zones are maintained by the same servers, but
one DDNS Domain entry is still needed for each zone. Remember that
matching a request to the appropriate server(s) is done by zone and a
DDNS Domain only defines a single zone.

This section describes how to add Reverse DDNS Domains; repeat these
steps for each Reverse DDNS Domain desired. Each Reverse DDNS Domain has
the following parameters:

	name - the fully qualified reverse zone that this DDNS domain can
update. This is the value used during reverse matching, which will
compare it with a reversed version of the request’s lease address.
The zone name should follow the appropriate standards; for example,
to support the IPv4 subnet 172.16.1, the name should be
“1.16.172.in-addr.arpa.”. Similarly, to support an IPv6 subnet of
2001:db8:1, the name should be “1.0.0.0.8.B.D.0.1.0.0.2.ip6.arpa.”
Whatever the name, it must be unique within the catalog.

	key-name - if TSIG is used with this domain’s servers,
this value should be the name of the key from the TSIG Key List. If
the value is blank (the default), TSIG will not be used in DDNS
conversations with this domain’s servers. Currently this value is not
used as TSIG has not been implemented.

	dns-servers - a list of one or more DNS servers which can conduct
the server side of the DDNS protocol for this domain. Currently, the
servers are used in a first-to-last preference; in other words, when
D2 begins to process a request for this domain, it will pick the
first server in this list and attempt to communicate with it. If that
attempt fails, D2 will move to the next one in the list and so on
until either it is successful or the list is exhausted.

To create a new Reverse DDNS Domain, a new domain element must be added
and its parameters set. For example, to support subnet 2001:db8:1::, the
following configuration could be used:

"DhcpDdns": {
 "reverse-ddns": {
 "ddns-domains": [
 {
 "name": "1.0.0.0.8.B.D.0.1.0.0.2.ip6.arpa.",
 "key-name": "",
 "dns-servers": [
]
 }
]
 }
}

It is possible to add a domain without any servers; however, if that
domain matches a request, the request will fail. To make the domain
useful, at least one DNS server must be added to it.

12.3.5.1.1. Adding Reverse DNS Servers

This section describes how to add DNS servers to a Reverse DDNS Domain.
Repeat these instructions as needed for all the servers in each domain.

Reverse DNS Server entries represent actual DNS servers which support
the server side of the DDNS protocol. Each Reverse DNS Server has the
following parameters:

	hostname - the resolvable host name of the DNS server; this value
is currently ignored.

	ip-address - the IP address at which the server listens for DDNS
requests.

	port - the port on which the server listens for DDNS requests. It
defaults to the standard DNS service port of 53.

To create a new reverse DNS Server, a new server
element must be added to the domain and its parameters filled in. If, for example, the
service is running at “172.88.99.10”, then set it as follows:

"DhcpDdns": {
 "reverse-ddns": {
 "ddns-domains": [
 {
 "name": "1.0.0.0.8.B.D.0.1.0.0.2.ip6.arpa.",
 "key-name": "",
 "dns-servers": [
 {
 "hostname": "",
 "ip-address": "172.88.99.10",
 "port": 53
 }
]
 }
]
 }
}

Note

Since “hostname” is not yet supported, the parameter “ip-address”
must be set to the address of the DNS server.

12.3.6. User Contexts in DDNS

Note

User contexts were designed for hook libraries, which are not yet
supported for DHCP-DDNS server configuration.

See Comments and User Context for additional background regarding the user
context idea.

User contexts can be specified on global scope, DDNS domain, DNS server,
TSIG key, and loggers. One other useful usage is the ability to store
comments or descriptions; the parser translates a “comment” entry into a
user context with the entry, which allows a comment to be attached
inside the configuration itself.

12.3.7. Example DHCP-DDNS Server Configuration

This section provides a sample DHCP-DDNS server configuration, based on
a small example network. Let’s suppose our example network has three
domains, each with their own subnet.

Our Example Network

	Domain

	Subnet

	Forward DNS
Servers

	Reverse DNS
Servers

	four.example.com

	192.0.2.0/24

	172.16.1.5,
172.16.2.5

	172.16.1.5,
172.16.2.5

	six.example.com

	2001:db8:1::/64

	3001:1::50

	3001:1::51

	example.com

	192.0.0.0/16

	172.16.2.5

	172.16.2.5

We need to construct three Forward DDNS Domains:

Forward DDNS Domains Needed

	#

	DDNS Domain Name

	DNS Servers

	
	

	four.example.com.

	172.16.1.5, 172.16.2.5

	
	

	six.example.com.

	3001:1::50

	
	

	example.com.

	172.16.2.5

As discussed earlier, FQDN-to-domain matching is based on the longest
match. The FQDN, “myhost.four.example.com.”, will match the first domain
(“four.example.com”) while “admin.example.com.” will match the third
domain (“example.com”). The FQDN, “other.example.net.”, will fail to
match any domain and is rejected.

The following example configuration specifies the Forward DDNS Domains.

"DhcpDdns": {
 "comment": "example configuration: forward part",
 "forward-ddns": {
 "ddns-domains": [
 {
 "name": "four.example.com.",
 "key-name": "",
 "dns-servers": [
 { "ip-address": "172.16.1.5" },
 { "ip-address": "172.16.2.5" }
]
 },
 {
 "name": "six.example.com.",
 "key-name": "",
 "dns-servers": [
 { "ip-address": "2001:db8::1" }
]
 },
 {
 "name": "example.com.",
 "key-name": "",
 "dns-servers": [
 { "ip-address": "172.16.2.5" }
],
 "user-context": { "backup": false }
 },

]
 }
}

Similarly, we need to construct the three Reverse DDNS Domains:

Reverse DDNS Domains Needed

	#

	DDNS Domain Name

	DNS Servers

	
	

	2.0.192.in-addr.arpa.

	172.16.1.5, 172.16.2.5

	
	

	1.0.0.0.8.d.b.0.1.0.0.2.ip6.arpa.

	3001:1::50

	
	

	0.182.in-addr.arpa.

	172.16.2.5

An address of “192.0.2.150” will match the first domain,
“2001:db8:1::10” will match the second domain, and “192.0.50.77” the
third domain.

These Reverse DDNS Domains are specified as follows:

"DhcpDdns": {
 "comment": "example configuration: reverse part",
 "reverse-ddns": {
 "ddns-domains": [
 {
 "name": "2.0.192.in-addr.arpa.",
 "key-name": "",
 "dns-servers": [
 { "ip-address": "172.16.1.5" },
 { "ip-address": "172.16.2.5" }
]
 }
 {
 "name": "1.0.0.0.8.B.D.0.1.0.0.2.ip6.arpa.",
 "key-name": "",
 "dns-servers": [
 { "ip-address": "2001:db8::1" }
]
 }
 {
 "name": "0.192.in-addr.arpa.",
 "key-name": "",
 "dns-servers": [
 { "ip-address": "172.16.2.5" }
]
 }
]
 }
}

12.4. DHCP-DDNS Server Limitations

The following are the current limitations of the DHCP-DDNS Server.

	Requests received from the DHCP servers are placed in a queue until
they are processed. Currently, all queued requests are lost if the
server shuts down.

12.5. Supported Standards

The following RFCs are supported by the DHCP-DDNS server:

	Secret Key Transaction Authentication for DNS (TSIG), RFC 2845 [https://tools.ietf.org/html/rfc2845]: All DNS Update packets sent and
received by DHCP-DDNS server can be protected by TSIG signatures.

	Dynamic Updates in the Domain Name System (DNS UPDATE), RFC 2136 [https://tools.ietf.org/html/rfc2136]: The whole DNS Update mechanism is
supported.

	Resolution of Fully Qualified Domain Name (FQDN) Conflicts among Dynamic Host
Configuration Protocol (DHCP) Clients, RFC 4703 [https://tools.ietf.org/html/rfc4703]: The DHCP-DDNS takes care of the
conflict resolution. This capability is used by DHCPv4 and DHCPv6 servers.

	A DNS Resource Record (RR) for Encoding Dynamic Host Configuration Protocol
(DHCP) Information (DHCID RR), RFC 4701 [https://tools.ietf.org/html/rfc4701]: The DHCP-DDNS server uses the DHCID
records.

13. The LFC Process

13.1. Overview

kea-lfc is a service process that removes redundant information from
the files used to provide persistent storage for the Memfile database
backend. This service is written to run as a standalone process.

While kea-lfc can be started externally, there is usually no need to
do s. kea-lfc is run on a periodic basis by the Kea DHCP servers.

The process operates on a set of files, using them to receive input and
output of the lease entries and to indicate what stage the process is
in, in the event of an interruption. Currently the caller must supply
names for all of the files.

13.2. Command-Line Options

kea-lfc is run as follows:

kea-lfc [-4 | -6] -c config-file -p pid-file -x previous-file -i copy-file -o output-file -f finish-file

The argument -4 or -6 selects the protocol version of the lease
files.

The -c argument specifies the configuration file. This is required,
but is not currently used by the process.

The -p argument specifies the PID file. When the kea-lfc process
starts, it attempts to determine whether another instance of the process
is already running by examining the PID file. If one is already running,
the new process is terminated; if one is not running, Kea writes its PID
into the PID file.

The other filenames specify where the kea-lfc process should look
for input, write its output, and perform its bookkeeping:

	previous — when kea-lfc starts, this is the result of any
previous run of kea-lfc. When kea-lfc finishes, it is the
result of this run. If kea-lfc is interrupted before completing,
this file may not exist.

	input — before the DHCP server invokes kea-lfc, it moves
the current lease file here and then calls kea-lfc with this file.

	output — This is the temporary file where kea-lfc writes the
leases. Once the file has finished writing, it will be moved to the
finish file (see below).

	finish — This is another temporary file kea-lfc uses for
bookkeeping. When kea-lfc completes writing the output file, it
moves the output to this file name. After kea-lfc finishes deleting the
other files (previous and input), it moves this file to the previous
lease file. By moving the files in this fashion, the kea-lfc and
the DHCP server processes can determine the correct file to use even
if one of the processes were interrupted before completing its task.

There are several additional arguments, mostly for debugging purposes.
-d sets the logging level to debug. -v and -V print out
version stamps, with -V providing a longer form. -h prints out
the usage string.

14. Client Classification

14.1. Client Classification Overview

In certain cases it is useful to differentiate among different types
of clients and treat them accordingly. Common reasons include:

	The clients represent different pieces of topology, e.g. a cable
modem is not the same as the clients behind that modem.

	The clients have different behavior, e.g. a smartphone behaves
differently from a laptop.

	The clients require different values for some options, e.g. a
docsis3.0 cable modem requires different settings from a docsis2.0
cable modem.

To make management easier, different clients can be grouped into a
client class to receive common options.

An incoming packet can be associated with a client class in several
ways:

	Implicitly, using a vendor class option or another built-in condition.

	Using an expression which evaluates to true.

	Using static host reservations, a shared network, a subnet, etc.

	Using a hook.

It is envisaged that client classification will be used to change the
behavior of almost any part of the DHCP message processing. There are
currently five mechanisms that take advantage of client classification:
subnet selection, pool selection, definition of DHCPv4 private (codes
224-254) and code 43 options, assignment of different options, and, for
DHCPv4 cable modems, the setting of specific options for use with the
TFTP server address and the boot file field.

The classification process is conducted in several steps:

	The ALL class is associated with the incoming packet.

	Vendor class options are processed.

	Classes with matching expressions and not marked for later evaluation (“on
request” or depending on the KNOWN/UNKNOWN built-in classes)
are processed in the order they are defined in the
configuration; the boolean expression is evaluated and, if it
returns true (“match”), the incoming packet is associated with the
class.

	If a private or code 43 DHCPv4 option is received, it is decoded
following its client class or global (or, for option 43, last
resort) definition.

	When the incoming packet belongs the special class, DROP, it is
dropped and an informational message is logged with the packet
information.

	A subnet is chosen, possibly based on the class information when
some subnets are reserved. More precisely: when choosing a subnet,
the server iterates over all of the subnets that are feasible given
the information found in the packet (client address, relay address,
etc.). It uses the first subnet it finds that either doesn’t have a
class associated with it, or has a class which matches one of the
packet’s classes.

	The server looks for host reservations. If an identifier from the
incoming packet matches a host reservation in the subnet or shared
network, the packet is associated with the KNOWN class and all
classes of the host reservation. If a reservation is not found, the
packet is assigned to the UNKNOWN class.

	Classes with matching expressions - directly, or indirectly using the
KNOWN/UNKNOWN built-in classes and not marked for later evaluation (“on
request”) - are processed in the order they are defined
in the configuration; the boolean expression is evaluated and, if it
returns true (“match”), the incoming packet is associated with the
class. After a subnet is selected, the server determines whether
there is a reservation for a given client. Therefore, it is not
possible to use KNOWN/UNKNOWN classes to select a shared network or
a subnet, nor to make DROP class dependent of KNOWN/UNKNOWN classes.

	If needed, addresses and prefixes from pools are assigned, possibly
based on the class information when some pools are reserved for
class members.

	Classes marked as “required” are evaluated in the order in which
they are listed: first the shared network, then the subnet, and
finally the pools that assigned resources belong to.

	Options are assigned, again possibly based on the class information
in the order that classes were associated with the incoming packet.
For DHCPv4 private and code 43 options, this includes class local
option definitions.

Note

Client classes in Kea follow the order in which they are specified in
the configuration (vs. alphabetical order). Required classes follow
the order in which they are required.

When determining which options to include in the response, the server
examines the union of options from all of the assigned classes. If two
or more classes include the same option, the value from the first class
examined is used; classes are examined in the order they were
associated, so ALL is always the first class and matching required
classes are last.

As an example, imagine that an incoming packet matches two classes.
Class “foo” defines values for an NTP server (option 42 in DHCPv4) and
an SMTP server (option 69 in DHCPv4), while class “bar” defines values
for an NTP server and a POP3 server (option 70 in DHCPv4). The server
examines the three options - NTP, SMTP, and POP3 - and returns any that
the client requested. As the NTP server was defined twice, the server
chooses only one of the values for the reply; the class from which the
value is obtained determined as explained in the previous paragraph.

Note

Care should be taken with client classification, as it is easy for
clients that do not meet any class criteria to be denied service
altogether.

14.2. Built-in Client Classes

Some classes are built-in, so they do not need to be defined. The main
example uses Vendor Class information: the server checks whether an
incoming DHCPv4 packet includes the vendor class identifier option (60)
or an incoming DHCPv6 packet includes the vendor class option (16). If
it does, the content of that option is prepended with “VENDOR_CLASS_”
and the result is interpreted as a class. For example, modern cable
modems send this option with value “docsis3.0”, so the packet belongs to
class “VENDOR_CLASS_docsis3.0”.

The “HA_” prefix is used by the High Availability hooks library to
designate certain servers to process DHCP packets as a result of load
balancing. The class name is constructed by prepending the “HA_” prefix
to the name of the server which should process the DHCP packet. This
server uses an appropriate pool or subnet to allocate IP addresses
(and/or prefixes), based on the assigned client classes. The details can
be found in ha: High Availability.

The BOOTP class is used by the BOOTP hook library to classify and
respond to inbound BOOTP queries.

Other examples are the ALL class, which all incoming packets belong to,
and the KNOWN class, assigned when host reservations exist for a
particular client. By convention, built-in classes’ names begin with all
capital letters.

Currently recognized built-in class names are ALL, KNOWN and UNKNOWN, and the
prefixes VENDOR_CLASS_, HA_, AFTER_, and EXTERNAL_. Although the AFTER_
prefix is a provision for an as-yet-unwritten hook, the EXTERNAL_
prefix can be freely used; built-in classes are implicitly defined so
they never raise warnings if they do not appear in the configuration.

14.3. Using Expressions in Classification

The expression portion of a classification definition contains operators
and values. All values are currently strings; operators take a string or
strings and return another string. When all the operations have
completed, the result should be a value of “true” or “false”. The packet
belongs to the class (and the class name is added to the list of
classes) if the result is “true”. Expressions are written in standard
format and can be nested.

Expressions are pre-processed during the parsing of the configuration
file and converted to an internal representation. This allows certain
types of errors to be caught and logged during parsing. Examples of
these errors include an incorrect number or type of argument to an
operator. The evaluation code also checks for this class of error and
generally throws an exception, though this should not occur in a
normally functioning system.

Other issues, such as the starting position of a substring being
outside of the substring or an option not existing in the packet, result
in the operator returning an empty string.

Dependencies between classes are also checked. For instance, forward
dependencies are rejected when the configuration is parsed; an
expression can only depend on already-defined classes (including built-in
classes) which are evaluated in a previous or the same evaluation phase.
This does not apply to the KNOWN or UNKNOWN classes.

List of Classification Values

	Name

	Example expression

	Example value

	String literal

	‘example’

	‘example’

	Hexadecimal string
literal

	0x5a7d

	‘Z}’

	IP address literal

	10.0.0.1

	0x0a000001

	Integer literal

	123

	‘123’

	Binary content of the
option

	option[123].hex

	‘(content of the
option)’

	Option existence

	option[123].exists

	‘true’

	Binary content of the
sub-option

	option[12].option[34].hex

	‘(content of the
sub-option)’

	Sub-Option existence

	option[12].option[34].exists

	‘true’

	Client class
membership

	member(‘foobar’)

	‘true’

	Known client

	known

	member(‘KNOWN’)

	Unknown client

	unknown

	not member(‘KNOWN’)

	DHCPv4 relay agent
sub-option

	relay4[123].hex

	‘(content of the RAI
sub-option)’

	DHCPv6 Relay Options

	relay6[nest].option[code].hex

	(value of the option)

	DHCPv6 Relay Peer
Address

	relay6[nest].peeraddr

	2001:DB8::1

	DHCPv6 Relay Link
Address

	relay6[nest].linkaddr

	2001:DB8::1

	Interface name of
packet

	pkt.iface

	eth0

	Source address of
packet

	pkt.src

	10.1.2.3

	Destination address
of packet

	pkt.dst

	10.1.2.3

	Length of packet

	pkt.len

	513

	Hardware address in
DHCPv4 packet

	pkt4.mac

	0x010203040506

	Hardware length in
DHCPv4 packet

	pkt4.hlen

	6

	Hardware type in
DHCPv4 packet

	pkt4.htype

	6

	ciaddr field in
DHCPv4 packet

	pkt4.ciaddr

	192.0.2.1

	giaddr field in
DHCPv4 packet

	pkt4.giaddr

	192.0.2.1

	yiaddr field in
DHCPv4 packet

	pkt4.yiaddr

	192.0.2.1

	siaddr field in
DHCPv4 packet

	pkt4.siaddr

	192.0.2.1

	Message type in
DHCPv4 packet

	pkt4.msgtype

	1

	Transaction ID (xid)
in DHCPv4 packet

	pkt4.transid

	12345

	Message type in
DHCPv6 packet

	pkt6.msgtype

	1

	Transaction ID in
DHCPv6 packet

	pkt6.transid

	12345

	Vendor option
existence (any
vendor)

	vendor[*].exists

	true

	Vendor option
existence (specific
vendor)

	vendor[4491].exists

	true

	Enterprise-id from
vendor option

	vendor.enterprise

	4491

	Vendor sub-option
existence

	vendor[4491].option[1].exists

	true

	Vendor sub-option
content

	vendor[4491].option[1].hex

	docsis3.0

	Vendor class option
existence (any
vendor)

	vendor-class[*].exist
s

	true

	Vendor class option
existence (specific
vendor)

	vendor-class[4491].exists

	true

	Enterprise-id from
vendor class option

	vendor-class.enterprise

	4491

	First data chunk from
vendor class option

	vendor-class[4491].data

	docsis3.0

	Specific data chunk
from vendor class
option

	vendor-class[4491].data[3]

	docsis3.0

Notes:

	Hexadecimal strings are converted into a string as expected. The
starting “0X” or “0x” is removed, and if the string is an odd number
of characters a “0” is prepended to it.

	IP addresses are converted into strings of length 4 or 16. IPv4,
IPv6, and IPv4-embedded IPv6 (e.g. IPv4-mapped IPv6) addresses are
supported.

	Integers in an expression are converted to 32-bit unsigned integers
and are represented as four-byte strings; for example, 123 is
represented as 0x0000007b. All expressions that return numeric values
use 32-bit unsigned integers, even if the field in the packet is
smaller. In general, it is easier to use decimal notation to
represent integers, but it is also possible to use hexadecimal
notation. When writing an integer in hexadecimal, care should be
taken to make sure the value is represented as 32 bits, e.g. use
0x00000001 instead of 0x1 or 0x01. Also, make sure the value is
specified in network order, e.g. 1 is represented as 0x00000001.

	“option[code].hex” extracts the value of the option with the code
“code” from the incoming packet. If the packet doesn’t contain the
option, it returns an empty string. The string is presented as a byte
string of the option payload, without the type code or length fields.

	“option[code].exists” checks whether an option with the code “code”
is present in the incoming packet. It can be used with empty options.

	“member(‘foobar’)” checks whether the packet belongs to the client
class “foobar”. To avoid dependency loops, the configuration file
parser verifies whether client classes were already defined or are
built-in, i.e., beginning by “VENDOR_CLASS_”, “AFTER_” (for the
to-come “after” hook) and “EXTERNAL_” or equal to “ALL”, “KNOWN”,
“UNKNOWN”, etc.

“known” and “unknown” are shorthand for “member(‘KNOWN’)” and “not
member(‘KNOWN’)”. Note that the evaluation of any expression using
directly or indirectly the “KNOWN” class is deferred after the host
reservation lookup (i.e. when the “KNOWN” or “UNKNOWN” partition is
determined).

	“relay4[code].hex” attempts to extract the value of the sub-option
“code” from the option inserted as the DHCPv4 Relay Agent Information
(82) option. If the packet doesn’t contain a RAI option, or the RAI
option doesn’t contain the requested sub-option, the expression
returns an empty string. The string is presented as a byte string of
the option payload without the type code or length fields. This
expression is allowed in DHCPv4 only.

	“relay4” shares the same representation types as “option”; for
instance, “relay4[code].exists” is supported.

	“relay6[nest]” allows access to the encapsulations used by any DHCPv6
relays that forwarded the packet. The “nest” level specifies the
relay from which to extract the information, with a value of 0
indicating the relay closest to the DHCPv6 server. Negative values
allow specifying relays counted from the DHCPv6 client, -1 indicating
the relay closest to the client. In general, negative “nest” level is
the same as the number of relays + “nest” level. If the requested
encapsulation doesn’t exist, an empty string “” is returned. This
expression is allowed in DHCPv6 only.

	“relay6[nest].option[code]” shares the same representation types as
“option”; for instance, “relay6[nest].option[code].exists” is
supported.

	Expressions starting with “pkt4” can be used only in DHCPv4. They
allow access to DHCPv4 message fields.

	“pkt6” refers to information from the client request. To access any
information from an intermediate relay use “relay6”. “pkt6.msgtype”
and “pkt6.transid” output a 4-byte binary string for the message type
or transaction id. For example the message type SOLICIT will be
“0x00000001” or simply 1 as in “pkt6.msgtype == 1”.

	Vendor option means the Vendor-Identifying Vendor-Specific Information
option in DHCPv4 (code 125; see Section 4 of RFC
3925 [https://tools.ietf.org/html/rfc3925#section-4]) and
Vendor-Specific Information Option in DHCPv6 (code 17, defined in
Section 21.17 of RFC
8415 [https://tools.ietf.org/html/rfc8415#section-21.17]). Vendor
class option means Vendor-Identifying Vendor Class Option in DHCPv4
(code 124; see Section 3 of RFC
3925 [https://tools.ietf.org/html/rfc3925#section-3]) in DHCPv4 and
Class Option in DHCPv6 (code 16; see Section 21.16 of RFC
8415 [https://tools.ietf.org/html/rfc8415#section-21.16]). Vendor
options may have sub-options that are referenced by their codes.
Vendor class options do not have sub-options, but rather data chunks,
which are referenced by index value. Index 0 means the first data
chunk, index 1 is for the second data chunk (if present), etc.

	In the vendor and vendor-class constructs an asterisk (*) or 0 can be
used to specify a wildcard enterprise-id value, i.e. it will match
any enterprise-id value.

	Vendor Class Identifier (option 60 in DHCPv4) can be accessed using the
option[60] expression.

	RFC 3925 [https://tools.ietf.org/html/rfc3925] and RFC
8415 [https://tools.ietf.org/html/rfc8415] allow for multiple
instances of vendor options to appear in a single message. The client
classification code currently examines the first instance if more
than one appear. For the vendor.enterprise and vendor-class.enterprise
expressions, the value from the first instance is returned. Please
submit a feature request on the
Kea GitLab site [https://gitlab.isc.org/isc-projects/kea] to request
support for multiple instances.

List of Classification Expressions

	Name

	Example

	Description

	Equal

	‘foo’ == ‘bar’

	Compare the two
values and return
“true” or “false”

	Not

	not (‘foo’ == ‘bar’)

	Logical negation

	And

	(‘foo’ == ‘bar’) and
(‘bar’ == ‘foo’)

	Logical and

	Or

	(‘foo’ == ‘bar’) or
(‘bar’ == ‘foo’)

	Logical or

	Substring

	substring(‘foobar’,0,3)

	Return the requested
substring

	Concat

	concat(‘foo’,’bar’)

	Return the
concatenation of the
strings

	Ifelse

	ifelse(‘foo’ ==
‘bar’,’us’,’them’)

	Return the branch
value according to
the condition

	Hexstring

	hexstring(‘foo’, ‘-‘)

	Converts the value to
a hexadecimal string,
e.g. 0a:1b:2c:3e

14.3.1. Logical operators

The Not, And, and Or logical operators are the common operators. Not has
the highest precedence and Or the lowest. And and Or are (left)
associative. Parentheses around a logical expression can be used to
enforce a specific grouping; for instance, in “A and (B or C)” (without
parentheses “A and B or C” means “(A and B) or C”).

14.3.2. Substring

The substring operator “substring(value, start, length)” accepts both
positive and negative values for the starting position and the length.
For “start”, a value of 0 is the first byte in the string while -1 is
the last byte. If the starting point is outside of the original string
an empty string is returned. “length” is the number of bytes to extract.
A negative number means to count towards the beginning of the string but
does not include the byte pointed to by “start”. The special value “all”
means to return all bytes from start to the end of the string. If the length
is longer than the remaining portion of the string, then the entire
remaining portion is returned. Some examples may be helpful:

substring('foobar', 0, 6) == 'foobar'
substring('foobar', 3, 3) == 'bar'
substring('foobar', 3, all) == 'bar'
substring('foobar', 1, 4) == 'ooba'
substring('foobar', -5, 4) == 'ooba'
substring('foobar', -1, -3) == 'oba'
substring('foobar', 4, -2) == 'ob'
substring('foobar', 10, 2) == ''

14.3.3. Concat

The concat function “concat(string1, string2)” returns the concatenation
of its two arguments. For instance:

concat('foo', 'bar') == 'foobar'

14.3.4. Ifelse

The ifelse function “ifelse(cond, iftrue, ifelse)” returns the “iftrue”
or “ifelse” branch value following the boolean condition “cond”. For
instance:

ifelse(option[230].exists, option[230].hex, 'none')

14.3.5. Hexstring

The hexstring function “hexstring(binary, separator)” returns the binary
value as its hexadecimal string representation: pairs of hexadecimal
digits separated by the separator, e.g ‘:’, ‘-’, ‘’ (empty separator).

hexstring(pkt4.mac, ':')

Note

The expression for each class is executed on each packet received. If
the expressions are overly complex, the time taken to execute them
may impact the performance of the server. Administrators who need complex or
time-consuming expressions should consider writing a
hook to perform the necessary work.

14.4. Configuring Classes

A class contains five items: a name, a test expression, option data,
an option definition, and an only-if-required flag. The name must exist and
must be unique among all classes. The test expression, option data and
definition, and only-if-required flag are optional.

The test expression is a string containing the logical expression used
to determine membership in the class. The entire expression is in double
quotes.

The option data is a list which defines any options that should be
assigned to members of this class.

The option definition is for DHCPv4 option 43
(DHCPv4 Vendor-Specific Options) and DHCPv4 private options
(DHCPv4 Private Options).

Usually the test expression is evaluated before subnet selection, but in
some cases it is useful to evaluate it later when the subnet,
shared network, or pools are known but output option processing has not yet
been done. The only-if-required flag, false by default, allows the
evaluation of the test expression only when it is required, i.e. in a
require-client-classes list of the selected subnet, shared network, or
pool.

The require-client-classes list which is valid for shared-network,
subnet, and pool scope specifies the classes which are evaluated in the
second pass before output option processing. The list is built in the
reversed precedence order of option data, i.e. an option data item in a
subnet takes precedence over one in a shared network, but required class in
a subnet is added after one in a shared network. The mechanism is
related to the only-if-required flag but it is not mandatory that the
flag be set to true.

In the following example, the class named “Client_foo” is defined. It is
comprised of all clients whose client ids (option 61) start with the
string “foo”. Members of this class will be given 192.0.2.1 and
192.0.2.2 as their domain name servers.

"Dhcp4": {
 "client-classes": [
 {
 "name": "Client_foo",
 "test": "substring(option[61].hex,0,3) == 'foo'",
 "option-data": [
 {
 "name": "domain-name-servers",
 "code": 6,
 "space": "dhcp4",
 "csv-format": true,
 "data": "192.0.2.1, 192.0.2.2"
 }
]
 },
 ...
],
 ...
}

This example shows a client class being defined for use by the DHCPv6
server. In it the class named “Client_enterprise” is defined. It is
comprised of all clients whose client identifiers start with the given
hex string (which would indicate a DUID based on an enterprise id of
0xAABBCCDD). Members of this class will be given an 2001:db8:0::1 and
2001:db8:2::1 as their domain name servers.

"Dhcp6": {
 "client-classes": [
 {
 "name": "Client_enterprise",
 "test": "substring(option[1].hex,0,6) == 0x0002AABBCCDD",
 "option-data": [
 {
 "name": "dns-servers",
 "code": 23,
 "space": "dhcp6",
 "csv-format": true,
 "data": "2001:db8:0::1, 2001:db8:2::1"
 }
]
 },
 ...
],
 ...
}

14.5. Using Static Host Reservations In Classification

Classes can be statically assigned to the clients using techniques
described in Reserving Client Classes in DHCPv4 and
Reserving Client Classes in DHCPv6.

14.6. Configuring Subnets With Class Information

In certain cases it is beneficial to restrict access to certain subnets
only to clients that belong to a given class, using the “client-class”
keyword when defining the subnet.

Let’s assume that the server is connected to a network segment that uses
the 192.0.2.0/24 prefix. The administrator of that network has decided
that addresses from the range 192.0.2.10 to 192.0.2.20 are going to be
managed by the DHCP4 server. Only clients belonging to client class
Client_foo are allowed to use this subnet. Such a configuration can be
achieved in the following way:

"Dhcp4": {
 "client-classes": [
 {
 "name": "Client_foo",
 "test": "substring(option[61].hex,0,3) == 'foo'",
 "option-data": [
 {
 "name": "domain-name-servers",
 "code": 6,
 "space": "dhcp4",
 "csv-format": true,
 "data": "192.0.2.1, 192.0.2.2"
 }
]
 },
 ...
],
 "subnet4": [
 {
 "subnet": "192.0.2.0/24",
 "pools": [{ "pool": "192.0.2.10 - 192.0.2.20" }],
 "client-class": "Client_foo"
 },
 ...
],,
 ...
}

The following example shows how to restrict access to a DHCPv6 subnet. This
configuration will restrict use of the addresses 2001:db8:1::1 to
2001:db8:1::FFFF to members of the “Client_enterprise” class.

"Dhcp6": {
 "client-classes": [
 {
 "name": "Client_enterprise",
 "test": "substring(option[1].hex,0,6) == 0x0002AABBCCDD",
 "option-data": [
 {
 "name": "dns-servers",
 "code": 23,
 "space": "dhcp6",
 "csv-format": true,
 "data": "2001:db8:0::1, 2001:db8:2::1"
 }
]
 },
 ...
],
 "subnet6": [
 {
 "subnet": "2001:db8:1::/64",
 "pools": [{ "pool": "2001:db8:1::-2001:db8:1::ffff" }],
 "client-class": "Client_enterprise"
 }
],
 ...
}

14.7. Configuring Pools With Class Information

Similar to subnets, in certain cases access to certain address or prefix
pools must be restricted to only clients that belong to a given class,
using the “client-class” when defining the pool.

Let’s assume that the server is connected to a network segment that uses
the 192.0.2.0/24 prefix. The administrator of that network has decided
that addresses from the range 192.0.2.10 to 192.0.2.20 are going to be
managed by the DHCP4 server. Only clients belonging to client class
Client_foo are allowed to use this pool. Such a configuration can be
achieved in the following way:

"Dhcp4": {
 "client-classes": [
 {
 "name": "Client_foo",
 "test": "substring(option[61].hex,0,3) == 'foo'",
 "option-data": [
 {
 "name": "domain-name-servers",
 "code": 6,
 "space": "dhcp4",
 "csv-format": true,
 "data": "192.0.2.1, 192.0.2.2"
 }
]
 },
 ...
],
 "subnet4": [
 {
 "subnet": "192.0.2.0/24",
 "pools": [
 {
 "pool": "192.0.2.10 - 192.0.2.20",
 "client-class": "Client_foo"
 }
]
 },
 ...
],,

}

The following example shows how to restrict access to an address pool. This
configuration will restrict use of the addresses 2001:db8:1::1 to
2001:db8:1::FFFF to members of the “Client_enterprise” class.

"Dhcp6": {
 "client-classes": [
 {
 "name": "Client_enterprise_",
 "test": "substring(option[1].hex,0,6) == 0x0002AABBCCDD",
 "option-data": [
 {
 "name": "dns-servers",
 "code": 23,
 "space": "dhcp6",
 "csv-format": true,
 "data": "2001:db8:0::1, 2001:db8:2::1"
 }
]
 },
 ...
],
 "subnet6": [
 {
 "subnet": "2001:db8:1::/64",

 "pools": [
 {
 "pool": "2001:db8:1::-2001:db8:1::ffff",
 "client-class": "Client_foo"
 }
]
 },
 ...
],
 ...
}

14.8. Using Classes

Currently classes can be used for two functions: they can supply options
to members of the class, and they can be used to choose a subnet from
which an address will be assigned to a class member.

When supplying options, options defined as part of the class definition
are considered “class globals.” They will override any global options
that may be defined and in turn will be overridden by any options
defined for an individual subnet.

14.9. Classes and Hooks

Hooks may be used to classify packets. This may be useful if the
expression would be complex or time-consuming to write, and could be
better or more easily written as code. Once the hook has added the proper class name
to the packet, the rest of the classification system will work as expected
in choosing a subnet and selecting options. For a description of hooks,
see Hooks Libraries; for information on configuring classes,
see Configuring Classes and Configuring Subnets With Class Information.

14.10. Debugging Expressions

While constructing classification expressions, administrators may find
it useful to enable logging; see Logging for a more complete
description of the logging facility.

To enable the debug statements in the classification system,
the severity must be set to “DEBUG” and the debug level to at least 55.
The specific loggers are “kea-dhcp4.eval” and “kea-dhcp6.eval”.

To understand the logging statements, it is essential to understand a bit
about how expressions are evaluated; for a more complete description,
refer to the design document at
https://gitlab.isc.org/isc-projects/kea/wikis/designs/Design-documents. In
brief, there are two structures used during the evaluation of an
expression: a list of tokens which represent the expressions, and a value
stack which represents the values being manipulated.

The list of tokens is created when the configuration file is processed,
with most expressions and values being converted to a token. The list is
organized in reverse Polish notation. During execution, the list will be
traversed in order; as each token is executed it will be able to pop
values from the top of the stack and eventually push its result on the
top of the stack. Imagine the following expression:

"test": "substring(option[61].hex,0,3) == 'foo'",

This will result in the following tokens:

option, number (0), number (3), substring, text ('foo'), equals

In this example the first three tokens will simply push values onto the
stack. The substring token will then remove those three values and
compute a result that it places on the stack. The text option also
places a value on the stack and finally the equals token removes the two
tokens on the stack and places its result on the stack.

When debug logging is enabled, each time a token is evaluated it will
emit a log message indicating the values of any objects that were popped
off of the value stack and any objects that were pushed onto the value
stack.

The values will be displayed as either text, if the command is known to
use text values, or hexadecimal, if the command either uses binary values
or can manipulate either text or binary values. For expressions that pop
multiple values off the stack, the values will be displayed in the order
they were popped. For most expressions this will not matter, but for the
concat expression the values are displayed in reverse order from their
written order in the expression.

Let us assume that the following test has been entered into the
configuration. This example skips most of the configuration to
concentrate on the test.

"test": "substring(option[61].hex,0,3) == 'foo'",

The logging might then resemble this:

2016-05-19 13:35:04.163 DEBUG [kea.eval/44478] EVAL_DEBUG_OPTION Pushing option 61 with value 0x666F6F626172
2016-05-19 13:35:04.164 DEBUG [kea.eval/44478] EVAL_DEBUG_STRING Pushing text string '0'
2016-05-19 13:35:04.165 DEBUG [kea.eval/44478] EVAL_DEBUG_STRING Pushing text string '3'
2016-05-19 13:35:04.166 DEBUG [kea.eval/44478] EVAL_DEBUG_SUBSTRING Popping length 3, start 0, string 0x666F6F626172 pushing result 0x666F6F
2016-05-19 13:35:04.167 DEBUG [kea.eval/44478] EVAL_DEBUG_STRING Pushing text string 'foo'
2016-05-19 13:35:04.168 DEBUG [kea.eval/44478] EVAL_DEBUG_EQUAL Popping 0x666F6F and 0x666F6F pushing result 'true'

Note

The debug logging may be quite verbose if there are a number of
expressions to evaluate; that is intended as an aid in helping
create and debug expressions. Administrators should plan to disable debug
logging when the expressions are working correctly. Users may also
wish to include only one set of expressions at a time in the
configuration file while debugging them, to limit the log
statements. For example, when adding a new set of expressions, an administrator
might find it more convenient to create a configuration file that
only includes the new expressions until they are working
correctly, and then add the new set to the main configuration file.

15. Hooks Libraries

15.1. Introduction

Kea is both flexible and customizable, via the use of “hooks.” This feature
lets Kea load one or more
dynamically linked libraries (known as “hooks libraries”) and, at
various points in its processing (“hook points”), call functions in
them. Those functions perform whatever custom processing is required.

The hooks concept allows the core Kea code to remain reasonably small
by moving features to external libraries that some, but not all, users
find useful. Those with no need for specific functions can simply choose not
to load the libraries.

Hooks libraries are loaded by individual Kea processes, not by Kea as a
whole. This means, among other things, that it is possible to associate one set
of libraries with the DHCP4 server and a different set with the DHCP6
server.

Another point to note is that it is possible for a process to load
multiple libraries. When processing reaches a hook point, Kea calls the
hooks library functions attached to it. If multiple libraries have
attached a function to a given hook point, Kea calls all of them, in the
order in which the libraries are specified in the configuration file.
The order may be important; consult the documentation of the libraries
for specifics.

The next section describes how to configure hooks libraries. Users who are
interested in writing their own hooks library can find information
in the Hooks Developer’s Guide section of the Kea Developer’s
Guide [https://jenkins.isc.org/job/Kea_doc/doxygen/df/d46/hooksdgDevelopersGuide.html].

Note that some libraries are available under different licenses.

Please also note that some libraries may require additional dependencies and/or
compilation switches to be enabled, e.g. the RADIUS library introduced in
Kea 1.4 requires the FreeRadius-client library to be present. If
–with-free-radius option is not specified, the RADIUS library will not
be built.

15.2. Installing Hook Packages

Note

For more details about installing the Kea Premium Hooks package, please read
this Knowledgebase article [https://kb.isc.org/docs/aa-01587].

Some hook packages are included in the base Kea sources. There is no
need to do anything special to compile or install them, as they are covered
by the usual building and installation procedures. Please
refer to Installation for a general overview of the installation process.

ISC provides several additional premium hooks in the form of packages, which
follow a similar installation procedure but with several additional steps.
For our users’ convenience, the premium hooks installation procedure is described in this section.

1. Download the package; detailed instructions are provided separately on how
to get it. The package will be a file with a name similar to
kea-premium-1.7.8-git.tar.gz. (The name may vary depending on the package
purchased.)

2. Administrators who still have the sources for the corresponding version of the
open-source Kea package still on their system from the initial Kea installation
should skip this step. Otherwise, extract the Kea source from the original
tarball that was downloaded. For example, with a download of Kea 1.7.8-git.,
there should be a tarball called kea-1.7.8-git.tar.gz on the system.
Unpack this tarball:

$ tar zxvf kea-1.7.8-git.tar.gz

This will unpack the tarball into the kea-1.7.8-git subdirectory of
the current working directory.

3. Unpack the Kea premium tarball into the directory into which Kea was
unpacked. Once Kea 1.7.8-git has been unpacked into a kea-1.7.8-git
subdirectory and the Kea premium tarball is in the current directory, the following
steps will unpack the premium tarball into the correct location:

$ cd kea-1.7.8-git
$ tar xvf ../kea-premium-1.7.8-git.tar.gz

Note that unpacking the Kea premium package will put the files into a
directory named “premium”. Regardless of the name of the package, the
directory will always be called “premium”, although its contents will vary
depending on the premium package.

4. Run autoreconf tools. This step is necessary to update Kea’s build
script to include the additional directory. If this tool is not already
available on the system, install the automake and autoconf
tools. To generate the configure script, please use:

$ autoreconf -i

5. Rerun configure, using the same configure options that were used when
originally building Kea. It is possible to verify that configure has detected the
premium package by inspecting the summary printed when it exits. The
first section of the output should look something like this:

Package:
 Name: kea
 Version: 1.7.8-git
 Extended version: 1.7.8-git (tarball)
 OS Family: Linux
 Using GNU sed: yes
 Premium package: yes
 Included Hooks: forensic_log flex_id host_cmds

The last line indicates which specific hooks were detected. Note that
some hooks may require their own dedicated switches, e.g. the RADIUS hook
requires extra switches for FreeRADIUS. Please consult later sections of
this chapter for details.

	Rebuild Kea.

$ make

If the machine has multiple CPU cores, an interesting option to consider
here is using the argument -j X, where X is the number of available cores.

	Install Kea sources along with the hooks:

$ sudo make install

Note that as part of the installation procedure, the install script will
eventually venture into the premium/ directory and will install additional
hook libraries and associated files.

The installation location of the hooks libraries depends on whether the
–prefix parameter was specified in the configure script. If not,
the default location will be /usr/local/lib/kea/hooks. The proper installation
of the libraries can be verified with this command:

$ ls -l /usr/local/lib/kea/hooks/*.so
/usr/local/lib/kea/hooks/libdhcp_class_cmds.so
/usr/local/lib/kea/hooks/libdhcp_flex_id.so
/usr/local/lib/kea/hooks/libdhcp_flex_option.so
/usr/local/lib/kea/hooks/libdhcp_host_cmds.so
/usr/local/lib/kea/hooks/libdhcp_lease_cmds.so
/usr/local/lib/kea/hooks/libdhcp_legal_log.so
/usr/local/lib/kea/hooks/libdhcp_subnet_cmds.so

The exact list returned will depend on the packages installed. If the
directory was specified via –prefix, the hooks libraries will be located in
{prefix directory}/lib/kea/hooks.

15.3. Configuring Hooks Libraries

The hooks libraries for a given process are configured using the
hooks-libraries keyword in the configuration for that process. (Note
that the word “hooks” is plural.) The value of the keyword is an array
of map structures, with each structure corresponding to a hooks library. For
example, to set up two hooks libraries for the DHCPv4 server, the
configuration would be:

"Dhcp4": {
 :
 "hooks-libraries": [
 {
 "library": "/opt/charging.so"
 },
 {
 "library": "/opt/local/notification.so",
 "parameters": {
 "mail": "spam@example.com",
 "floor": 13,
 "debug": false,
 "users": ["alice", "bob", "charlie"],
 "languages": {
 "french": "bonjour",
 "klingon": "yl'el"
 }
 }
 }
]
 :
}

Note

This syntax is effective as of Kea 1.1.0, to facilitate the
specification of library-specific parameters. Libraries should allow a
parameter entry for comments, as is the case with many configuration
scopes.

Note

In all versions of Kea since 1.1.0, libraries
are reloaded even if their lists have not changed,
because the parameters specified for the library (or the files those
parameters point to) may have changed.

Libraries may have additional parameters that are not mandatory, in the
sense that there may be libraries that do not require them. However, for a
specific library there is often a specific requirement to specify a certain
set of parameters. Please consult the documentation for each individual library for
details. In the example above, the first library has no parameters. The
second library has five parameters: specifying mail (string parameter),
floor (integer parameter), debug (boolean parameter), lists
(list of strings), and maps (containing strings). Nested parameters can
be used if the library supports it. This topic is explained in detail in
the Hooks Developer’s Guide section of the Kea Developer’s Guide [https://jenkins.isc.org/job/Kea_doc/doxygen/df/d46/hooksdgDevelopersGuide.html].

Notes:

	The full path to each library should be given.

	As noted above, the order in which the hooks are called may be important;
consult the documentation for each library for specifics.

	An empty list has the same effect as omitting the hooks-libraries
configuration element altogether.

Note

There is one case where this is not true: if Kea is running with a
configuration that contains a hooks-libraries item, and that
item is removed and the configuration reloaded, the removal will
be ignored and the libraries remain loaded. As a workaround,
instead of removing the hooks-libraries item, change it to an
empty list. This will be fixed in a future version of Kea.

At the present time, only the kea-dhcp4 and kea-dhcp6 processes support
hooks libraries.

15.4. Available Hooks Libraries

As described above, the hooks functionality provides a way to customize
a Kea server without modifying the core code. ISC has chosen to take
advantage of this feature to provide functions that may only be useful
to a subset of Kea users. To this end, ISC has created some hooks
libraries, discussed in the following sections.

Note

Some of these libraries are available with the base code, while
others will be shared with organizations supporting development of
Kea. Users who would like to get access to those premium
libraries should consider purchasing a support contract from ISC. This
includes professional support, advance security notifications, input
into ISC’s roadmap planning, and many other benefits, while helping
make Kea sustainable in the long term.

The following table provides a list of libraries currently available
from ISC. It is important to pay attention to which libraries may be
loaded by which Kea processes. It is a common mistake to configure the
kea-ctrl-agent process to load libraries that should, in fact, be
loaded by the kea-dhcp4 or kea-dhcp6 processes. If a library
from ISC does not work as expected, please make sure that it has been
loaded by the correct process per the table below.

Warning

While the Kea Control Agent includes the “hooks” functionality, (i.e.
hooks libraries can be loaded by this process), none of ISC’s current
hooks libraries should be loaded by the Control Agent.

List of Available Hooks Libraries

	Name

	Availability

	Description

	User Check

	Kea sources
(since 0.8)

	Reads known users list from a file. Unknown users will be
assigned a lease from the last subnet defined in the
configuration file, e.g. to redirect them a captive
portal. This demonstrates how an external source of
information can be used to influence the Kea allocation
engine. This hook is part of the Kea source code and is
available in the src/hooks/dhcp/user_chk directory.

	Forensic
Logging

	Support
customers
(since 1.1)

	This library provides hooks that record a detailed log of
lease assignments and renewals into a set of log files. In
many legal jurisdictions companies, especially ISPs, must
record information about the addresses they have leased to
DHCP clients. This library is designed to help with that
requirement. If the information that it records is
sufficient it may be used directly. If your jurisdiction
requires that you save a different set of information, you
may use it as a template or example and create your own
custom logging hooks.

	Flexible
Identifier

	Support
customers
(since 1.2)

	Kea software provides a way to handle host reservations that
include addresses, prefixes, options, client classes and
other features. The reservation can be based on hardware
address, DUID, circuit-id or client-id in DHCPv4 and using
hardware address or DUID in DHCPv6. However, there are
sometimes scenarios where the reservation is more complex,
e.g. uses other options that mentioned above, uses part of
specific options or perhaps even a combination of several
options and fields to uniquely identify a client. Those
scenarios are addressed by the Flexible Identifiers hook
application. It allows defining an expression, similar to
the one used in client classification,
e.g. substring(relay6[0].option[37],0,6). Each incoming
packet is evaluated against that expression and its value is
then searched in the reservations database.

	Flexible
Option

	Kea sources
(since 1.7.1)

	This library provides hooks that compute option values
instead of static configured values. An expression is
evaluated on the query packet. Defined add, supersede and
remove actions are applied on the response packet before
it is sent using the evaluation result.

	Host Commands

	Support
customers
(since 1.2)

	Kea provides a way to store host reservations in a
database. In many larger deployments it is useful to be able
to manage that information while the server is running. This
library provides management commands for adding, querying
and deleting host reservations in a safe way without
restarting the server. In particular, it validates the
parameters, so an attempt to insert incorrect data, e.g. add
a host with conflicting identifier in the same subnet will
be rejected. Those commands are exposed via command channel
(JSON over unix sockets) and Control Agent (JSON over
RESTful interface). Additional commands and capabilities
related to host reservations will be added in the future.

	Subnet Commands

	Support
customers
(since 1.3)

	In deployments in which subnet configuration needs to be
frequently updated, it is a hard requirement that such
updates be performed without the need for a full DHCP server
reconfiguration or restart. This hooks library allows for
incremental changes to the subnet configuration such as:
adding a subnet, removing a subnet. It also allows for
listing all available subnets and fetching detailed
information about a selected subnet. The commands exposed by
this library do not affect other subnets or configuration
parameters currently used by the server.

	Lease Commands

	Kea sources
(since 1.3)

	The lease commands hook library offers a number of new
commands used to manage leases. Kea provides a way to store
lease information in various backends: memfile, MySQL,
PostgreSQL and Cassandra. This library provides a unified
interface that can manipulate leases in an unified, safe
way. In particular, it allows: manipulate leases in memfile
while Kea is running, sanity check changes, check lease
existence and remove all leases belonging to specific
subnet. It can also catch more obscure errors, like adding a
lease with subnet-id that does not exist in the
configuration or configuring a lease to use an address that
is outside of the subnet to which it is supposed to belong.
It provides a way to manage user contexts associated with
leases.

	High
Availability

	Kea sources
(since 1.4)

	Minimizing a risk of DHCP service unavailability is achieved
by setting up a pair of the DHCP servers in a network. Two
modes of operation are supported. The first one is called
load balancing and is sometimes referred to as
active-active. Each server can handle selected group of
clients in this network or all clients, if it detects that
its partner has became unavailable. It is also possible to
designate one server to serve all DHCP clients, and leave
another server as “standby”. This mode is called hot standby
and is sometimes referenced to as active-passive. This
server will activate its DHCP function when it detects that
its partner is not available. Such cooperation between the
DHCP servers requires that these servers constantly
communicate with each other to send updates about allocated
leases and to periodically test whether their partners are
still operational. The hook library also provides an ability
to send lease updates to external backup server, making it
much easier to have a replacement that is almost up to
date. The “libdhcp_ha” library provides such functionality
for Kea DHCP servers.

	Statistics
Commands

	Kea sources
(since 1.4)

	The Statistics Commands library provides additional
commmands for retrieving accurate DHCP lease statistics for
Kea DHCP servers that share the same lease database. This
setup is common in deployments where DHCP service redundancy
is required and a shared lease database is used to avoid
lease data replication between the DHCP servers. A feature
was introduced in Kea 1.4.0 that allows tracking lease
allocations within the lease database, thus making the
statistics accessible to all connected DHCP servers. The
Statistics Commands hooks library utilizes this feature and
returns lease statistics for all subnets respectively.

	RADIUS

	Support
customers
(since 1.4)

	The RADIUS Hook library allows Kea to interact with the
RADIUS servers using access and accounting mechanisms. The
access mechanism may be used for access control, assigning
specific IPv4 or IPv6 addresses reserved by RADIUS,
dynamically assigning addresses from designated pools chosen
by RADIUS or rejecting the client’s messages altogether. The
accounting mechanism allows RADIUS server to keep track of
device activity over time.

	Host Cache

	Support
customers
(since 1.4)

	Some of the database backends, such as RADIUS, are
considered slow and may take a long time to respond. Since
Kea in general is synchronous, the backend performance
directly affects the DHCP performance. To minimize the
impact and improve performance, the Host Cache library
provides a way to cache responses from other hosts. This
includes negative caching, i.e. the ability to remember that
there is no client information in the database.

	Class Commands

	Support
customers
(since 1.5)

	This Class Cmds hooks library allows for adding, updating
deleting and fetching configured DHCP client classes without
the need to restart the DHCP server.

	MySQL
Configuration
Backend

	Kea sources
(since 1.6)

	The MySQL CB hooks library is an implementation of the Kea
Configuration Backend for MySQL. It uses MySQL database as a
repository for the Kea configuration information. The Kea
servers use this library to fetch their configurations.

	Configuration
Backend
Commands

	Support
customers
(since 1.6)

	The Configuration Backend Commands (CB Commands) hooks
library implements a collection of commands to manage the
configuration information of the Kea servers in the
database. This library may only be used in conjuction with
one of the supported configuration backend implementations.

	BOOTP

	Kea sources
(since 1.7.3)

	The BOOTP hooks library adds BOOTP support, as defined in
RFC 1497. It recognizes received BOOTP requests:
they are translated into DHCPREQUEST packets, put into the
BOOTP client class and get infinite lifetime leases.

ISC hopes to see more hooks libraries become available as time
progresses, developed both internally and externally. Since this list
may evolve dynamically, it is maintained on a wiki page, available
at this link:
https://gitlab.isc.org/isc-projects/kea/wikis/Hooks-available.
Developers or others who are aware of any hooks libraries not listed there
are asked to please send a note to the kea-users or kea-dev mailing lists for
updating.

The libraries developed by ISC are described in detail in the following
sections.

15.5. user_chk: Checking User Access

The user_chk library is the first hooks library published by ISC. It
serves several purposes:

	To assign “new” or “unregistered” users to a restricted subnet, while
“known” or “registered” users are assigned to unrestricted subnets.

	To allow DHCP response options or vendor option values to be
customized based on user identity.

	To provide a real-time record of user registration activity, which
can be sampled by an external consumer.

	To serve as a demonstration of various capabilities possible using
the hooks interface.

Once loaded, the library allows the separation of incoming requests into known
and unknown clients. For known clients, packets are processed
as usual, although it is possible to override the sending of certain options
on a per-host basis. Clients that are not on the known
hosts list will be treated as unknown and will be assigned to the last
subnet defined in the configuration file.

As an example of a use case, this behavior may be implemented to put unknown users
into a separate subnet that leads to a “walled garden,” where they can
only access a registration portal. Once they fill in necessary data,
their details are added to the known clients file and they get a proper
address after their device is restarted.

Note

This library was developed several years before the host reservation
mechanism became available. Host reservation is much
more powerful and flexible, but the user_chk capability
to consult an external source of information about clients and alter
Kea’s behavior remains useful and of educational value.

The library reads the /tmp/user_chk_registry.txt file while being loaded
and each time an incoming packet is processed. Each line of the file is expected to
contain a self-contained JSON snippet which must have the
following two entries:

	type - whose value is “HW_ADDR” for IPv4 users or “DUID” for IPv6
users.

	id - whose value is either the hardware address or the DUID from
the request formatted as a string of hex digits, with or without “:”
delimiters.

and may have zero or more of the following entries:

	bootfile - whose value is the pathname of the desired file.

	tftp_server - whose value is the hostname or IP address of the
desired server.

A sample user registry file is shown below:

{ "type" : "HW_ADDR", "id" : "0c:0e:0a:01:ff:04", "bootfile" : "/tmp/v4bootfile" }
{ "type" : "HW_ADDR", "id" : "0c:0e:0a:01:ff:06", "tftp_server" : "tftp.v4.example.com" }
{ "type" : "DUID", "id" : "00:01:00:01:19:ef:e6:3b:00:0c:01:02:03:04", "bootfile" : "/tmp/v6bootfile" }
{ "type" : "DUID", "id" : "00:01:00:01:19:ef:e6:3b:00:0c:01:02:03:06", "tftp_server" : "tftp.v6.example.com" }

As with any other hooks libraries provided by ISC, internals of the
user_chk code are well-documented. Users may refer to the user_chk
library section of the Kea Developer’s Guide [https://jenkins.isc.org/job/Kea_doc/doxygen/d8/db2/libdhcp_user_chk.html]
for information on how the code works internally. That, together with the
Hooks Framework section of the Kea Developer’s Guide [https://jenkins.isc.org/job/Kea_doc/doxygen/index.html#hooksFramework] should give users
some pointers on how to extend this library and perhaps even write one
from scratch.

15.6. legal_log: Forensic Logging Hooks

This section describes the forensic log hooks library. This library
provides hooks that record a detailed log of lease assignments and
renewals into a set of log files.

Currently this library is only
available to ISC customers with a paid support contract.

Note

This library may only be loaded by the kea-dhcp4 or kea-dhcp6
process.

In many legal jurisdictions, companies, especially ISPs, must record
information about the addresses they have leased to DHCP clients. This
library is designed to help with that requirement. If the information
that it records is sufficient, it may be used directly. If a
jurisdiction requires that a different set of information be saved, users
may use this library as a template or example to create their own custom logging
hooks.

This logging is done as a set of hooks to allow it to be customized to
any particular need. Modifying a hooks library is easier and safer than
updating the core code. In addition by using the hooks features, those
users who do not need to log this information can leave it out and avoid
any performance penalties.

15.6.1. Log File Naming

The names for the log files have the following form:

path/base-name.CCYYMMDD.txt

The “path” and “base-name” are supplied in the configuration as
described below; see Configuring the Forensic Log Hooks. The next part of the name is the
date the log file was started, with four digits for year, two digits for
month, and two digits for day. The file is rotated on a daily basis.

Note

When running Kea servers for both DHCPv4 and DHCPv6, the log names
must be distinct. See the examples in Configuring the Forensic Log Hooks.

15.6.2. DHCPv4 Log Entries

For DHCPv4, the library creates entries based on DHCPREQUEST messages and
corresponding DHCPv4 leases intercepted by the lease4_select (for new
leases) and the lease4_renew (for renewed leases) hooks.

An entry is a single string with no embedded end-of-line markers and a
prepended timestamp, and has the following sections:

timestamp address duration device-id {client-info} {relay-info} {user-context}

Where:

	timestamp - the current date and time the log entry was written in
“%Y-%m-%d %H:%M:%S %Z” strftime format (“%Z” is the time zone name).

	address - the leased IPv4 address given out and whether it was
assigned or renewed.

	duration - the lease lifetime expressed in days (if present), hours,
minutes, and seconds. A lease lifetime of 0xFFFFFFFF will be denoted
with the text “infinite duration”.

	device-id - the client’s hardware address shown as numerical type and
hex digit string.

	client-info - the DHCP client id option (61) if present, shown as a
hex string. When its content is printable it is displayed.

	relay-info - for relayed packets the giaddr and the RAI circuit-id,
remote-id, and subscriber-id options (option 82 sub options: 1, 2 and
6) if present. The circuit id and remote id are presented as hex
strings. When their content is printable it is displayed.

	user-context - the optional user context associated with the lease.

For instance (line breaks added for readability; they will not be
present in the log file):

2018-01-06 01:02:03 CET Address: 192.2.1.100 has been renewed for 1 hrs 52 min 15 secs to a device with hardware address:
hwtype=1 08:00:2b:02:3f:4e, client-id: 17:34:e2:ff:09:92:54 connected via relay at address: 192.2.16.33,
identified by circuit-id: 68:6f:77:64:79 (howdy) and remote-id: 87:f6:79:77:ef

In addition to logging lease activity driven by DHCPv4 client traffic,
the hooks library also logs entries for the following lease management control channel
commands: lease4-add, lease4-update, and lease4-del. Each entry is a
single string with no embedded end-of-line markers, and it will
typically have the following form:

lease4-add:

timestamp Administrator added a lease of address: *address* to a device with hardware address: *device-id*

Depending on the arguments of the add command, it may also include the
client-id and duration.

Example:

2018-01-06 01:02:03 CET Administrator added a lease of address: 192.0.2.202 to a device with hardware address:
1a:1b:1c:1d:1e:1f for 1 days 0 hrs 0 mins 0 secs

lease4-update:

timestamp Administrator updated information on the lease of address: *address* to a device with hardware address: *device-id*

Depending on the arguments of the update command, it may also include
the client-id and lease duration.

Example:

2018-01-06 01:02:03 CET Administrator updated information on the lease of address: 192.0.2.202 to a device
with hardware address: 1a:1b:1c:1d:1e:1f, client-id: 1234567890

lease4-del: deletes have two forms, one by address and one by
identifier and identifier type:

timestamp Administrator deleted the lease for address: *address*

or

timestamp Administrator deleted a lease for a device identified by: *identifier-type* of *identifier*

Currently only a type of @b hw-address (hardware address) is supported.

Examples:

2018-01-06 01:02:03 CET Administrator deleted the lease for address: 192.0.2.202

2018-01-06 01:02:12 CET Administrator deleted a lease for a device identified by: hw-address of 1a:1b:1c:1d:1e:1f

15.6.3. DHCPv6 Log Entries

For DHCPv6 the library creates entries based on lease management actions
intercepted by lease6_select (for new leases), lease6_renew (for
renewed leases), and lease6_rebind (for rebound leases).

An entry is a single string with no embedded end-of-line markers and a
prepended timestamp, and has the following sections:

timestamp address duration device-id {relay-info}* {user-context}

Where:

	timestamp - the current date and time the log entry was written in
“%Y-%m-%d %H:%M:%S %Z” strftime format (“%Z” is the time zone name).

	address - the leased IPv6 address or prefix given out and whether it
was assigned or renewed.

	duration - the lease lifetime expressed in days (if present), hours,
minutes, and seconds. A lease lifetime of 0xFFFFFFFF will be denoted
with the text “infinite duration”.

	device-id - the client’s DUID and hardware address (if present).

	relay-info - for relayed packets the content of relay agent messages,
remote-id (code 37), subscriber-id (code 38), and interface-id (code
18) options, if present. Note that interface-id option, if present,
identifies the whole interface the relay agent received the message
on. This typically translates to a single link in the network, but
it depends on the specific network topology. Nevertheless, this is
useful information to better scope down the location of the device,
so it is recorded, if present.

	user-context - the optional user context associated with the lease.

For instance (line breaks added for readability; they will not be
present in the log file):

2018-01-06 01:02:03 PST Address:2001:db8:1:: has been assigned for 0 hrs 11 mins 53 secs
to a device with DUID: 17:34:e2:ff:09:92:54 and hardware address: hwtype=1 08:00:2b:02:3f:4e
(from Raw Socket) connected via relay at address: fe80::abcd for client on link address: 3001::1,
hop count: 1, identified by remote-id: 01:02:03:04:0a:0b:0c:0d:0e:0f and subscriber-id: 1a:2b:3c:4d:5e:6f

In addition to logging lease activity driven by DHCPv6 client traffic,
the hooks library also logs entries for the following lease management control channel
commands: lease6-add, lease6-update, and lease6-del. Each entry is a
single string with no embedded end-of-line markers, and it will
typically have the following form:

lease6-add:

timestamp Administrator added a lease of address: *address* to a device with DUID: *DUID*

Depending on the arguments of the add command, it may also include the
hardware address and duration.

Example:

2018-01-06 01:02:03 PST Administrator added a lease of address: 2001:db8::3 to a device with DUID:
1a:1b:1c:1d:1e:1f:20:21:22:23:24 for 1 days 0 hrs 0 mins 0 secs

lease6-update:

timestamp Administrator updated information on the lease of address: *address* to a device with DUID: *DUID*

Depending on the arguments of the update command, it may also include
the hardware address and lease duration.

Example:

2018-01-06 01:02:03 PST Administrator updated information on the lease of address: 2001:db8::3 to a device with
DUID: 1a:1b:1c:1d:1e:1f:20:21:22:23:24, hardware address: 1a:1b:1c:1d:1e:1f

lease6-del: deletes have two forms, one by address and one by
identifier and identifier type:

timestamp Administrator deleted the lease for address: *address*

or

timestamp Administrator deleted a lease for a device identified by: *identifier-type* of *identifier*

Currently only a type of DUID is supported.

Examples:

2018-01-06 01:02:03 PST Administrator deleted the lease for address: 2001:db8::3

2018-01-06 01:02:11 PST Administrator deleted a lease for a device identified by: duid of 1a:1b:1c:1d:1e:1f:20:21:22:23:24

15.6.4. Configuring the Forensic Log Hooks

To use this functionality, the hook library must be included in the
configuration of the desired DHCP server modules. The legal_log library
is able to save logs to a text file or a database (created using
kea-admin see First-Time Creation of the MySQL Database, First-Time Creation of the PostgreSQL Database).
Library is installed alongside the Kea libraries in
[kea-install-dir]/var/lib/kea where kea-install-dir is determined
by the “–prefix” option of the configure script. It defaults to
/usr/local. Assuming the default value, configuring kea-dhcp4 to load
the legal_log library could be done with the following Kea4 configuration:

"Dhcp4": {
 "hooks-libraries": [
 {
 "library": "/usr/local/lib/kea/hooks/libdhcp_legal_log.so",
 "parameters": {
 "path": "/var/lib/kea/log",
 "base-name": "kea-forensic4"
 }
 },
 ...
]
}

To configure it for kea-dhcp6, the commands are:

"Dhcp6": {
 "hooks-libraries": [
 {
 "library": "/usr/local/lib/kea/hooks/libdhcp_legal_log.so",
 "parameters": {
 "path": "/var/lib/kea/log",
 "base-name": "kea-forensic6"
 }
 },
 ...
]
}

Two hooks library parameters for text file are supported:

	path - the directory in which the forensic file(s) will be written.
The default value is [prefix]/var/lib/kea. The directory must exist.

	base-name - an arbitrary value which is used in conjunction with the
current system date to form the current forensic file name. It
defaults to kea-legal.

Additional parameters for the database connection can be specified, e.g:

 "Dhcp6": {
 "hooks-libraries": [
 {
 "library": "/usr/local/lib/kea/hooks/libdhcp_legal_log.so",
 "parameters": {
 "name":"database-name",
 "password":"passwd",
 "type":"mysql",
 "user":"user-name"
 }
 },
 ...
]
}

For more specific information about database related parameters please refer to
Lease Database Configuration and Lease Database Configuration.

If it is desired to restrict forensic logging to certain subnets, the
“legal-logging” boolean parameter can be specified within a user context
of these subnets. For example:

"Dhcpv4" {
 "subnet4": [
 {
 "subnet": "192.0.2.0/24",
 "pools": [
 {
 "pool": "192.0.2.1 - 192.0.2.200"
 }
],
 "user-context": {
 "legal-logging": false
 }
 }
]
}

This configuration disables legal logging for the subnet “192.0.2.0/24”. If the
“legal-logging” parameter is not specified, it defaults to ‘true’, which
enables legal logging for the subnet.

The following example demonstrates how to selectively disable legal
logging for an IPv6 subnet:

"Dhcpv6": {
 "subnet6": [
 {
 "subnet": "2001:db8:1::/64",
 "pools": [
 {
 "pool": "2001:db8:1::1-2001:db8:1::ffff"
 }
],
 "user-context": {
 "legal-logging": false
 }
 }
]
}

See User Contexts in IPv4 and User Contexts in IPv6 to
learn more about user contexts in Kea configuration.

15.6.5. Database Backend

Log entries can be inserted into a database when Kea is configured with
database backend support. A table named “logs” is used that includes a timestamp
(timeuuid for Cassandra) generated by the database software, and a
text log with the same format as files without the timestamp.

Please refer to MySQL for information on using a MySQL database; to
PostgreSQL for PostgreSQL database information; or to Cassandra
for information on using a Cassandra (CQL) database. The logs table is part of the Kea database schemas.

Configuration parameters are extended by standard lease database
parameters as defined in Lease Database Configuration. The “type”
parameter should be “mysql”, “postgresql”, “cql”, or “logfile”. When
it is absent or set to “logfile”, files are used.

This database feature is experimental and will be likely improved, for
instance to add an address/prefix index (currently the only index is
the timestamp). No specific tools are provided to operate the database,
but standard tools may be used, for example, to dump the logs table
from a CQL database:

$ echo 'SELECT dateOf(timeuuid), log FROM logs;' | cqlsh -k database-name

 system.dateof(timeuuid) | log
---------------------------------+---------------------------------------
 2018-01-06 01:02:03.227000+0000 | Address: 192.2.1.100 has been renewed ...
 ...
(12 rows)
$

15.7. flex_id: Flexible Identifiers for Host Reservations

This section describes a hook application dedicated to generate flexible
identifiers for host reservations. The Kea software provides a way to handle
host reservations that include addresses, prefixes, options, client
classes, and other features. The reservation can be based on hardware
address, DUID, circuit-id, or client-id in DHCPv4 and on hardware
address or DUID in DHCPv6. However, there are sometimes scenarios where
the reservation is more complex; it may use options other than those mentioned
above, use parts of specific options, or perhaps even use a combination of
several options and fields to uniquely identify a client. Those
scenarios are addressed by the Flexible Identifiers hook application.

Currently this library is only available to ISC customers with a paid support
contract.

Note

This library may only be loaded by the kea-dhcp4 or kea-dhcp6
process.

The library allows the definition of an expression, using notation initially
used only for client classification. (See
Using Expressions in Classification for a detailed description of
the syntax available.) One notable difference is that for client
classification, the expression currently has to evaluate to either true
or false, while the flexible identifier expression is expected to
evaluate to a string that will be used as an identifier. It is a valid case
for the expression to evaluate to an empty string (e.g. in cases where a
client does not send specific options). This expression is then
evaluated for each incoming packet, and this evaluation generates an
identifier that is used to identify the client. In particular, there may
be host reservations that are tied to specific values of the flexible
identifier.

The library can be loaded in a similar way as other hook libraries. It
takes a mandatory parameter identifier-expression and optional boolean
parameter replace-client-id:

"Dhcp6": {
 "hooks-libraries": [
 {
 "library": "/path/libdhcp_flex_id.so",
 "parameters": {
 "identifier-expression": "expression",
 "replace-client-id": false
 }
 },
 ...
]
}

The flexible identifier library supports both DHCPv4 and DHCPv6.

Let’s consider a case of an IPv6 network that has an
independent interface for each of its connected customers. Customers are
able to plug in whatever device they want, so any type of identifier
(e.g. a client-id) is unreliable. Therefore, the operator may decide to
use an option inserted by a relay agent to differentiate between
clients. In this particular deployment, the operator has verified that the
interface-id is unique for each customer-facing interface, so it
is suitable for usage as a reservation. However, only the first six bytes of
the interface-id are interesting, because remaining bytes are either
randomly changed or not unique between devices. Therefore, the customer
decided to use the first six bytes of the interface-id option inserted by the
relay agent. After adding flex-id, the host-reservation-identifiers goal
can be achieved by using the following configuration:

"Dhcp6": {
 "subnet6": [{ ..., # subnet definition starts here
 "reservations": [
 "flex-id": "'port1234'", # value of the first 8 bytes of the interface-id
 "ip-addresses": ["2001:db8::1"]
],
 }], # end of subnet definitions
 "host-reservation-identifiers": ["duid", "flex-id"], # add "flex-id" to reservation identifiers
 "hooks-libraries": [
 {
 "library": "/path/libdhcp_flex_id.so",
 "parameters": {
 "identifier-expression": "substring(relay6[0].option[18].hex,0,8)"
 }
 },
 ...
]
}

Note

Care should be taken when adjusting the expression. If the expression
changes, then all the flex-id values may change, possibly rendering
all reservations based on flex-id unusable until they are manually updated.
It is strongly recommended that administrators start with the expression and a
handful of reservations, and then adjust the expression as needed. Once
the expression is confirmed to do what is desired of it, host reservations
can be deployed on a broader scale.

flex-id values in host reservations can be specified in two ways. First,
they can be expressed as a hex string, e.g. bar string can be represented
as 626174. Alternatively, it can be expressed as a quoted value (using
double and single quotes), e.g. “‘bar’”. The former is more convenient
for printable characters, while hex string values are more convenient
for non-printable characters and do not require the use of the
hexstring operator.

"Dhcp6": {
 "subnet6": [{ ..., # subnet definition starts here
 "reservations": [
 "flex-id": "01:02:03:04:05:06", # value of the first 8 bytes of the interface-id
 "ip-addresses": ["2001:db8::1"]
],
 }], # end of subnet definitions
 "host-reservation-identifiers": ["duid", "flex-id"], # add "flex-id" to reservation identifiers
 "hooks-libraries": [
 {
 "library": "/path/libdhcp_flex_id.so",
 "parameters": {
 "identifier-expression": "vendor[4491].option[1026].hex"
 }
 },
 ...
]
}

When replace-client-id is set to “false” (which is the default setting),
the flex-id hook library uses the evaluated flexible identifier solely for
identifying host reservations, i.e. searching for reservations within a
database. This is the functional equivalent of other identifiers, similar
to hardware address or circuit-id. However, this mode of operation
implies that if a client device is replaced, it may cause a
conflict between an existing lease (allocated to the old device) and the
new lease being allocated to the new device. The conflict arises
because the same flexible identifier is computed for the replaced device,
so the server will try to allocate the same lease. The mismatch between
client identifiers sent by the new device and the old device causes the server
to refuse this new allocation until the old lease expires. A
manifestation of this problem is dependent on the specific expression used
as the flexible identifier and is likely to appear if only options
and other parameters are used that identify where the device is connected
(e.g. circuit-id), rather than the device identification itself (e.g.
MAC address).

The flex-id library offers a way to overcome the problem with lease
conflicts by dynamically replacing the client identifier (or DUID in DHCPv6)
with a value derived from the flexible identifier. The server
processes the client’s query as if the flexible identifier were sent in the
client identifier (or DUID) option. This guarantees that a returning
client (for which the same flexible identifier is evaluated) will be
assigned the same lease despite the client identifier and/or MAC address
change.

The following is a stub configuration that enables this behavior:

"Dhcp4": {
 "hooks-libraries": [
 {
 "library": "/path/libdhcp_flex_id.so",
 "parameters": {
 "identifier-expression": "expression",
 "replace-client-id": true
 }
 },
 ...
]
}

In the DHCPv4 case, the value derived from the flexible identifier is
formed by prepending one byte with a value of zero to the flexible identifier.
In the DHCPv6 case, it is formed by prepending two zero bytes before the
flexible identifier.

Note that for this mechanism to take effect, the DHCPv4 server must be
configured to respect the client identifier option value during lease
allocation, i.e. match-client-id must be set to “true”. See
Using Client Identifier and Hardware Address for details. No additional settings are
required for DHCPv6.

If the replace-client-id option is set to “true”, the value of the
echo-client-id parameter (which governs whether to send back a
client-id option) is ignored.

The lease_cmds: Lease Commands section describes commands used to retrieve,
update, and delete leases using various identifiers, such as “hw-address” and
“client-id”. The lease_cmds library does not natively support querying
for leases by flexible identifier. However, when replace-client-id is
set to “true”, it makes it possible to query for leases using a value
derived from the flexible identifier. In the DHCPv4 case, the query will
look similar to this:

{
 "command": "lease4-get",
 "arguments": {
 "identifier-type": "client-id",
 "identifier": "00:54:64:45:66",
 "subnet-id": 44
 }
}

where the hexadecimal value of “54:64:45:66” is a flexible identifier
computed for the client.

In the DHCPv6 case, the corresponding query will look similar to this:

{
 "command": "lease6-get",
 "arguments": {
 "identifier-type": "duid",
 "identifier": "00:00:54:64:45:66",
 "subnet-id": 10
 }
}

15.8. flex_option Flexible Option for Option value settings

This library allows you to define an action to take, for a given option,
based upon on the result of an expression. These actions are carried
out during the final stages of constructing a query response packet,
just before it is sent to the client. The three actions currently
supported are add, supersede, and remove.

The syntax used for the action expressions is the same syntax used
for client classification and the Flex Identifier hook library
(See either Using Expressions in Classification or flex_id: Flexible Identifiers for Host Reservations
for detailed description of the syntax).

The add and supersede actions use an expression returning a
string, doing nothing when it evaluates to the empty string. The
remove application uses an expression returning true or false,
doing nothing on false. When it is necessary to set an option to the
empty value this mechanism does not work but a client class can be
used instead.

The add action adds an option only when the option does not already
exist and the expression does not evaluate to the empty string.
The supersede action does the same but it overwrites the option value
if it already exists. The remove action removes the option from
the response packet if it already exists and the expression evaluates to
true.

The option to which an action applies may be specified by either its
numeric code or its name.. At least the code or the name must be
specified. The option space is the DHCPv4 or DHCPv6 spaces depending
of the server where the hook library is loaded. Other spaces as vendor
spaces could be supported in a further version.

The library is available since Kea 1.7.1 and can be loaded in a
similar way as other hook libraries by the kea-dhcp4 or kea-dhcp6`
process.. It takes a mandatory options parameter holding a list of
per option parameter maps with code, name, add, supersede and remove
actions. Action entries take a string value representing an
expression.

 "Dhcp4": {
 "hook_libraries": [
 { "library": "/usr/local/lib/libdhcp_flex_option.so",
 "parameters": {
 "options": [
 {
 "code": 67,
 "add":
"ifelse(option[host-name].exists,concat(option[host-name].text,'.boot'),'')"
 }
]
 }
 },
 ...
]
 }

If (and only if) the query includes a host-name option (code 12),
a boot-file-name option (code 67) is added to the response with the host
name followed by .boot for content.

The flexible option library supports both DHCPv4 and DHCPv6.

15.9. host_cmds: Host Commands

This section describes a hook application that offers a number of new
commands used to query and manipulate host reservations. Kea provides a
way to store host reservations in a database. In many larger deployments
it is useful to be able to manage that information while the server is
running. This library provides management commands for adding, querying,
and deleting host reservations in a safe way without restarting the
server. In particular, it validates the parameters, so an attempt to
insert incorrect data - such as adding a host with a conflicting identifier in the
same subnet - will be rejected. Those commands are exposed via the command
channel (JSON over UNIX sockets) and the Control Agent (JSON over a RESTful
interface). Additional commands and capabilities related to host
reservations will be added in the future.

Currently this library is only available to ISC customers with a paid support
contract.

Note

This library may only be loaded by the kea-dhcp4 or kea-dhcp6
process.

Currently, six commands are supported: reservation-add (which adds a new
host reservation), reservation-get (which returns an existing reservation
if specified criteria are matched), reservation-get-all (which returns
all reservations in a specified subnet), reservation-get-page (a variant
of reservation-get-all which returns all reservations in a specified
subnet by pages), reservation-get-by-hostname (which returns all reservations
with a specified hostname and optionally in a subnet) since Kea version
1.7.1, and reservation-del (which attempts to delete a
reservation matching specified criteria). To use commands that change
the reservation information (currently these are reservation-add and
reservation-del, but this rule applies to other commands that may be
implemented in the future), the hosts database must be specified and it must not operate
in read-only mode (see
the hosts-databases descriptions in DHCPv4 Hosts Database Configuration
and DHCPv6 Hosts Database Configuration). If the hosts-databases are not specified or are
running in read-only mode, the host_cmds library will load, but any
attempts to use reservation-add or reservation-del will fail.

Additional host reservation commands are planned in future releases of Kea. For a
description of envisaged commands, see the Control API
Requirements [https://gitlab.isc.org/isc-projects/kea/wikis/designs/commands]
document.

All commands use JSON syntax. They can be issued either using the
control channel (see Management API) or via the Control Agent (see
The Kea Control Agent).

The library can be loaded similarly to other hook libraries. It
does not take any parameters, and it supports both DHCPv4 and DHCPv6
servers.

"Dhcp6": {
 "hooks-libraries": [
 {
 "library": "/path/libdhcp_host_cmds.so"
 }
 ...
]
}

15.9.1. The subnet-id Parameter

Prior to diving into the individual commands, it is worth discussing the
parameter, subnet-id. Currently this parameter is mandatory for all of the
commands supplied by this library with the exception of
reservation-get-by-hostname where it is optional.
In previous versions of Kea, reservations had
to belong to a specific subnet; as of Kea 1.5.0, reservations may
be specified globally. In other words, they are not specific to any
subnet. When reservations are supplied via the configuration file, the
ID of the containing subnet (or lack thereof) is implicit in the
configuration structure. However, when managing reservations using
host commands, it is necessary to explicitly identify the scope to which
the reservation belongs. This is done via the subnet-id parameter.
For global reservations, use a value of zero (0). For reservations
scoped to a specific subnet, use that subnet’s ID.

15.9.2. The reservation-add Command

reservation-add allows for the insertion of a new host. It takes a
set of arguments that vary depending on the nature of the host
reservation. Any parameters allowed in the configuration file that
pertain to host reservation are permitted here. For details regarding
IPv4 reservations, see Host Reservation in DHCPv4; for IPv6 reservations, see
Host Reservation in DHCPv6. The subnet-id is mandatory. Use a
value of zero (0) to add a global reservation, or the id of the subnet
to which the reservation should be added. An example command can be as
simple as:

{
 "command": "reservation-add",
 "arguments": {
 "reservation": {
 "subnet-id": 1,
 "hw-address": "1a:1b:1c:1d:1e:1f",
 "ip-address": "192.0.2.202"
 }
 }
}

but it can also take many more parameters, for example:

{
 "command": "reservation-add",
 "arguments": {
 "reservation":
 {
 "subnet-id":1,
 "client-id": "01:0a:0b:0c:0d:0e:0f",
 "ip-address": "192.0.2.205",
 "next-server": "192.0.2.1",
 "server-hostname": "hal9000",
 "boot-file-name": "/dev/null",
 "option-data": [
 {
 "name": "domain-name-servers",
 "data": "10.1.1.202,10.1.1.203"
 }
],
 "client-classes": ["special_snowflake", "office"]
 }
 }
}

Here is an example of a complex IPv6 reservation:

{
 "command": "reservation-add",
 "arguments": {
 "reservation":
 {
 "subnet-id":1,
 "duid": "01:02:03:04:05:06:07:08:09:0A",
 "ip-addresses": ["2001:db8:1:cafe::1"],
 "prefixes": ["2001:db8:2:abcd::/64"],
 "hostname": "foo.example.com",
 "option-data": [
 {
 "name": "vendor-opts",
 "data": "4491"
 },
 {
 "name": "tftp-servers",
 "space": "vendor-4491",
 "data": "3000:1::234"
 }
]
 }
 }
}

The command returns a status that indicates either a success (result 0)
or a failure (result 1). A failed command always includes a text parameter
that explains the cause of the failure. Example results:

{ "result": 0, "text": "Host added." }

Example failure:

{ "result": 1, "text": "Mandatory 'subnet-id' parameter missing." }

As reservation-add is expected to store the host, the hosts-databases
parameter must be specified in the configuration and databases must not
run in read-only mode. In future versions of Kea, it will be possible to
modify the reservations read from a configuration file. Interested parties are
encouraged to contact ISC for more information on developing this functionality.

15.9.3. The reservation-get Command

reservation-get can be used to query the host database and retrieve
existing reservations. There are two types of parameters this command
supports: (subnet-id, address) or (subnet-id, identifier-type,
identifier). The first type of query is used when the address (either
IPv4 or IPv6) is known, but the details of the reservation are not. One
common use case of this type of query is to find out whether a given
address is reserved. The second query uses identifiers. For
maximum flexibility, Kea stores the host identifying information as a
pair of values: the type and the actual identifier. Currently supported
identifiers are “hw-address”, “duid”, “circuit-id”, “client-id”, and
“flex-id”, but additional types may be added in the future. If any new
identifier types are defined in the future, the reservation-get command will
support them automatically. The subnet-id is mandatory. Use a value
of zero (0) to fetch a global reservation, or the id of the subnet to
which the reservation belongs.

An example command for getting a host reservation by a (subnet-id,
address) pair looks as follows:

{
 "command": "reservation-get",
 "arguments": {
 "subnet-id": 1,
 "ip-address": "192.0.2.202"
 }
}

An example query by (subnet-id, identifier-type, identifier) looks as
follows:

{
 "command": "reservation-get",
 "arguments": {
 "subnet-id": 4,
 "identifier-type": "hw-address",
 "identifier": "01:02:03:04:05:06"
 }
}

reservation-get typically returns the result 0 when the query was
conducted properly. In particular, 0 is returned when the host was not
found. If the query was successful, a number of host parameters will be
returned. An example of a query that did not find the host looks as
follows:

{ "result": 0, "text": "Host not found." }

An example result returned when the host was found looks like this:

{
 "arguments": {
 "boot-file-name": "bootfile.efi",
 "client-classes": [

],
 "hostname": "somehost.example.org",
 "hw-address": "01:02:03:04:05:06",
 "ip-address": "192.0.2.100",
 "next-server": "192.0.0.2",
 "option-data": [

],
 "server-hostname": "server-hostname.example.org"
 },
 "result": 0,
 "text": "Host found."
}

An example result returned when the query was malformed might look like this:

{ "result": 1, "text": "No 'ip-address' provided and 'identifier-type'
 is either missing or not a string." }

15.9.4. The reservation-get-all Command

reservation-get-all can be used to query the host database and
retrieve all reservations in a specified subnet. This command uses
parameters providing the mandatory subnet-id. Global host reservations
can be retrieved by using a subnet-id value of zero (0).

For instance, retrieving host reservations for the subnet 1:

{
 "command": "reservation-get-all",
 "arguments": {
 "subnet-id": 1
 }
}

returns some IPv4 hosts:

{
 "arguments": {
 "hosts": [
 {
 "boot-file-name": "bootfile.efi",
 "client-classes": [],
 "hostname": "somehost.example.org",
 "hw-address": "01:02:03:04:05:06",
 "ip-address": "192.0.2.100",
 "next-server": "192.0.0.2",
 "option-data": [],
 "server-hostname": "server-hostname.example.org"
 },
 ...
 {
 "boot-file-name": "bootfile.efi",
 "client-classes": [],
 "hostname": "otherhost.example.org",
 "hw-address": "01:02:03:04:05:ff",
 "ip-address": "192.0.2.200",
 "next-server": "192.0.0.2",
 "option-data": [],
 "server-hostname": "server-hostname.example.org"
 }
]
 },
 "result": 0,
 "text": "72 IPv4 host(s) found."
}

The response returned by reservation-get-all can be very long. The
DHCP server does not handle DHCP traffic when preparing a response to
reservation-get-all, so if there are many reservations in a subnet, this
may be disruptive. Use with caution. For larger deployments, please
consider using reservation-get-page instead (see
The reservation-get-page command).

For a reference, see The reservation-get-all Command.

15.9.5. The reservation-get-page command

reservation-get-page can be used to query the host database and
retrieve all reservations in a specified subnet by pages. This command
uses parameters providing the mandatory subnet-id. Use a value of zero
(0) to fetch global reservations. The second mandatory parameter is the
page size limit. Optional source-index and from host id, both defaulting
to 0, are used to chain page queries.

The usage of from and source-index parameters requires additional
explanation. For the first call, those parameters should not be specified
(or specified as zeros). For any follow-up calls, they should be set to
the values returned in previous calls in a next map holding from and
source-index values. Subsequent calls should be issued until all
reservations are returned. The end is reached once the returned list is
empty, the count is 0, no next map is present, and result status 3 (empty) is
returned.

Note

The from and source-index parameters are reflecting the internal state of
the search. There is no need to understand what they represent; it is
simply a value that is supposed to be copied from one response to the
next query. However, for those who are curious, the from field represents a
64-bit representation of the host identifier used by a host backend. The
source-index is an internal representation of multiple host
backends: 0 is used to represent hosts defined in a configuration
file, and 1 represents the first database backend. In some uncommon cases
there may be more than one database backend configured, so
potentially there may be a 2. In any case, Kea will iterate over all
backends configured.

For instance, retrieving host reservations for the subnet 1 and
requesting the first page can be done by:

{
 "command": "reservation-get-page",
 "arguments": {
 "subnet-id": 1,
 "limit": 10
 }
}

Since this is the first call, source-index and from should not be
specified. They will default to their zero default values.

Some hosts are returned with information to get the next page:

{
 "arguments": {
 "count": 72,
 "hosts": [
 {
 "boot-file-name": "bootfile.efi",
 "client-classes": [],
 "hostname": "somehost.example.org",
 "hw-address": "01:02:03:04:05:06",
 "ip-address": "192.0.2.100",
 "next-server": "192.0.0.2",
 "option-data": [],
 "server-hostname": "server-hostname.example.org"
 },
 ...
 {
 "boot-file-name": "bootfile.efi",
 "client-classes": [],
 "hostname": "otherhost.example.org",
 "hw-address": "01:02:03:04:05:ff",
 "ip-address": "192.0.2.200",
 "next-server": "192.0.0.2",
 "option-data": [],
 "server-hostname": "server-hostname.example.org"
 }
],
 "next": {
 "from": 1234567,
 "source-index": 1
 }
 },
 "result": 0,
 "text": "72 IPv4 host(s) found."
}

Note that the “from” and “source-index” fields were specified in the response in
the next map. Those two must be copied to the next command, so Kea
continues from the place where the last command finished. To get the
next page the following command can be sent:

{
 "command": "reservation-get-page",
 "arguments": {
 "subnet-id": 1,
 "source-index": 1,
 "from": 1234567,
 "limit": 10
 }
}

The response will contain a list of hosts with updated source-index
and from fields. Continue calling the command until the last
page is received. Its response will look like this:

{
 "arguments": {
 "count": 0,
 "hosts": [],
 },
 "result": 3,
 "0 IPv4 host(s) found."
}

This command is more complex than reservation-get-all, but lets
users retrieve larger host reservations lists in smaller chunks. For
small deployments with few reservations, it is easier to use
reservation-get-all (see The reservation-get-all Command).

Note

Currently reservation-get-page is not supported by the Cassandra
host backend.

15.9.6. The reservation-get-by-hostname Command

reservation-get-by-hostname can be used to query the host database and
retrieve all reservations with a specified hostname and optionally in
a specified subnet. This command uses parameters providing the mandatory
hostname and the optional subnet-id. Global host reservations
can be retrieved by using a subnet-id value of zero (0).
Hostname matching is case-insensitive. This command is available since
Kea version 1.7.1.

For instance, retrieving host reservations for “foobar” in the subnet 1:

{
 "command": "reservation-get-by-hostname",
 "arguments": {
 "hostname": "foobar.example.org",
 "subnet-id": 1
 }
}

returns some IPv4 hosts:

{
 "arguments": {
 "hosts": [
 {
 "boot-file-name": "bootfile.efi",
 "client-classes": [],
 "hostname": "foobar.example.org",
 "hw-address": "01:02:03:04:05:06",
 "ip-address": "192.0.2.100",
 "next-server": "192.0.0.2",
 "option-data": [],
 "server-hostname": "server-hostname.example.org"
 },
 ...
 {
 "boot-file-name": "bootfile.efi",
 "client-classes": [],
 "hostname": "foobar.example.org",
 "hw-address": "01:02:03:04:05:ff",
 "ip-address": "192.0.2.200",
 "next-server": "192.0.0.2",
 "option-data": [],
 "server-hostname": "server-hostname.example.org"
 }
]
 },
 "result": 0,
 "text": "5 IPv4 host(s) found."
}

The response returned by reservation-get-by-hostname can be long
in particular when responses are not limited to a subnet.

For a reference, see The reservation-get-by-hostname Command.

Note

When the host backend is MySQL this commands relies on the fact
the hostname column in the hosts table uses a case-insensitive
collation as explained in the MySQL section of
Kea Database Administration.

15.9.7. The reservation-del Command

reservation-del can be used to delete a reservation from the host
database. There are two types of parameters this command supports:
(subnet-id, address) or (subnet-id, identifier-type, identifier). The
first type of query is used when the address (either IPv4 or IPv6) is
known, but the details of the reservation are not. One common use case of
this type of query is to remove a reservation (e.g. a specific
address should no longer be reserved). The second query uses identifiers.
For maximum flexibility, Kea stores the host identifying information as
a pair of values: the type and the actual identifier. Currently supported
identifiers are “hw-address”, “duid”, “circuit-id”, “client-id”, and
“flex-id”, but additional types may be added in the future. If any new
identifier types are defined in the future, the reservation-get command will
support them automatically. The subnet-id is mandatory. Use a value
of zero (0) to delete a global reservation, or the id of the subnet from
which the reservation should be deleted.

An example command for deleting a host reservation by (subnet-id,
address) pair looks as follows:

{
 "command": "reservation-del",
 "arguments": {
 "subnet-id": 1,
 "ip-address": "192.0.2.202"
 }
}

An example deletion by (subnet-id, identifier-type, identifier) looks as
follows:

{
 "command": "reservation-del",
 "arguments":
 "subnet-id": 4,
 "identifier-type": "hw-address",
 "identifier": "01:02:03:04:05:06"
 }
}

reservation-del returns a result 0 when the host deletion was
successful or 1 if it was not. Descriptive text is provided in the event of
an error. Example results look as follows:

{
 "result": 1,
 "text": "Host not deleted (not found)."
}

{
 "result": 0,
 "text": "Host deleted."
}

{
 "result": 1,
 "text": "Unable to delete a host because there is no hosts-database
 configured."
}

15.10. lease_cmds: Lease Commands

This section describes the hook library with commands used to manage
leases. Kea provides a way to store lease information in several
backends (memfile, MySQL, PostgreSQL, and Cassandra), and this library
provides an interface that can manipulate leases in a unified, safe way.
In particular, it allows things previously impossible: lease
manipulation in memfile while Kea is running, sanity check changes,
lease existence checks, and removal of all leases belonging to a
specific subnet. The hook library can also catch more obscure errors, like an attempt
to add a lease with a subnet-id that does not exist in the
configuration, or configuring a lease to use an address that is outside
of the subnet to which it is supposed to belong. The library also
provides a non-programmatic way to manage user contexts associated with
leases.

Note

This library may only be loaded by the kea-dhcp4 or the
kea-dhcp6 process.

There are many use cases where an administrative command may be useful;
for example, during migration between servers or different vendors, when
a certain network is being retired, or when a device has been
disconnected and the system administrator knows that it will not be coming
back. The “get” queries may be useful for automating certain management
and monitoring tasks. They can also act as preparatory steps for lease
updates and removals.

This library provides the following commands:

	lease4-add - adds a new IPv4 lease.

	lease6-add - adds a new IPv6 lease.

	lease6-bulk-apply - creates, updates and/or deletes multiple
IPv6 leases in a single transaction.

	lease4-get - checks whether an IPv4 lease with the specified
parameters exists and returns it if it does.

	lease6-get - checks whether an IPv6 lease with the specified
parameters exists and returns it if it does.

	lease4-get-all - returns all IPv4 leases or all IPv4 leases for
the specified subnets.

	lease6-get-all - returns all IPv6 leases or all IPv6 leases for
the specified subnets.

	lease4-get-page - returns a set (“page”) of leases from the list
of all IPv4 leases in the database. By iterating through the pages it
is possible to retrieve all the leases.

	lease6-get-page - returns a set (“page”) of leases from the list
of all IPv6 leases in the database. By iterating through the pages it
is possible to retrieve all the leases.

	lease4-get-by-hw-address - return all IPv4 leases with the specified
hardware address.

	lease4-get-by-client-id - return all IPv4 leases with the specified
client id.

	lease6-get-by-duid - returns all IPv6 leases with the specified DUID.

	lease4-get-by-hostname - return all IPv4 leases with the specified
hostname.

	lease6-get-by-hostname - return all IPv6 leases with the specified
hostname.

	lease4-del - deletes an IPv4 lease with the specified parameters.

	lease6-del - deletes an IPv6 lease with the specified parameters.

	lease4-update - updates an IPv4 lease.

	lease6-update - updates an IPv6 lease.

	lease4-wipe - removes all leases from a specific IPv4 subnet or
from all subnets.

	lease6-wipe - removes all leases from a specific IPv6 subnet or
from all subnets.

	lease4-resend-ddns - resend a request to update DNS entries for
an existing lease.

	lease6-resend-ddns - resend a request to update DNS entries for
an existing lease.

The lease commands library is part of the open source code and is
available to every Kea user.

All commands use JSON syntax and can be issued either using the control
channel (see Management API) or Control Agent (see
The Kea Control Agent).

The library can be loaded in the same way as other hook libraries, and
it does not take any parameters. It supports both DHCPv4 and DHCPv6
servers.

"Dhcp6": {
 "hooks-libraries": [
 {
 "library": "/path/libdhcp_lease_cmds.so"
 }
 ...
]
}

15.10.1. The lease4-add, lease6-add Commands

The lease4-add and lease6-add commands allow for the creation of
a new lease. Typically Kea creates a lease when it first sees a new
device; however, sometimes it may be convenient to create the lease
manually. The lease4-add command requires at least two parameters:
an IPv4 address and an identifier, i.e. hardware (MAC) address. A third
parameter, subnet-id, is optional. If the subnet-id is not specified or
the specified value is 0, Kea will try to determine the value by running
a subnet-selection procedure. If specified, however, its value must
match the existing subnet. The simplest successful call might look as
follows:

{
 "command": "lease4-add",
 "arguments": {
 "ip-address": "192.0.2.202",
 "hw-address": "1a:1b:1c:1d:1e:1f"
 }
}

The lease6-add command requires three parameters: an IPv6 address,
an IAID value (identity association identifier, a value sent by
clients), and a DUID. As with lease4-add, the subnet-id parameter is
optional. If the subnet-id is not specified or the provided value is 0,
Kea will try to determine the value by running a subnet-selection
procedure. If specified, however, its value must match the existing
subnet. For example:

{
 "command": "lease6-add",
 "arguments": {
 "subnet-id": 66,
 "ip-address": "2001:db8::3",
 "duid": "1a:1b:1c:1d:1e:1f:20:21:22:23:24",
 "iaid": 1234
 }
}

lease6-add can also be used to add leases for IPv6 prefixes. In this
case there are three additional parameters that must be specified:
subnet-id, type (set to value of “IA_PD”), and prefix length. The actual
prefix is set using the ip-address field. Note that Kea cannot guess
subnet-id values for prefixes; they must be specified explicitly. For
example, to configure a lease for prefix 2001:db8:abcd::/48, the
following command can be used:

{
 "command": "lease6-add",
 "arguments": {
 "subnet-id": 66,
 "type": "IA_PD",
 "ip-address": "2001:db8:abcd::",
 "prefix-len": 48,
 "duid": "1a:1b:1c:1d:1e:1f:20:21:22:23:24",
 "iaid": 1234
 }
}

The commands can take several additional optional parameters:

	valid-lft - specifies the lifetime of the lease, expressed in
seconds. If not specified, the value configured in the subnet related
to the specified subnet-id is used.

	expire - creates a timestamp of the lease expiration time,
expressed in UNIX format (seconds since 1 Jan 1970). If not
specified, the default value is now + the lease lifetime (the value
of valid-lft).

	fqdn-fwd - specifies whether the lease should be marked as if a
forward DNS update were conducted. Note this only affects the
data stored in the lease database, and no DNS update will be
performed. If configured, a DNS update to remove the A or AAAA
records will be conducted when the lease is removed due to expiration
or being released by a client. If not specified, the default value is
false. The hostname parameter must be specified if fqdn-fwd is set to
true.

	fqdn-rev - specifies whether the lease should be marked as if
reverse DNS update were conducted. Note this only affects the the
data stored in the lease database, and no DNS update will be
performed.. If configured, a DNS update to remove the PTR record will
be conducted when the lease is removed due to expiration or being
released by a client. If not specified, the default value is false.
The hostname parameter must be specified if fqdn-fwd is set to true.

	hostname - specifies the hostname to be associated with this
lease. Its value must be non-empty if either fqdn-fwd or fwdn-rev are
set to true. If not specified, the default value is an empty string.

	hw-address - optionally specifies a hardware (MAC) address for an
IPv6 lease. It is a mandatory parameter for an IPv4 lease.

	client-id - optionally specifies a client identifier for an IPv4
lease.

	preferred-lft - optionally specifies a preferred lifetime for
IPv6 leases. If not specified, the value configured for the subnet
corresponding to the specified subnet-id is used. This parameter is
not used when adding an IPv4 lease.

	state - specify the state of added lease, can be 0 for default,
1 for declined and 2 for expired-reclaimed state. Any other
value will cause error.

	user-context - specifies the user context to be associated with
this lease. It must be a JSON map.

Here is an example of a more complex lease addition:

{
 "command": "lease6-add",
 "arguments": {
 "subnet-id": 66,
 "ip-address": "2001:db8::3",
 "duid": "01:02:03:04:05:06:07:08",
 "iaid": 1234,
 "hw-address": "1a:1b:1c:1d:1e:1f",
 "preferred-lft": 500,
 "valid-lft": 1000,
 "expire": 12345678,
 "fqdn-fwd": true,
 "fqdn-rev": true,
 "state": 0,
 "hostname": "urania.example.org",
 "user-context": { "version": 1 }
 }
}

The command returns a status that indicates either success (result 0)
or failure (result 1). A failed command always includes a text
parameter that explains the cause of failure. For example:

{ "result": 0, "text": "Lease added." }

Example failure:

{ "result": 1, "text": "missing parameter 'ip-address' (<string>:3:19)" }

15.10.2. The lease6-bulk-apply Command

The lease6-bulk-apply was implemented to address
the performance penalty in the High Availability when a single DHCPv6
transaction resulted in multiple lease updates sent to the partner if
multiple address and/or prefix leases were allocated. Consider the case
when a DHCPv6 client requests the assignment of two IPv6 addresses and two IPv6
prefixes. That may result in allocation of 4 leases. In addition, the
DHCPv6 may assign different address than requested by the client during
the renew or rebind and delete the leases previously used by this client.
The are 6 of lease changes sent between the HA partners is in this case.
Sending these updates in individual commands, e.g. lease6-update
is highly inefficient and produces unnecessary delays in communication
between the HA partners and in sending the response to the DHCPv6 client.

The lease6-bulk-apply command deals with this
problem by aggregating all lease changes in a single command. Both
deleted leases and new/updated leases are conveyed in a single command.
The receiving server iterates over the deleted leases and deletes them
from its lease database. Next, it iterates over the new/updated leases
and adds them to the database or updates them if they already exist.

Even though the High Avialability is the major application for
this command, it can be freely used in all cases when it is desired to
send multiple lease changes in a single command.

In the following example, we ask to delete two leases and to add
or update two other leases in the database:

 {
 "command": "lease6-bulk-apply",
 "arguments": {
 "deleted-leases": [
 {
 "ip-address": "2001:db8:abcd::",
 "type": "IA_PD",
 ...
 },
 {
 "ip-address": "2001:db8:abcd::234",
 "type": "IA_NA",
 ...
 }
],
 "leases": [
 {
 "subnet-id": 66,
 "ip-address": "2001:db8:cafe::",
 "type": "IA_PD",
 ...
 },
 {
 "subnet-id": 66,
 "ip-address": "2001:db8:abcd::333",
 "type": "IA_NA",
 ...
 }
]
 }
}

If any of the leases is malformed, no leases changes are applied
to the lease database. If the leases are well formed but there is a
failure to apply any of the lease changes to the database, the command
will continue to be processed for other leases. All the leases for which
the command was unable to apply the changes in the database will be
listed in the response. For example:

{
 "result": 0,
 "text": "Bulk apply of 2 IPv6 leases completed".
 "arguments": {
 "failed-deleted-leases": [
 {
 "ip-address": "2001:db8:abcd::",
 "type": "IA_PD",
 "result": 3,
 "error-message": "no lease found"
 }
],
 "failed-leases": [
 {
 "ip-address": "2001:db8:cafe::",
 "type": "IA_PD",
 "result": 1,
 "error-message": "unable to communicate with the lease database"
 }
]
 }
}

The response above indicates that the hooks library was unable to
delete the lease for prefix “2001:db8:abcd::” and add or update the lease
for prefix “2001:db8:cafe::”. However, there are two other lease changes
which have been applied as indicated by the text message. The
result is the status constant that indicates the type
of the error experienced for the particular lease. The meaning of the
returned codes are the same as the results returned for the commands.
In particular, the result of 1 indicates an error while processing the
lease, e.g. a communication error with the database. The result of 3
indicates that an attempt to delete the lease was unsuccessful because
such lease doesn’t exist (empty result).

15.10.3. The lease4-get, lease6-get Commands

lease4-get or lease6-get can be used to query the lease database
and retrieve existing leases. There are two types of parameters the
lease4-get command supports: (address) or (subnet-id,
identifier-type, identifier). There are also two types for
lease6-get: (address, type) or (subnet-id, identifier-type,
identifier, IAID, type). The first type of query is used when the
address (either IPv4 or IPv6) is known, but the details of the lease are
not; one common use case of this type of query is to find out whether a
given address is being used. The second query uses identifiers;
currently supported identifiers for leases are: “hw-address” (IPv4
only), “client-id” (IPv4 only), and “duid” (IPv6 only).

An example lease4-get command for getting a lease using an IPv4
address is:

{
 "command": "lease4-get",
 "arguments": {
 "ip-address": "192.0.2.1"
 }
}

An example of the lease6-get query is:

{
 "command": "lease6-get",
 "arguments": {
 "ip-address": "2001:db8:1234:ab::",
 "type": "IA_PD"
 }
}

An example query by “hw-address” for an IPv4 lease looks as follows:

{
 "command": "lease4-get",
 "arguments": {
 "identifier-type": "hw-address",
 "identifier": "08:08:08:08:08:08",
 "subnet-id": 44
 }
}

An example query by “client-id” for an IPv4 lease looks as follows:

{
 "command": "lease4-get",
 "arguments": {
 "identifier-type": "client-id",
 "identifier": "01:01:02:03:04:05:06",
 "subnet-id": 44
 }
}

An example query by (subnet-id, identifier-type, identifier, iaid, type)
for an IPv6 lease is:

{
 "command": "lease4-get",
 "arguments": {
 "identifier-type": "duid",
 "identifier": "08:08:08:08:08:08",
 "iaid": 1234567,
 "type": "IA_NA",
 "subnet-id": 44
 }
}

The type is an optional parameter. Supported values are: IA_NA
(non-temporary address) and IA_PD (IPv6 prefix). If not specified, IA_NA
is assumed.

leaseX-get returns a result that indicates a result of the operation
and lease details, if found. It has one of the following values: 0
(success), 1 (error), or 2 (empty). An empty result means that a query
has been completed properly, but the object (a lease in this case) has
not been found. The lease parameters, if found, are returned as
arguments.

An example result returned when the host was found:

{
 "arguments": {
 "client-id": "42:42:42:42:42:42:42:42",
 "cltt": 12345678,
 "fqdn-fwd": false,
 "fqdn-rev": true,
 "hostname": "myhost.example.com.",
 "hw-address": "08:08:08:08:08:08",
 "ip-address": "192.0.2.1",
 "state": 0,
 "subnet-id": 44,
 "valid-lft": 3600
 },
 "result": 0,
 "text": "IPv4 lease found."
}

15.10.4. The lease4-get-all, lease6-get-all Commands

lease4-get-all and lease6-get-all are used to retrieve all IPv4
or IPv6 leases, or all leases for the specified set of subnets. All
leases are returned when there are no arguments specified with the
command, as in the following example:

{
 "command": "lease4-get-all"
}

If arguments are provided, it is expected that they contain the
“subnets” parameter, which is a list of subnet identifiers for which the
leases should be returned. For example, in order to retrieve all IPv6
leases belonging to the subnets with identifiers 1, 2, 3, and 4:

{
 "command": "lease6-get-all",
 "arguments": {
 "subnets": [1, 2, 3, 4]
 }
}

The returned response contains a detailed list of leases in the
following format:

{
 "arguments": {
 "leases": [
 {
 "cltt": 12345678,
 "duid": "42:42:42:42:42:42:42:42",
 "fqdn-fwd": false,
 "fqdn-rev": true,
 "hostname": "myhost.example.com.",
 "hw-address": "08:08:08:08:08:08",
 "iaid": 1,
 "ip-address": "2001:db8:2::1",
 "preferred-lft": 500,
 "state": 0,
 "subnet-id": 44,
 "type": "IA_NA",
 "valid-lft": 3600
 },
 {
 "cltt": 12345678,
 "duid": "21:21:21:21:21:21:21:21",
 "fqdn-fwd": false,
 "fqdn-rev": true,
 "hostname": "",
 "iaid": 1,
 "ip-address": "2001:db8:0:0:2::",
 "preferred-lft": 500,
 "prefix-len": 80,
 "state": 0,
 "subnet-id": 44,
 "type": "IA_PD",
 "valid-lft": 3600
 }
]
 },
 "result": 0,
 "text": "2 IPv6 lease(s) found."
}

Warning

The lease4-get-all and lease6-get-all commands may result in
very large responses. This may have a negative impact on the DHCP
server’s responsiveness while the response is generated and
transmitted over the control channel, as the server imposes no
restriction on the number of leases returned as a result of this
command.

15.10.5. The lease4-get-page, lease6-get-page Commands

The lease4-get-all and lease6-get-all commands may result in
very large responses; generating such a response may consume CPU
bandwidth as well as memory. It may even cause the server to become
unresponsive. In case of large lease databases it is usually better to
retrieve leases in chunks, using the paging mechanism.
lease4-get-page and lease6-get-page implement a paging mechanism
for DHCPv4 and DHCPv6 servers respectively. The following command
retrieves the first 1024 IPv4 leases:

{
 "command": "lease4-get-page",
 "arguments": {
 "from": "start",
 "limit": 1024
 }
}

The keyword start denotes that the first page of leases should be
retrieved. Alternatively, an IPv4 zero address can be specified to
retrieve the first page:

{
 "command": "lease4-get-page",
 "arguments": {
 "from": "0.0.0.0",
 "limit": 1024
 }
}

Similarly, the IPv6 zero address can be specified in the
lease6-get-page command:

{
 "command": "lease6-get-page",
 "arguments": {
 "from": "::",
 "limit": 6
 }
}

The response has the following structure:

{
 "arguments": {
 "leases": [
 {
 "ip-address": "2001:db8:2::1",
 ...
 },
 {
 "ip-address": "2001:db8:2::9",
 ...
 },
 {
 "ip-address": "2001:db8:3::1",
 ...
 },
 {
 "ip-address": "2001:db8:5::3",
 ...
 }
 {
 "ip-address": "2001:db8:4::1",
 ...
 },
 {
 "ip-address": "2001:db8:2::7",
 ...
 }

],
 "count": 6
 },
 "result": 0,
 "text": "6 IPv6 lease(s) found."
}

Note that the leases’ details were excluded from the response above for
brevity.

Generally, the returned list is not sorted in any particular order. Some
lease database backends may sort leases in ascending order of addresses,
but the controlling client must not rely on this behavior. In cases of
highly distributed databases, such as Cassandra, ordering may be
inefficient or even impossible.

The count parameter contains the number of returned leases on the
page.

To fetch the next page, the client must use the last address of the
current page as an input to the next lease4-get-page or
lease6-get-page command call. In this example it is:

{
 "command": "lease6-get-page",
 "arguments": {
 "from": "2001:db8:2::7",
 "count": 6
 }
}

because 2001:db8:2::7 is the last address on the current page.

The client may assume that it has reached the last page when the
count value is lower than that specified in the command; this
includes the case when the count is equal to 0, meaning that no
leases were found.

15.10.6. The lease4-get-by-, lease6-get-by- Commands

leaseX-get-by-Y can be used to query the lease database and
retrieve all existing leases with a specified hardware address (IPv4
only), client id IPv4 only), duid (IPv6 only) identifiers or hostname.

An example lease4-get-by-hw-address command for getting IPv4 leases
with a given hardware address is:

{
 "command": "lease4-get-by-hw-address",
 "arguments": {
 "hw-address": "08:08:08:08:08:08"
 }
}

An example of the lease6-get-by-hostname is:

{
 "command": "lease6-get-by-hostname",
 "arguments": {
 "hostname": "myhost.example.org"
 }
}

The by key is the only parameter. The returned response contains a detailed
list of leases in the same format than leaseX-get-all. This list can be
empty and usually is never large.

15.10.7. The lease4-del, lease6-del Commands

leaseX-del can be used to delete a lease from the lease database.
There are two types of parameters this command supports, similar to the
leaseX-get commands: (address) for both v4 and v6, (subnet-id,
identifier-type, identifier) for v4, and (subnet-id, identifier-type,
identifier, type, IAID) for v6. The first type of query is used when the
address (either IPv4 or IPv6) is known, but the details of the lease are
not. One common use case is where an administrator wants a specified
address to no longer be used. The second form of the command uses
identifiers. For maximum flexibility, this interface uses identifiers as
a pair of values: the type and the actual identifier. The currently
supported identifiers are “hw-address” (IPv4 only), “client-id” (IPv4
only), and “duid” (IPv6 only).

An example command for deleting a lease by address is:

{
 "command": "lease4-del",
 "arguments": {
 "ip-address": "192.0.2.202"
 }
}

An example IPv4 lease deletion by “hw-address” is:

{
 "command": "lease4-del",
 "arguments": {
 "identifier": "08:08:08:08:08:08",
 "identifier-type": "hw-address",
 "subnet-id": 44
 }
}

leaseX-del returns a result that indicates the outcome of the
operation. It has one of the following values: 0 (success), 1 (error),
or 3 (empty). The empty result means that a query has been completed
properly, but the object (a lease in this case) has not been found.

15.10.8. The lease4-update, lease6-update Commands

The lease4-update and lease6-update commands can be used to
update existing leases. Since all lease database backends are indexed by
IP addresses, it is not possible to update an address, but all other
fields may be altered. If an address needs to be changed, please use
leaseX-del followed by leaseX-add.

The subnet-id parameter is optional. If not specified, or if the
specified value is 0, Kea will try to determine its value by running a
subnet-selection procedure. If specified, however, its value must match
the existing subnet.

The optional boolean parameter “force-create” specifies whether the
lease should be created if it does not exist in the database. It defaults
to false, which indicates that the lease is not created if it does not
exist. In such a case, an error is returned as a result of trying to
update a non-existing lease. If the “force-create” parameter is set to
true and the updated lease does not exist, the new lease is created as a
result of receiving the leaseX-update.

An example of a command to update an IPv4 lease is:

{
 "command": "lease4-update",
 "arguments": {
 "ip-address": "192.0.2.1",
 "hostname": "newhostname.example.org",
 "hw-address": "1a:1b:1c:1d:1e:1f",
 "subnet-id": 44,
 "force-create": true
 }
}

An example of a command to update an IPv6 lease is:

{
 "command": "lease6-update",
 "arguments": {
 "ip-address": "2001:db8::1",
 "duid": "88:88:88:88:88:88:88:88",
 "iaid": 7654321,
 "hostname": "newhostname.example.org",
 "subnet-id": 66,
 "force-create": false
 }
}

15.10.9. The lease4-wipe, lease6-wipe Commands

lease4-wipe and lease6-wipe are designed to remove all leases
associated with a given subnet. This administrative task is expected to
be used when an existing subnet is being retired. Note that the leases
are not properly expired; no DNS updates are carried out, no log
messages are created, and hooks are not called for the leases being
removed.

An example of lease4-wipe is:

{
 "command": "lease4-wipe",
 "arguments": {
 "subnet-id": 44
 }
}

An example of lease6-wipe is:

{
 "command": "lease6-wipe",
 "arguments": {
 "subnet-id": 66
 }
}

The commands return a text description of the number of leases removed,
plus the status code 0 (success) if any leases were removed or 2 (empty)
if there were no leases. Status code 1 (error) may be returned if the
parameters are incorrect or some other exception is encountered.

Subnet-id 0 has a special meaning; it tells Kea to delete leases from
all configured subnets. Also, the subnet-id parameter may be omitted. If
not specified, leases from all subnets are wiped.

Note: not all backends support this command.

15.10.10. The lease4-resend-ddns, lease6-resend-ddns Commands

lease4-resend-ddns or lease6-resend-ddns can be used to generate
a request to kea-dhcp-ddns to update the DNS entries for an existing
lease. The desired lease is selected by a single parameter, “ip-address”.
In order for an update request to be generated, DDNS updating must be enabled
and DNS entries must have already been made (or attempted) for the lease.
In other words all of the following must be true:

	DDNS updating must be enabled. (i.e. “dhcp-ddns”:{ “enable-updates”: true”})

	The lease’s hostname must not be empty.

	At least one of the lease’s DNS direction flags (fdqn_fwd or fdqn_rev) must be true.

An example lease4-resend-ddns command for getting a lease using an IPv4
address is:

{
 "command": "lease4-resend-ddns",
 "arguments": {
 "ip-address": "192.0.2.1"
 }
}

An example of the lease6-resend-ddns query is:

{
 "command": "lease6-resend-ddns",
 "arguments": {
 "ip-address": "2001:db8:1::1"
 }
}

leaseX-resend-ddns returns a result that indicates a result of the operation.
It has one of the following values: 0 (success), 1 (error), or 2 (empty). An empty
result means that a query has been completed properly, but the object (a lease in
this case) has not been found.

A successful result does not mean that DNS has been successfully updated. It
indicates that a request to update DNS has been successfully created and
queued for transmission to kea-dhcp-ddns.

An example result returned when the lease was found:

{
 "result": 0,
 "text": "NCR generated for: 2001:db8:1::1, hostname: example.com."
}

15.11. subnet_cmds: Subnet Commands

This section describes a hook application that offers some new
commands used to query and manipulate subnet and shared network
configurations in Kea. This application is very useful in deployments
with a large number of subnets being managed by the DHCP servers,
when those subnets are frequently updated. The commands offer a lightweight
approach for manipulating subnets without a need to fully reconfigure
the server and without affecting existing servers’ configurations. An
ability to manage shared networks (listing, retrieving details, adding
new ones, removing existing ones, and adding subnets to and removing them from
shared networks) is also provided.

Currently this library is only available to ISC customers with a paid support
contract.

Note

This library may only be loaded by the kea-dhcp4 or kea-dhcp6
process.

The following commands are currently supported:

	subnet4-list/subnet6-list - lists all configured subnets.

	subnet4-get/subnet6-get - retrieves detailed information about a
specified subnet.

	subnet4-add/subnet6-add - adds a new subnet into the server’s
configuration.

	subnet4-update/subnet6-update - updates a subnet in the server’s
configuration.

	subnet4-del/subnet6-del - removes a subnet from the server’s
configuration.

	network4-list/network6-list - lists all configured shared networks.

	network4-get/network6-get - retrieves detailed information about a
specified shared network.

	network4-add/network6-add - adds a new shared network to the
server’s configuration.

	network4-del/network6-del - removes a shared network from the
server’s configuration.

	network4-subnet-add/network6-subnet-add - adds an existing subnet to
an existing shared network.

	network4-subnet-del/network6-subnet-del - removes a subnet from
an existing shared network and demotes it to a plain subnet.

15.11.1. The subnet4-list Command

This command is used to list all currently configured subnets. Each
subnet is returned with a subnet identifier and
subnet prefix. To retrieve
detailed information about the subnet, use the subnet4-get command.

This command has the simple structure:

{
 "command": "subnet4-list"
}

The list of subnets is returned in the following format:

{
 "result": 0,
 "text": "2 IPv4 subnets found",
 "arguments": {
 "subnets": [
 {
 "id": 10,
 "subnet": "10.0.0.0/8"
 },
 {
 "id": 100,
 "subnet": "192.0.2.0/24"
 }
]
}

If no IPv4 subnets are found, an error code is returned along with the
error description.

15.11.2. The subnet6-list Command

This command is used to list all currently configured subnets. Each
subnet is returned with a subnet identifier and
subnet prefix. To retrieve
detailed information about the subnet, use the subnet6-get command.

This command has the simple structure:

{
 "command": "subnet6-list"
}

The list of subnets is returned in the following format:

{
 "result": 0,
 "text": "2 IPv6 subnets found",
 "arguments": {
 "subnets": [
 {
 "id": 11,
 "subnet": "2001:db8:1::/64"
 },
 {
 "id": 233,
 "subnet": "3000::/16"
 }
]
}

If no IPv6 subnets are found, an error code is returned along with the
error description.

15.11.3. The subnet4-get Command

This command is used to retrieve detailed information about the
specified subnet. This command usually follows subnet4-list,
which is used to discover available subnets with their respective subnet
identifiers and prefixes. Any of those parameters can be then used in
subnet4-get to fetch subnet information:

{
 "command": "subnet4-get",
 "arguments": {
 "id": 10
 }
}

or

{
 "command": "subnet4-get",
 "arguments": {
 "subnet": "10.0.0.0/8"
 }
}

If the subnet exists the response will be similar to this:

{
 "result": 0,
 "text": "Info about IPv4 subnet 10.0.0.0/8 (id 10) returned",
 "arguments": {
 "subnets": [
 {
 "subnet": "10.0.0.0/8",
 "id": 1,
 "option-data": [

]
 ...
 }
]
 }
}

15.11.4. The subnet6-get Command

This command is used to retrieve detailed information about the
specified subnet. This command usually follows subnet6-list,
which is used to discover available subnets with their respective subnet
identifiers and prefixes. Any of those parameters can be then used in
subnet6-get to fetch subnet information:

{
 "command": "subnet6-get",
 "arguments": {
 "id": 11
 }
}

or

{
 "command": "subnet6-get",
 "arguments": {
 "subnet": "2001:db8:1::/64"
 }
}

If the subnet exists the response will be similar to this:

{
 "result": 0,
 "text": "Info about IPv6 subnet 2001:db8:1::/64 (id 11) returned",
 "arguments": {
 "subnets": [
 {
 "subnet": "2001:db8:1::/64",
 "id": 1,
 "option-data": [
 ...
]

 }
]
 }
}

15.11.5. The subnet4-add Command

This command is used to create and add a new subnet to the existing server
configuration. This operation has no impact on other subnets. The subnet
identifier must be specified and must be unique among all subnets. If
the identifier or a subnet prefix is not unique, an error is reported and
the subnet is not added.

The subnet information within this command has the same structure as the
subnet information in the server configuration file, with the exception
that static host reservations must not be specified within
subnet4-add. The commands described in host_cmds: Host Commands should be used to
add, remove, and modify static reservations.

{
 "command": "subnet4-add",
 "arguments": {
 "subnet4": [{
 "id": 123,
 "subnet": "10.20.30.0/24",
 ...
 }]
 }
}

The response to this command has the following structure:

{
 "result": 0,
 "text": "IPv4 subnet added",
 "arguments": {
 "subnet4": [
 {
 "id": 123,
 "subnet": "10.20.30.0/24"
 }
]
 }
}

15.11.6. The subnet6-add Command

This command is used to create and add a new subnet to the existing server
configuration. This operation has no impact on other subnets. The subnet
identifier must be specified and must be unique among all subnets. If
the identifier or a subnet prefix is not unique, an error is reported and
the subnet is not added.

The subnet information within this command has the same structure as the
subnet information in the server configuration file, with the exception
that static host reservations must not be specified within
subnet6-add. The commands described in host_cmds: Host Commands should be used
to add, remove, and modify static reservations.

{
 "command": "subnet6-add",
 "arguments": {
 "subnet6": [{
 "id": 234,
 "subnet": "2001:db8:1::/64",
 ...
 }]
 }
}

The response to this command has the following structure:

{
 "result": 0,
 "text": "IPv6 subnet added",
 "arguments": {
 "subnet6": [
 {
 "id": 234,
 "subnet": "2001:db8:1::/64"
 }
]
 }
}

It is recommended, but not mandatory, to specify the subnet ID. If not
specified, Kea will try to assign the next subnet-id value. This
automatic ID value generator is simple; it returns a previously
automatically assigned value, increased by 1. This works well, unless
a subnet is manually created with a value bigger than one previously used. For
example, if subnet4-add is called five times, each without an ID, Kea will
assign IDs 1, 2, 3, 4, and 5 and it will work just fine. However, if
subnet4-add is called five times, with the first subnet having the
subnet-id of value 3 and the remaining ones having no subnet-id, the operation will
fail. The first command (with the explicit value) will use subnet-id 3; the
second command will create a subnet with id of 1; the third will use a
value of 2; and finally the fourth will have the subnet-id value
auto-generated as 3. However, since there is already a subnet with that
ID, the process will fail.

The general recommendation is either never use explicit values, so
the auto-generated values will always work; or always use explicit
values, so the auto-generation is never used. The two
approaches can be mixed only if the administrator understands how internal
automatic subnet-id generation works in Kea.

Note

Subnet IDs must be greater than zero and less than 4294967295.

15.11.7. The subnet4-update Command

This command is used to update a subnet in the existing server
configuration. This operation has no impact on other subnets. The subnet
identifier is used to identify the subnet to replace; it must be
specified and must be unique among all subnets. The subnet prefix should
not be updated.

The subnet information within this command has the same structure as the
subnet information in the server configuration file, with the exception
that static host reservations must not be specified within
subnet4-update. The commands described in host_cmds: Host Commands should be used
to update, remove, and modify static reservations.

{
 "command": "subnet4-update",
 "arguments": {
 "subnet4": [{
 "id": 123,
 "subnet": "10.20.30.0/24",
 ...
 }]
 }
}

The response to this command has the following structure:

{
 "result": 0,
 "text": "IPv4 subnet updated",
 "arguments": {
 "subnet4": [
 {
 "id": 123,
 "subnet": "10.20.30.0/24"
 }
]
 }
}

15.11.8. The subnet6-update Command

This command is used to update a subnet in the existing server
configuration. This operation has no impact on other subnets. The subnet
identifier is used to identify the subnet to replace; it must be
specified and must be unique among all subnets. The subnet prefix should
not be updated.

The subnet information within this command has the same structure as the
subnet information in the server configuration file, with the exception
that static host reservations must not be specified within
subnet6-update. The commands described in host_cmds: Host Commands should be used
to update, remove, and modify static reservations.

{
 "command": "subnet6-update",
 "arguments": {
 "subnet6": [{
 "id": 234,
 "subnet": "2001:db8:1::/64",
 ...
 }]
 }
}

The response to this command has the following structure:

{
 "result": 0,
 "text": "IPv6 subnet updated",
 "arguments": {
 "subnet6": [
 {
 "id": 234,
 "subnet": "2001:db8:1::/64"
 }
]
 }
}

15.11.9. The subnet4-del Command

This command is used to remove a subnet from the server’s configuration.
This command has no effect on other configured subnets, but removing a
subnet has certain implications which the server’s administrator should
be aware of.

In most cases the server has assigned some leases to the clients
belonging to the subnet. The server may also be configured with static
host reservations which are associated with this subnet. The current
implementation of the subnet4-del command removes neither the leases nor
the host reservations associated with a subnet. This is the safest approach
because the server does not lose track of leases assigned to the clients
from this subnet. However, removal of the subnet may still cause
configuration errors and conflicts. For example: after removal of the
subnet, the server administrator may update a new subnet with the ID
used previously for the removed subnet. This means that the existing
leases and static reservations will be in conflict with this new subnet.
Thus, we recommend that this command be used with extreme caution.

This command can also be used to completely delete an IPv4 subnet that
is part of a shared network. To simply remove the subnet
from a shared network and keep the subnet configuration, use the
network4-subnet-del command instead.

The command has the following structure:

{
 "command": "subnet4-del",
 "arguments": {
 "id": 123
 }
}

The example successful response may look like this:

{
 "result": 0,
 "text": "IPv4 subnet 192.0.2.0/24 (id 123) deleted",
 "arguments": {
 "subnets": [
 {
 "id": 123,
 "subnet": "192.0.2.0/24"
 }
]
 }
}

15.11.10. The subnet6-del Command

This command is used to remove a subnet from the server’s configuration.
This command has no effect on other configured subnets, but removing a
subnet has certain implications which the server’s administrator should
be aware of.

In most cases the server has assigned some leases to the clients
belonging to the subnet. The server may also be configured with static
host reservations which are associated with this subnet. The current
implementation of the subnet6-del command removes neither the leases nor
the host reservations associated with a subnet. This is the safest approach
because the server does not lose track of leases assigned to the clients
from this subnet. However, removal of the subnet may still cause
configuration errors and conflicts. For example: after removal of the
subnet, the server administrator may add a new subnet with the ID used
previously for the removed subnet. This means that the existing leases
and static reservations will be in conflict with this new subnet. Thus,
we recommend that this command be used with extreme caution.

This command can also be used to completely delete an IPv6 subnet that
is part of a shared network. To simply remove the subnet
from a shared network and keep the subnet configuration, use the
network6-subnet-del command instead.

The command has the following structure:

{
 "command": "subnet6-del",
 "arguments": {
 "id": 234
 }
}

The example successful response may look like this:

{
 "result": 0,
 "text": "IPv6 subnet 2001:db8:1::/64 (id 234) deleted",
 "subnets": [
 {
 "id": 234,
 "subnet": "2001:db8:1::/64"
 }
]
}

15.11.11. The network4-list, network6-list Commands

These commands are used to retrieve the full list of currently configured
shared networks. The list contains only very basic information about
each shared network. If more details are needed, please use
network4-get or network6-get to retrieve all information
available. This command does not require any parameters and its
invocation is very simple:

{
 "command": "network4-list"
}

An example response for network4-list looks as follows:

{
 "arguments": {
 "shared-networks": [
 { "name": "floor1" },
 { "name": "office" }
]
 },
 "result": 0,
 "text": "2 IPv4 network(s) found"
}

network6-list follows exactly the same syntax for both the query and
the response.

15.11.12. The network4-get, network6-get Commands

These commands are used to retrieve detailed information about shared
networks, including subnets that are currently part of a given network.
Both commands take one mandatory parameter, name, which specifies the
name of the shared network. An example command to retrieve details about
an IPv4 shared network with the name “floor13” looks as follows:

{
 "command": "network4-get",
 "arguments": {
 "name": "floor13"
 }
}

An example response could look as follows:

{
 "result": 0,
 "text": "Info about IPv4 shared network 'floor13' returned",
 "arguments": {
 "shared-networks": [
 {
 "match-client-id": true,
 "name": "floor13",
 "option-data": [],
 "rebind-timer": 90,
 "relay": {
 "ip-address": "0.0.0.0"
 },
 "renew-timer": 60,
 "reservation-mode": "all",
 "subnet4": [
 {
 "subnet": "192.0.2.0/24",
 "id": 5,
 # many other subnet-specific details here
 },
 {
 "id": 6,
 "subnet": "192.0.3.0/31",
 # many other subnet-specific details here
 }
],
 "valid-lifetime": 120
 }
]
 }
}

Note that the actual response contains many additional fields that are
omitted here for clarity. The response format is exactly the same as
used in config-get, just limited to returning the shared network’s
information.

15.11.13. The network4-add, network6-add Commands

These commands are used to add a new shared network, which must
have a unique name. This command requires one parameter,
shared-networks, which is a list and should contain exactly one
entry that defines the network. The only mandatory element for a network
is its name. Although it does not make operational sense, it is possible
to add an empty shared network that does not have any subnets in it.
That is allowed for testing purposes, but having empty networks (or with
only one subnet) is discouraged in production environments. For details
regarding syntax, see Shared Networks in DHCPv4 and
Shared Networks in DHCPv6.

Note

As opposed to parameter inheritance during the processing of a full new
configuration, this command does not fully handle parameter inheritance.
Any missing parameters will be filled with default values, rather
than inherited from the global scope.

An example that showcases how to add a new IPv4 shared network looks as
follows:

{
 "command": "network4-add",
 "arguments": {
 "shared-networks": [{
 "name": "floor13",
 "subnet4": [
 {
 "id": 100,
 "pools": [{ "pool": "192.0.2.2-192.0.2.99" }],
 "subnet": "192.0.2.0/24",
 "option-data": [
 {
 "name": "routers",
 "data": "192.0.2.1"
 }
]
 },
 {
 "id": 101,
 "pools": [{ "pool": "192.0.3.2-192.0.3.99" }],
 "subnet": "192.0.3.0/24",
 "option-data": [
 {
 "name": "routers",
 "data": "192.0.3.1"
 }
]
 }]
 }]
 }
}

Assuming there was no shared network with a name “floor13” and no subnets
with IDs 100 and 101 previously configured, the command will be
successful and will return the following response:

{
 "arguments": {
 "shared-networks": [{ "name": "floor13" }]
 },
 "result": 0,
 "text": "A new IPv4 shared network 'floor13' added"
}

The network6-add command uses the same syntax for both the query and the
response. However, there are some parameters that are IPv4-only (e.g.
match-client-id) and some that are IPv6-only (e.g. interface-id). The same
applies to subnets within the network.

15.11.14. The network4-del, network6-del Commands

These commands are used to delete existing shared networks. Both
commands take exactly one parameter, name, that specifies the name of
the network to be removed. An example invocation of the network4-del
command looks as follows:

{
 "command": "network4-del",
 "arguments": {
 "name": "floor13"
 }
}

Assuming there was such a network configured, the response will look
similar to the following:

{
 "arguments": {
 "shared-networks": [
 {
 "name": "floor13"
 }
]
 },
 "result": 0,
 "text": "IPv4 shared network 'floor13' deleted"
}

The network6-del command uses exactly the same syntax for both the
command and the response.

If there are any subnets belonging to the shared network being deleted,
they will be demoted to a plain subnet. There is an optional parameter
called subnets-action that, if specified, takes one of two possible
values: keep (which is the default) and delete. It controls
whether the subnets are demoted to plain subnets or removed. An example
usage in the network6-del command that deletes the shared network and all
subnets in it could look as follows:

{
 "command": "network4-del",
 "arguments": {
 "name": "floor13",
 "subnets-action": "delete"
 }
}

Alternatively, to completely remove the subnets, it is possible to use the
subnet4-del or subnet6-del commands.

15.11.15. The network4-subnet-add, network6-subnet-add Commands

These commands are used to add existing subnets to existing shared
networks. There are several ways to add a new shared network. The system
administrator can add the whole shared network at once, either by
editing a configuration file or by calling the network4-add or
network6-add command with the desired subnets in it. This approach
works better for completely new shared subnets. However, there may be
cases when an existing subnet is running out of addresses and needs to
be extended with additional address space; in other words, another subnet
needs to be added on top of it. For this scenario, a system administrator
can use network4-add or network6-add, and then add an existing
subnet to this newly created shared network using
network4-subnet-add or network6-subnet-add.

The network4-subnet-add and network6-subnet-add commands take
two parameters: id, which is an integer and specifies the subnet-id of
an existing subnet to be added to a shared network; and name, which
specifies the name of the shared network to which the subnet will be added. The
subnet must not belong to any existing network; to
reassign a subnet from one shared network to another, please use the
network4-subnet-del or network6-subnet-del commands first.

An example invocation of the network4-subnet-add command looks as
follows:

{
 "command": "network4-subnet-add",
 "arguments": {
 "name": "floor13",
 "id": 5
 }
}

Assuming there is a network named “floor13”, and there is a subnet with
subnet-id 5 that is not a part of existing network, the command will
return a response similar to the following:

{
 "result": 0,
 "text": "IPv4 subnet 10.0.0.0/8 (id 5) is now part of shared network 'floor13'"
}

The network6-subnet-add command uses exactly the same syntax for
both the command and the response.

Note

As opposed to parameter inheritance during the processing of a full new
configuration or when adding a new shared network with new subnets,
this command does not fully handle parameter inheritance.
Any missing parameters will be filled with default values, rather
than inherited from the global scope or from the shared network.

15.11.16. The network4-subnet-del, network6-subnet-del Commands

These commands are used to remove a subnet that is part of an existing
shared network and demote it to a plain, stand-alone subnet.
To remove a subnet completely, use the subnet4-del or subnet6-del
commands instead. The network4-subnet-del and
network6-subnet-del commands take two parameters: id, which is
an integer and specifies the subnet-id of an existing subnet to be removed from
a shared network; and name, which specifies the name of the shared
network from which the subnet will be removed.

An example invocation of the network4-subnet-del command looks as
follows:

{
 "command": "network4-subnet-del",
 "arguments": {
 "name": "floor13",
 "id": 5
 }
}

Assuming there was a subnet with subnet-id equal to 5, that was part of a
shared network named “floor13”, the response would look similar to the
following:

{
 "result": 0,
 "text": "IPv4 subnet 10.0.0.0/8 (id 5) is now removed from shared network 'floor13'"
}

The network6-subnet-del command uses exactly the same syntax for
both the command and the response.

15.12. BOOTP support

Note

This is library is still in experimental phase. Use with care!

This hooks library adds support for BOOTP with vendor information extensions
(RFC 1497 [https://tools.ietf.org/html/rfc1497]). Received BOOTP
requests are recognized, translated into DHCPREQUEST packets by adding
a dhcp-message-type option and put into the “BOOTP” client class.
Members of this class get infinite lifetime leases but the class can
be used too for instance to guard a pool of addresses.

The DHCP specific options, such as dhcp-message-type, are removed from
the server’s responses and responses shorter than the BOOTP minimum
size (300 octets) are padded to this size.

The library is available since Kea 1.7.2 and can be loaded in a
similar way as other hook libraries by the kea-dhcp4 process.
It takes no parameter.

"Dhcp4": {
 "hook_libraries": [
 { "library": "/usr/local/lib/libdhcp_bootp.so" },
 ...
]
}

Note

This library is only meant to be loaded by the kea-dhcp4 process
as there is no BOOTP protocol for IPv6.

Note

A host reservation for a BOOTP client should use the hardware address
as the identifier (the client-id option is a DHCP specific option).

Incoming BOOTP packets are added to the BOOTP class. This can be used
to segregate BOOTP clients to separate pool. For example you can do
the following:

"Dhcp4": {
 "client-classes": [
 {
 // The DHCP class is the complement of the BOOTP class
 "name": "DHCP",
 "test": "not member('BOOTP')"
 }
],
 "subnet4": [
 {
 "subnet": "192.0.2.0/24",
 "pools": [
 {
 // BOOTP clients will be handled here
 "pool": "192.0.2.200 - 192.0.2.254",
 "client-class": "BOOTP"
 },
 {
 // Regular DHCP clients will be handled here
 "pool": "192.0.2.1 - 192.0.2.199",
 "client-class": "DHCP"
 }],
 ...
 },
 ...
],
 ...
}

15.12.1. BOOTP Hooks Limitation

Currently the BOOTP library has the following limitation:

	A basic BOOTP as defined in RFC 951 [https://tools.ietf.org/html/rfc951] is not supported. Kea only
supports the BOOTP with vendor information extensions. Depending on
the demand, this may or may not be implemented in the future.

15.13. class_cmds: Class Commands

This section describes the Class Commands hooks library, which exposes
several control commands for manipulating client classes (part of the
Kea DHCP servers’ configurations) without the need to restart those
servers. Using these commands it is possible to add, update, delete, and
list client classes configured for a given server.

Note

This library may only be loaded by the kea-dhcp4 or
kea-dhcp6 process.

The Class Commands hooks library is currently available only to ISC
customers with a paid support contract.

15.13.1. The class-add Command

The class-add command adds a new client class to the DHCP server
configuration. This class is appended at the end of the list of classes
used by the server and may depend on any of the already-configured
client classes.

The following example demonstrates how to add a new client class to the
DHCPv4 server configuration:

{
 "command": "class-add",
 "arguments": {
 "client-classes": [
 {
 "name": "ipxe_efi_x64",
 "test": "option[93].hex == 0x0009",
 "next-server": "192.0.2.254",
 "server-hostname": "hal9000",
 "boot-file-name": "/dev/null"
 }
]
 }
}

Note that the client-classes parameter is a JSON list, but it allows
only a single client class to be present.

Here is the response to the class-add command in our example:

{
 "result": 0,
 "text": "Class 'ipxe_efi_x64' added."
}

15.13.2. The class-update Command

The class-update command updates an existing client class in the
DHCP server configuration. If the client class with the given name
does not exist, the server returns the result code of 3, which means that
the server configuration is not modified and the client class does not
exist. The class-add command must be used instead to create the new
client class.

The class-update command has the same argument structure as the
class-add command:

{
 "command": "class-update",
 "arguments": {
 "client-classes": [
 {
 "name": "ipxe_efi_x64",
 "test": "option[93].hex == 0x0017",
 "next-server": "0.0.0.0",
 "server-hostname": "xfce",
 "boot-file-name": "/dev/null"
 }
]
 }
}

Here is the response for our example:

{
 "result": 0,
 "text": "Class 'ipxe_efi_x64' updated."
}

Any parameter of the client class can be modified with this command,
except name. There is currently no way to rename the class, because
the class name is used as a key for searching the class to be updated.
To achieve a similar effect to renaming the class, an existing class can
be removed with the class-del command and then added again with a
different name using class-add. Note, however, that the class with
the new name will be added at the end of the list of configured classes.

15.13.3. The class-del Command

The class-del command is used to remove a particular class from the server
configuration. The class to be removed is identified by name. The class
is not removed if there are other classes depending on it; to remove
such a class, the dependent classes must be removed first.

The following is a sample command removing the ipxe_efi_x64 class:

{
 "command": "class-del",
 "arguments": {
 {
 "name": "ipxe_efi_x64"
 }
 }
}

Here is the response to the class-del command in our example, when
the specified client class has been found:

{
 "result": 0,
 "text": "Class 'ipxe_efi_x64' deleted."
}

If the class does not exist, the result of 3 is returned.

15.13.4. The class-list Command

class-list is used to retrieve a list of all client classes. This
command includes no arguments:

{
 "command": "class-list"
}

Here is the response of the server in our example, including the list of
client classes:

{
 "result": 0,
 "text": "2 classes found",
 "arguments": {
 "client-classes": [
 {
 "name": "ipxe_efi_x64"
 },
 {
 "name": "pxeclient"
 }
]
 }
}

Note that the returned list does not contain full class definitions, but
merely class names. To retrieve full class information, the
class-get command should be used.

15.13.5. The class-get Command

class-get is used to retrieve detailed information about a specified
class. The command structure is very simple:

{
 "command": "class-get",
 "arguments": {
 "name": "pxeclient"
 }
}

If the class with the specified name does not exist, the status code of
3 is returned. If the specified client class exists, the class details
are returned in the following format:

{
 "result": 0,
 "text": "Class 'pxeclient' definition returned",
 "arguments": {
 "client-classes": [
 {
 "name": "pxeclient",
 "only-if-required": true,
 "test": "option[vendor-class-identifier].text == 'PXEClient'",
 "option-def": [
 {
 "name": "configfile",
 "code": 209,
 "type": "string"
 }
],
 "option-data": [],
 "next-server": "0.0.0.0",
 "server-hostname": "xfce",
 "boot-file-name": "/dev/null"
 }
]
 }
}

Note that the example above is DHCPv4-specific; the last three
parameters are only returned by the DHCPv4 server and are never returned
by the DHCPv6 server. Also, some of the parameters provided in this
example may not be returned if they are not specified for the class.
Specifically, only-if-required, test, and option-def are not
returned if they are not specified for the class.

15.14. cb_cmds: Configuration Backend Commands

This section describes the cb_cmds hooks library, which is used to
manage Kea servers’ configurations in the Configuration Backends. This
library must be used in conjunction with the available CB hooks libraries
implementing the common APIs to create, read, update, and delete (CRUD)
the configuration information in the respective databases. For example:
the mysql_cb hooks library, released in Kea 1.6.0, implements this
API for MySQL. In order to manage the configuration information in the
MySQL database, both the mysql_cb and cb_cmds libraries must be
loaded by the server used for the configuration management.

The cb_cmds library is only available to ISC customers with a paid
support contract.

Note

This library may only be loaded by the kea-dhcp4 or
kea-dhcp6 process.

15.14.1. Commands Structure

There are 5 types of commands supported by this library:

	del - delete the selected object from the database, e.g.
remote-global-parameter4-del.

	get - fetch the selected object from the database, e.g.
remote-subnet4-get.

	get-all - fetch all objects of the particular type from the
database, e.g. remote-option-def4-get-all.

	list - list all objects of the particular type in the database,
e.g. remote-network4-list; this class of commands returns brief
information about each object comparing to the output of get-all.

	set - creates or replaces an object of the given type in the
database, e.g. remote-option4-global-set.

All types of commands accept an optional remote map which selects the
database instance to which the command refers. For example:

{
 "command": "remote-subnet4-list",
 "arguments": {
 "remote": {
 "type": "mysql",
 "host": "192.0.2.33",
 "port": 3302
 }
 }
}

selects the MySQL database, running on host 192.0.2.33 and port 3302, to
fetch the list of subnets from. All parameters in the remote argument are
optional. The port parameter can be only specified in conjunction
with the host. If no options in the remote parameter are to
be specified, the parameter should be omitted. In this case, the server
will use the first backend listed in the config-control map within
the configuration of the server receiving the command.

Note

As of the Kea 1.6.0 release, it is possible to configure the Kea server
to use only one configuration backend. Strictly speaking, it is
possible to point the Kea server to at most one MySQL database using the
config-control parameter. That’s why, in this release, the
remote parameter may be omitted in the commands and the
cb_cmds hooks library will use the sole backend by default.

15.14.2. Control Commands for DHCP Servers

This section describes and gives some examples of the control commands
implemented by the cb_cmds hooks library, to manage the
configuration information of the DHCPv4 and DHCPv6 servers. Many of the
commands are almost identical between DHCPv4 and DHCPv6; they only
differ by the command name. Other commands differ slightly by the
structure of the inserted data; for example, the structure of the IPv4 subnet
information is different than that of the IPv6 subnet.
Nevertheless, they still share the structure of their command arguments
and thus it makes sense to describe them together.

In the following sections, various commands are described and some usage
examples are provided. In the sections jointly describing the DHCPv4 and
DHCPv6 variants of the particular command, we sometimes use the following
notation: the remote-subnet[46]-set is the wildcard name for the
two commands: remote-subnet4-set and remote-subnet6-set.

In addition, whenever the text in the subsequent sections refers to a
DHCP command or DHCP parameter, it refers to both DHCPv4 and DHCPv6
variants. The text specific to the particular server type refers to them
as: DHCPv4 command, DHCPv4 parameter, DHCPv6 command, DHCPv6 parameter,
etc.

15.14.3. Metadata

The typical response to the get or list command includes a list
of returned objects (e.g. subnets), and each such object contains the
metadata map with some database-specific information describing this
object. In other words, the metadata contains any information about the
fetched object which may be useful for the administrator, but which is not
part of the object specification from the DHCP server standpoint. In the
Kea 1.6.0 release, the metadata is limited to the server-tag, which
describes the association of the object with a particular server or
all servers.

The following is the example response to the remote-network4-list
command, which includes the metadata:

{
 "result": 0,
 "text": "1 IPv4 shared network(s) found.",
 "arguments": {
 "shared-networks": [
 {
 "name": "level3",
 "metadata": {
 "server-tags": ["all"]
 }
 }
],
 "count": 1
 }
}

Client implementations must not assume that the metadata contains only
the server-tags parameter. In future releases, this map will be
extended with additional information, e.g. object modification time, log
message created during the last modification, etc.

15.14.4. remote-server4-del, remote-server6-del commands

This command is used to delete the information about a selected DHCP server from
the configuration database. The server is identified by a unique case
insensitive server tag. For example:

{
 "command": "remote-server4-del",
 "arguments": {
 "servers": [
 {
 "server-tag": "server1"
 }
],
 "remote": {
 "type": "mysql"
 }
 }
}

As a result of this command, the user defined server called server1 is removed
from the database. All associations of the configuration information with this
server are automatically removed from the database. The non-shareable
configuration information, such as: global parameters, option definitions and
global options associated with the server are removed from the database. The
shareable configuration information, i.e. the configuration elements which may
be associated with more than one server, is preserved. In particular, the
subnets and shared networks associated with the deleted servers are
preserved. If any of the shareable configuration elements was associated only
with the deleted server, this object becomes unassigned (orphaned). For
example: if a subnet has been created and associated with the server1 using
the remote-subnet4-set command and the server1 is subsequently deleted, the
subnet remains in the database but none of the servers can use this subnet. The
subnet can be updated using the remote-subnet4-set and associated with some
other server or with all servers using the special server tag “all”. Such subnet
can be also deleted from the database using the remote-subnet4-del-by-id or
remote-subnet4-del-by-prefix, if it is no longer needed.

The following is the successful response to the remote-server4-del command:

{
 "result": 0,
 "text": "1 DHCPv4 server(s) deleted."
 "arguments": {
 "count": 1
 }
}

Note

The remote-server4-del and remote-server6-del commands must be used with
care, because an accidental deletion of the server causes some parts of the
existing configurations to be lost permanently from the database. This
operation is not reversible. Re-creation of the accidentally deleted server
does not revert the lost configuration for that server and such configuration
must be re-created manually by the user.

15.14.5. remote-server4-get, remote-server6-get commands

This command is used to fetch the information about the selected DHCP server
from the configuration database. For example:

{
 "command": "remote-server6-get"
 "arguments": {
 "servers": [
 {
 "server-tag": "server1"
 }
],
 "remote": {
 "type": "mysql"
 }
 }
}

This command fetches the information about the DHCPv6 server identified by the
server tag server1. The server tag is case insensitive. A successful response
returns basic information about the server, such as server tag and the user’s
description of the server:

{
 "result": 0,
 "text": "DHCP server server1 found.",
 "arguments": {
 "servers": [
 {
 "server-tag": "server1",
 "description": "A DHCPv6 server located on the first floor."
 }
],
 "count": 1
 }
}

15.14.6. remote-server4-get-all, remote-server6-get-all commands

This command is used to fetch all user defined DHCPv4 or DHCPv6 servers from the
database. The command structure is very simple:

{
 "command": "remote-server4-get-all"
 "arguments": {
 "remote": {
 "type": "mysql"
 }
 }
}

The response includes basic information about each server, such as its server
tag and description:

{
 "result": 0,
 "text": "DHCPv4 servers found.",
 "arguments": {
 "servers": [
 {
 "server-tag": "server1",
 "description": "A DHCP server located on the first floor."
 },
 {
 "server-tag": "server2",
 "description": "An old DHCP server to be soon replaced."
 }
],
 "count": 2
 }
}

15.14.7. remote-server4-set, remote-server6-set commands

This command is used to create or replace an information about a DHCP server in
the database. The information about the server must be created when there is a
need to differentiate the configurations used by various Kea instances
connecting to the same database. Various configuration elements, e.g. global
parameters, subnets etc. may be explicitly associated with the selected servers
(using server tags as identifiers), allowing only these servers to use the
respective configuration elements. Using the particular server tag to make such
associations is only possible when the server information has been stored in the
database via the remote-server4-set or remote-server6-set commands. The
following command creates a new (or updates an existing) DHCPv6 server in the
database:

{
 "command": "remote-server6-set"
 "arguments": {
 "servers": [
 {
 "server-tag": "server1",
 "description": "A DHCP server on the ground floor."
 }
],
 "remote": {
 "type": "mysql"
 }
 }
}

The server tag must be unique accross all servers in the database. When the
server information under the given server tag already exists, it is replaced
with the new information. The specified server tag is case insensitive. The
maximum length of the server tag is 256 characters. The following keywords are
reserved and must not be used as server tags: “all” and “any”.

The following is the example response to the above command:

{
 "result": 0,
 "text": "DHCPv6 server successfully set.",
 "arguments": {
 "servers": [
 {
 "server-tag": "server1",
 "description": "A DHCP server on the ground floor."
 }
]
 }
}

15.14.8. The remote-global-parameter4-del, remote-global-parameter6-del Commands

These commands are used to delete a global DHCP parameter from the
configuration database. When the parameter is deleted from the database,
the server will use the value specified in the configuration file for
this parameter, or a default value if the parameter is not specified in
the configuration file.

The following command attempts to delete the DHCPv4 renew-timer
parameter common for all servers from the database:

{
 "command": "remote-global-parameter4-del",
 "arguments": {
 "parameters": ["renew-timer"],
 "remote": {
 "type": "mysql"
 },
 "server-tags": ["all"]
 }
}

If the server specific parameter is to be deleted, the
server-tags list must contain the tag of the appropriate
server. There must be exactly one server tag specified in this list.

15.14.9. The remote-global-parameter4-get, remote-global-parameter6-get Commands

These commands are used to fetch a scalar global DHCP parameter from the
configuration database.

The following command attempts to fetch the boot-file-name
parameter for the “server1”:

{
 "command": "remote-global-parameter4-get",
 "arguments": {
 "parameters": ["boot-file-name"],
 "remote": {
 "type": "mysql"
 },
 "server-tags": ["server1"]
 }
}

The returned value has one of the four scalar types: string, integer,
real, or boolean. Non-scalar global configuration parameters, such as map
or list, are not returned by this command.

In the case of the example above, the string value is returned, e.g.:

{
 "result": 0,
 "text": "1 DHCPv4 global parameter found.",
 "arguments": {
 "parameters": {
 "boot-file-name": "/dev/null",
 "metadata": {
 "server-tags": ["all"]
 }
 },
 "count": 1
 }
}

Note that the response above indicates that the returned parameter is associated
with “all” servers rather than “server1” used in the command. This indicates
that there is no server1 specific value in the database. Therefore, the value
shared by all servers is returned. If there was the server1 specific value
in the database this value would be returned instead.

The example response for the integer value is:

{
 "result": 0,
 "text": "1 DHCPv4 global parameter found.",
 "arguments": {
 "parameters": {
 "renew-timer": 2000,
 "metadata": {
 "server-tags": ["server1"]
 }
 },
 "count": 1
 }
}

The real value:

{
 "result": 0,
 "text": "1 DHCPv4 global parameter found.",
 "arguments": {
 "parameters": {
 "t1-percent": 0.85,
 "metadata": {
 "server-tags": ["all"]
 }
 },
 "count": 1
 }
}

Finally, the boolean value:

{
 "result": 0,
 "text": "1 DHCPv4 global parameter found.",
 "arguments": {
 "parameters": {
 "match-client-id": true,
 "metadata": {
 "server-tags": ["server2"]
 }
 },
 "count": 1
 }
}

15.14.10. The remote-global-parameter4-get-all, remote-global-parameter6-get-all Commands

These commands are used to fetch all global DHCP parameters from the database
for the specified server. The following example demonstrates how to fetch all
global parameters to be used by the server “server1”:

{
 "command": "remote-global-parameter4-get-all",
 "arguments": {
 "remote": {
 "type": "mysql"
 },
 "server-tags": ["server1"]
 }
}

The example response may look as follows:

{
 "result": 0,
 "text": "DHCPv4 global parameters found.",
 "arguments": {
 "parameters": [
 {
 "boot-file-name": "/dev/null",
 "metadata": {
 "server-tags": ["server1"]
 }
 },
 {
 "match-client-id": true,
 "metadata": {
 "server-tags": ["all"]
 }
 }
],
 "count": 2
 }
}

The example response contains two parameters, one string parameter and one
boolean parameter. The metadata returned for each parameter indicates
if this parameter is specific to the “server1” or all servers. Since the
match-client-id value is associated with “all” servers
it indicates that there is no server1 specific setting for this parameter.
Each parameter always has exactly one server tag associated with it, because
the global parameters are non-shareable configuration elements.

Note

If the server tag is set to “all” in the command, the response will
contain only the global parameters associated with the logical server
“all”. When the server tag points to the specific server (as in the
example above), the returned list combines parameters associated with
this server and all servers, but the former take precedence.

15.14.11. The remote-global-parameter4-set, remote-global-parameter6-set Commands

This command is used to create scalar global DHCP parameters in the
database. If any of the parameters already exists, its value is replaced
as a result of this command. It is possible to set multiple parameters
within a single command, each having one of the four types: string,
integer, real, or boolean. For example:

{
 "command": "remote-global-parameter4-set"
 "arguments": {
 "parameters": {
 "boot-file-name": "/dev/null",
 "renew-timer": 2000,
 "t1-percent": 0.85,
 "match-client-id": true
 },
 "remote": {
 "type": "mysql"
 },
 "server-tags": ["server1"]
 }
}

An error is returned if any of the parameters is not supported by the DHCP
server or its type does not match. Care should be taken when multiple parameters
are specified in a single command, because it is possible that only some of the
parameters are stored successfully and some fail. If an error occurs when
processing this command, it is recommended to use
remote-global-parameter[46]-get-all to check which of the parameters have
been stored/updated successfully and which have failed.

The server-tags list is mandatory and it must contain a single server tag or
the keyword “all”. In the example above, all specified parameters are associated
with the “server1” server.

15.14.12. The remote-network4-del, remote-network6-del Commands

These commands are used to delete an IPv4 or IPv6 shared network from
the database. The optional parameter subnets-action determines
whether the subnets belonging to the deleted shared network should also
be deleted or preserved. The subnets-action parameter defaults to keep,
which preserves the subnets. If it is set to delete, the subnets are
deleted along with the shared network.

The following command:

{
 "command": "remote-network6-del",
 "arguments": {
 "shared-networks": [
 {
 "name": "level3"
 }
],
 "subnets-action": "keep",
 "remote": {
 "type": "mysql"
 }
 }
}

deletes the “level3” IPv6 shared network. The subnets are preserved, but
they are disassociated from the deleted shared network and become
global. This behavior corresponds to the behavior of the
network[46]-del commands with respect to the subnets-action parameter.

Note that the server-tags parameter must not be used for this command.

15.14.13. The remote-network4-get, remote-network6-get Commands

These commands are used to retrieve information about an IPv4 or
IPv6 shared network. The optional parameter subnets-include denotes
whether the subnets belonging to the shared network should also be
returned. This parameter defaults to no, in which case the subnets
are not returned. If this parameter is set to full, the subnets are
returned together with the shared network.

The following command fetches the “level3” IPv6 shared network along
with the full information about the subnets belonging to it:

{
 "command": "remote-network6-get",
 "arguments": {
 "shared-networks": [
 {
 "name": "level3"
 }
],
 "subnets-include": "full",
 "remote": {
 "type": "mysql"
 }
 }
}

Note that the server-tags parameter must not be used for this command.

15.14.14. The remote-network4-list, remote-network6-list Commands

These commands are used to list all IPv4 or IPv6 shared networks for a server.

The following command retrieves all shared networks to be used by the
“server1” and “server2”:

{
 "command": "remote-network4-list"
 "arguments": {
 "remote": {
 "type": "mysql"
 },
 "server-tags": ["server1", "server2"]
 }
}

The server-tags parameter is mandatory and it contains one or more server
tags. It may contain the keyword “all” to fetch the shared networks associated
with all servers. When the server-tags list contains the
null value the returned response contains a list of unassigned shared
networks, i.e. the networks which are associated with no servers. For example:

{
 "command": "remote-network4-list"
 "arguments": {
 "remote": {
 "type": "mysql"
 },
 "server-tags": [null]
 }
}

The example response to this command when non-null server tags are specified
looks similar to this:

{
 "result": 0,
 "text": "3 IPv4 shared network(s) found.",
 "arguments": {
 "shared-networks": [
 {
 "name": "ground floor",
 "metadata": {
 "server-tags": ["all"]
 }
 },
 {
 "name": "floor2",
 "metadata": {
 "server-tags": ["server1"]
 }
 },
 {
 "name": "floor3",
 "metadata": {
 "server-tags": ["server2"]
 }
 }
],
 "count": 3
 }
}

The returned information about each shared network merely contains the shared
network name and the metadata. In order to fetch the detailed information about
the selected shared network, use the remote-network[46]-get command.

The example response above contains three shared networks. One of the
shared networks is associated will all servers, so it is included in
the list of shared networks to be used by the “server1” and “server2”.
The remaining two shared networks are returned because one of them
is associated with the “server1” and another one is associated with
the “server2”.

When listing unassigned shared networks, the response will look similar
to this:

{
 "result": 0,
 "text": "1 IPv4 shared network(s) found.",
 "arguments": {
 "shared-networks": [
 {
 "name": "fancy",
 "metadata": {
 "server-tags": [null]
 }
 }
],
 "count": 1
 }
}

The null value in the metadata indicates that the
returned shared network is unassigned.

15.14.15. The remote-network4-set, remote-network6-set Commands

These commands create a new or replace an existing IPv4 or IPv6 shared
network in the database. The structure of the shared network information
is the same as in the Kea configuration file (see
Shared Networks in DHCPv4 and Shared Networks in DHCPv6 for details),
except that specifying subnets along with the shared
network information is not allowed. Including the subnet4 or subnet6 parameter
within the shared network information will result in an error.

These commands are intended to be used for managing the shared
network-specific information and DHCP options. In order to associate and
disassociate the subnets with the shared networks, the
remote-subnet[46]-set commands should be used.

The following command adds the IPv6 shared network “level3” to the
database:

{
 "command": "remote-network6-set",
 "arguments": {
 "shared-networks": [
 {
 "name": "level3",
 "interface": "eth0",
 "option-data": [{
 "name": "sntp-servers",
 "data": "2001:db8:1::1"
 }],
 }
],
 "remote": {
 "type": "mysql"
 },
 "server-tags": ["all"]
 }
}

This command includes the interface parameter, which sets the shared
network-level interface name. Any remaining shared network-level parameters,
which are not specified with the command, will be marked as
“unspecified” in the database. The DHCP server will use the global
values for unspecified parameters or, if the global values are not
specified, the default values will be used.

The server-tags list is mandatory for this command and it must include one or
more server tags. As a result the shared network is associated with all listed
servers. The shared network may be associated with all servers connecting to the
database when the keyword “all” is included.

Note

As with other “set” commands, this command replaces all the
information about the given shared network in the database, if the
shared network already exists. Therefore, when sending this command,
make sure to always include all parameters that must be specified for
the updated shared-network instance. Any unspecified parameter will
be marked unspecified in the database, even if its value was present
prior to sending the command.

15.14.16. The remote-option-def4-del, remote-option-def6-del Commands

These commands are used to delete a DHCP option definition from the
database. The option definition is identified by an option code and
option space. For example:

{
 "command": "remote-option-def6-del",
 "arguments": {
 "option-defs": [
 {
 "code": 1,
 "space": "isc"
 }
],
 "remote": {
 "type": "mysql"
 },
 "server-tags": ["server1"]
 }
}

deletes the definition of the option associated with the “server1”, having the
code of 1 and belonging to the option space “isc”. The default option spaces are
“dhcp4” and “dhcp6” for the DHCPv4 and DHCPv6 top level options respectively. If
there is no such option explicitly associated with the server1, no option is
deleted. In order to delete an option belonging to “all” servers, the keyword
“all” must be used as server tag. The server-tags list must contain exactly
one tag. It must not include the null value.

15.14.17. The remote-option-def4-get, remote-option-def6-get Commands

These commands are used to fetch a specified DHCP option definition from
the database. The option definition is identified by the option code and
option space. The default option spaces are “dhcp4” and “dhcp6” for the
DHCPv4 and DHCPv6 top-level options, respectively.

The following command retrieves a DHCPv4 option definition associated with all
servers, having the code of 1 and belonging to the option space “isc”:

{
 "command": "remote-option-def4-get"
 "arguments": {
 "option-defs": [
 {
 "code": 1,
 "space": "isc"
 }
],
 "remote": {
 "type": "mysql"
 },
 "server-tags": ["all"]
 }
}

The server-tags list must include exactly one server tag or the keyword
“all”. It must not contain the null value.

15.14.18. The remote-option-def4-get-all, remote-option-def6-get-all Commands

These commands are used to fetch all DHCP option definitions from the database
for the particular server or all servers. For example:

{
 "command": "remote-option-def6-get-all"
 "arguments": {
 "remote": {
 "type": "mysql"
 },
 "server-tags": ["all"]
 }
}

This command attempts to fetch all DHCPv6 option definitions associated
with “all” servers. The server-tags list is mandatory for
this command and it must include exactly one server tag or the keyword “all”.
It must not include the null value.</para>

The following is the example response to this command:

{
 "result": 0,
 "text": "1 DHCPv6 option definition(s) found.",
 "arguments": {
 "option-defs": [
 {
 "name": "bar",
 "code": 1012,
 "space": "dhcp6",
 "type": "record",
 "array": true,
 "record-types": "ipv6-address, uint16",
 "encapsulate": "",
 "metadata": {
 "server-tags": ["all"]
 }
 }
],
 "count": 1
 }
}

The response contains an option definition associated with all servers as
indicated by the metadata.

15.14.19. The remote-option-def4-set, remote-option-def6-set Commands

These commands create a new DHCP option definition or replace an
existing option definition in the database. The structure of the option
definition information is the same as in the Kea configuration file (see
Custom DHCPv4 Options and Custom DHCPv6 Options).
The following command creates the DHCPv4 option definition in the
top-level “dhcp4” option space and associates it with the “server1”:

{
 "command": "remote-option-def4-set",
 "arguments": {
 "option-defs": [
 {
 "name": "foo",
 "code": 222,
 "type": "uint32",
 "array": false,
 "record-types": "",
 "space": "dhcp4",
 "encapsulate": ""
 }
],
 "remote": {
 "type": "mysql"
 },
 "server-tags": ["server1"]
 }
}

The server-tags list must include exactly one
server tag or the keyword “all”. It must not contain the
null value.</para>

15.14.20. The remote-option4-global-del, remote-option6-global-del Commands

These commands are used to delete a global DHCP option from the
database. The option is identified by an option code and option space.
For example:

{
 "command": "remote-option4-global-del",
 "arguments": {
 "options": [
 {
 "code": 5
 "space": "dhcp4"
 }
],
 "remote": {
 "type": "mysql"
 },
 "server-tags": ["server1"]
 }
}

The “dhcp4” is the top-level option space where the standard DHCPv4 options
belong. The server-tags is mandatory and it must include a
single option tag or the keyword “all”. If the explicit server tag is specified
then this command attempts to delete a global option associated with this
server. If there is no such option associated with the given server, no option
is deleted. In order to delete the option associated with all servers, the
keyword “all” must be specified.

15.14.21. The remote-option4-global-get, remote-option6-global-get Commands

These commands are used to fetch a global DHCP option from the database.
The option is identified by the code and option space. The top-level
option spaces where DHCP standard options belong are called “dhcp4” and
“dhcp6” for the DHCPv4 and DHCPv6 servers, respectively.

The following command retrieves the IPv6 “DNS Servers” (code 23) option
associated with all servers:

{
 "command": remote-option6-global-get",
 "arguments": {
 "options": [
 {
 "code": 23,
 "space": "dhcp6"
 }
],
 "remote": {
 "type": "mysql"
 },
 "server-tags": ["all"]
 }
}

The server-tags is mandatory and it must include exactly one
server tag or the keyword “all”. It must not contain the null
value.

15.14.22. The remote-option4-global-get-all, remote-option6-global-get-all Commands

These commands are used to fetch all global DHCP options from the configuration
database for the particular server or for all servers. The following command
fetches all global DHCPv4 options for the “server1”:

{
 "command": "remote-option6-global-get-all",
 "arguments": {
 "remote": {
 "type": "mysql"
 },
 "server-tags": ["server1"]
 }
}

The server-tags list is mandatory for this command and
it must contain exactly one server tag or a keyword “all”. It must not contain
the null value. The following is the example response to this
command with a single option being associated with the “server1” returned:

{
 "result": 0,
 "text": "DHCPv4 options found.",
 "arguments": {
 "options": [
 {
 "name": "domain-name-servers",
 "code": 6,
 "space": "dhcp4",
 "csv-format": false,
 "data": "192.0.2.3",
 "metadata": {
 "server-tags": ["server1"]
 }
 }
],
 "count": 1
 }
}

15.14.23. The remote-option4-global-set, remote-option6-global-set Commands

These commands create a new global DHCP option or replace an existing
option in the database. The structure of the option information is the
same as in the Kea configuration file (see Standard DHCPv4 Options
and Standard DHCPv6 Options). For example:

{
 "command": "remote-option6-global-set",
 "arguments": {
 "options": [
 {
 "name": "dns-servers",
 "data": "2001:db8:1::1"
 }
],
 "remote": {
 "type": "mysql"
 },
 "server-tags": ["server1"]
 }
}

The server-tags list is mandatory for this command
and it must include exactly one server tag or the keyword “all”. It must
not include the null value. The command above associates
the option with the “server1” server.

Note that specifying an option name instead of the option code only
works reliably for the standard DHCP options. When specifying a value
for the user-defined DHCP option, the option code should be specified
instead of the name. For example:

{
 "command": "remote-option6-global-set",
 "arguments": {
 "options": [
 {
 "code": 1,
 "space": "isc",
 "data": "2001:db8:1::1"
 }
],
 "server-tags": ["server1"]
 }
}

15.14.24. The remote-option4-network-del, remote-option6-network-del Commands

These commands are used to delete a shared network specific DHCP
option from the database. The option is identified by an option code
and option space and these two parameters are passed within the
options list. Another list, shared-networks, contains a map
with the name of the shared network from which the option is to
be deleted. If the option is not explicitly specified for this
shared network, no option is deleted. In particular, the given
option may be present for a subnet belonging to the shared network.
Such option instance is not affected by this command as this
command merely deletes shared network level option. In order to
delete subnet level option the remote-option[46]-subnet-del
command must be used instead.

The following command attempts to delete an option having the
option code 5 in the top-level option space from the shared
network “fancy”.

{
 "command": "remote-option4-network-del",
 "arguments": {
 "shared-networks": [
 {
 "name": "fancy"
 }
],
 "options": [
 {
 "code": 5,
 "space": "dhcp4"
 }
],
 "remote": {
 "type": "mysql"
 }
 }
}

The “dhcp4” is the top-level option space where the standard DHCPv4 options
belong. The server-tags parameter must not be specified for this command.

15.14.25. The remote-option4-network-set, remote-option6-network-set Commands

These commands create a new shared network specific DHCP option or replace
an existing option in the database. The structure of the option information
is the same as in the Kea configuration file (see Standard DHCPv4 Options
and Standard DHCPv6 Options). The option information is carried in the
options list. Another list, shared-networks, contains a map with the
name of the shared network for which the option is to be set. If such option
already exists for the shared network, it is replaced with the new instance.

{
 "command": "remote-option6-network-set",
 "arguments": {
 "shared-networks": [
 {
 "name": "fancy"
 }
],
 "options": [
 {
 "name": "dns-servers",
 "data": "2001:db8:1::1"
 }
],
 "remote": {
 "type": "mysql"
 }
 }
}

The sever-tags parameter must not be specified for this command.

Specifying an option name instead of the option code only works reliably
for the standard DHCP options. When specifying a value for the user-defined
DHCP option, the option code should be specified instead of the name.

15.14.26. The remote-option6-pd-pool-del Command

This command is used to delete a prefix delegation pool specific DHCPv6
option from the database. The option is identified by an option code
and option space and these two parameters are passed within the
options list. Another list, pd-pools, contains a map with the
prefix delegation pool prefix and length identifying the pool. If the
option is not explicitly specified for this pool, no option is deleted.
In particular, the given option may exist for a subnet containing
the specified pool. Such option instance is not affected by this
command as this command merely deletes a prefix delegation pool level
option. In order to delete subnet level option the
remote-option6-subnet-del command must be used instead.

{
 "command": "remote-option6-pd-pool-del",
 "arguments": {
 "pd-pools": [
 {
 "prefix": "3000::",
 "prefix-len": 64
 }
],
 "options": [
 {
 "code": 23,
 "space": "dhcp6"
 }
],
 "remote": {
 "type": "mysql"
 }
 }
}

The “dhcp6” is the top-level option space where the standard DHCPv6 options
belong. The server-tags parameter must not be specified for this command.

15.14.27. The remote-option6-pd-pool-set Command

This command creates a new prefix delefation pool specific DHCPv6 option or
replaces an existing option in the database. The structure of the option
information is the same as in the Kea configuration file (see Standard DHCPv4 Options
and Standard DHCPv6 Options). The option information is carried in the
options list. Another list, pd-pools, contains a map with the prefix
delegation pool prefix and the prefix length identifying the pool. If such
option already exists for the prefix delegation pool, it is replaced with
the new instance.

For example:

{
 "command": "remote-option6-pd-pool-set",
 "arguments": {
 "pd-pools": [
 {
 "prefix": "3001:1::",
 "length": 64
 }
],
 "options": [
 {
 "name": "dns-servers",
 "data": "2001:db8:1::1"
 }
],
 "remote": {
 "type": "mysql"
 }
 }
}

The sever-tags parameter must not be specified for this command.

Specifying an option name instead of the option code only works reliably
for the standard DHCP options. When specifying a value for the user-defined
DHCP option, the option code should be specified instead of the name.

15.14.28. The remote-option4-pool-del, remote-option6-pool-del Commands

These commands are used to delete an address pool specific DHCP
option from the database. The option is identified by an option code
and option space and these two parameters are passed within the
options list. Another list, pools, contains a map with the
IP address range or prefix identifying the pool. If the option
is not explicitly specified for this pool, no option is deleted.
In particular, the given option may exist for a subnet containing
the specified pool. Such option instance is not affected by this
command as this command merely deletes a pool level option. In
order to delete subnet level option the remote-option[46]-subnet-del
command must be used instead.

The following command attempts to delete an option having the
option code 5 in the top-level option space from an IPv4 address
pool:

{
 "command": "remote-option4-pool-del",
 "arguments": {
 "pools": [
 {
 "pool": "192.0.2.10 - 192.0.2.100"
 }
],
 "options": [
 {
 "code": 5,
 "space": "dhcp4"
 }
],
 "remote": {
 "type": "mysql"
 }
 }
}

The “dhcp4” is the top-level option space where the standard DHCPv4 options
belong. The server-tags parameter must not be specified for this command.

15.14.29. The remote-option4-pool-set, remote-option6-pool-set Commands

These commands create a new address pool specific DHCP option or replace
an existing option in the database. The structure of the option information
is the same as in the Kea configuration file (see Standard DHCPv4 Options
and Standard DHCPv6 Options). The option information is carried in the
options list. Another list, pools, contains a map with the IP address
range or prefix identifying the pool. If such option already exists for the
pool, it is replaced with the new instance.

For example:

{
 "command": "remote-option4-pool-set",
 "arguments": {
 "pools": [
 {
 "pool": "192.0.2.10 - 192.0.2.100"
 }
],
 "options": [
 {
 "name": "domain-name-servers",
 "data": "10.0.0.1"
 }
],
 "remote": {
 "type": "mysql"
 }
 }
}

The sever-tags parameter must not be specified for this command.

Specifying an option name instead of the option code only works reliably
for the standard DHCP options. When specifying a value for the user-defined
DHCP option, the option code should be specified instead of the name.

15.14.30. The remote-option4-subnet-del, remote-option6-subnet-del Commands

These commands are used to delete a subnet specific DHCP option
from the database. The option is identified by an option code
and option space and these two parameters are passed within the
options list. Another list, subnets, contains a map with the
identifier of the subnet from which the option is to be deleted.
If the option is not explicitly specified for this subnet, no
option is deleted.

The following command attempts to delete an option having the
option code 5 in the top-level option space from the subnet
having an identifer of 123.

{
 "command": "remote-option4-subnet-del",
 "arguments": {
 "subnets": [
 {
 "id": 123
 }
],
 "options": [
 {
 "code": 5,
 "space": "dhcp4"
 }
],
 "remote": {
 "type": "mysql"
 }
 }
}

The “dhcp4” is the top-level option space where the standard DHCPv4 options
belong. The server-tags parameter must not be specified for this command.

15.14.31. The remote-option4-subnet-set, remote-option6-subnet-set Commands

These commands create a new subnet specific DHCP option or replace an existing
option in the database. The structure of the option information is the same as
in the Kea configuration file (see Standard DHCPv4 Options
and Standard DHCPv6 Options). The option information is carried in the
options list. Another list, subnets, contains a map with the identifier of
the subnet for which the option is to be set. If such option already exists
for the subnet, it is replaced with the new instance.

{
 "command": "remote-option6-subnet-set",
 "arguments": {
 "subnets": [
 {
 "id": 123
 }
],
 "options": [
 {
 "name": "dns-servers",
 "data": "2001:db8:1::1"
 }
],
 "remote": {
 "type": "mysql"
 }
 }
}

The sever-tags parameter must not be specified for this command.

Specifying an option name instead of the option code only works reliably
for the standard DHCP options. When specifying a value for the user-defined
DHCP option, the option code should be specified instead of the name.

15.14.32. The remote-subnet4-del-by-id, remote-subnet6-del-by-id Commands

This is the first variant of the commands used to delete an IPv4 or IPv6
subnet from the database. It uses the subnet ID to identify the subnet. For
example, to delete the IPv4 subnet with an ID of 5:

{
 "command": "remote-subnet4-del-by-id",
 "arguments": {
 "subnets": [
 {
 "id": 5
 }
],
 "remote": {
 "type": "mysql"
 }
 }
}

The server-tags parameter must not be used with this command.

15.14.33. The remote-subnet4-del-by-prefix, remote-subnet6-del-by-prefix Commands

This is the second variant of the commands used to delete an IPv4 or
IPv6 subnet from the database. It uses the subnet prefix to identify the
subnet. For example:

{
 "command": "remote-subnet6-del-by-prefix",
 "arguments": {
 "subnets": [
 {
 "subnet": "2001:db8:1::/64"
 }
],
 "remote": {
 "type": "mysql"
 }
 }
}

The server-tags parameter must not be used with this command.

15.14.34. The remote-subnet4-get-by-id, remote-subnet6-get-by-id Commands

This is the first variant of the commands used to fetch an IPv4 or IPv6
subnet from the database. It uses a subnet ID to identify the subnet.
For example:

{
 "command": "remote-subnet4-get-by-id",
 "arguments": {
 "subnets": [
 {
 "id": 5
 }
],
 "remote": {
 "type": "mysql"
 }
 }
}

The server-tags parameter must not be used with this command.

15.14.35. The remote-subnet4-get-by-prefix, remote-subnet6-get-by-prefix Commands

This is the second variant of the commands used to fetch an IPv4 or IPv6
subnet from the database. It uses a subnet prefix to identify the
subnet. For example:

{
 "command": "remote-subnet6-get-by-prefix",
 "arguments": {
 "subnets": [
 {
 "subnet": "2001:db8:1::/64"
 }
],
 "remote": {
 "type": "mysql"
 }
 }
}

The server-tags parameter must not be used with this command.

15.14.36. The remote-subnet4-list, remote-subnet6-list Commands

These commands are used to list all IPv4 or IPv6 subnets from the database for
selected servers or all servers. The following command retrieves all servers to
be used by the “server1” and “server2”:

{
 "command": "remote-subnet4-list"
 "arguments": {
 "remote": {
 "type": "mysql"
 },
 "server-tags": ["server1", "server2"]
 }
}

The server-tags parameter is mandatory and it contains one or
more server tags. It may contain the keyword “all” to fetchg the subnets
associated with all servers. When the server-tags list
contains the null value the returned response contains a list
of unassigned subnets, i.e. the subnets which are associated with no servers.
For example:

{
 "command": "remote-subnet4-list"
 "arguments": {
 "remote": {
 "type": "mysql"
 },
 "server-tags": [null]
 }
}

The example response to this command when non-null server tags are specified
looks similar to this:

{
 "result": 0,
 "text": "2 IPv4 subnet(s) found.",
 "arguments": {
 "subnets": [
 {
 "id": 1,
 "subnet": "192.0.2.0/24",
 "shared-network-name": null,
 "metadata": {
 "server-tags": ["server1", "server2"]
 }
 },
 {
 "id": 2,
 "subnet": "192.0.3.0/24",
 "shared-network-name": null,
 "metadata": {
 "server-tags": ["all"]
 }
 }
],
 "count": 2
 }
}

The returned information about each subnet is limited to subnet identifier,
prefix and associated shared network name. In order to retrieve full
information about the selected subnet use the
remote-subnet[46]-get-by-id or
remote-subnet[46]-get-by-prefix.

The example response above contains two subnets. One of the subnets is
associated with both servers: “server1” and “server2”. The second subnet is
associated with all servers, thus it is also present in the configuration for
the “server1” and “server2”.

When listing unassigned subnets, the response will look similar to this:

{
 "result": 0,
 "text": "1 IPv4 subnet(s) found.",
 "arguments": {
 "subnets": [
 {
 "id": 3,
 "subnet": "192.0.4.0/24",
 "shared-network-name": null,
 "metadata": {
 "server-tags": [null]
 }
 }
],
 "count": 1
 }
}

The null value in the metadata indicates that the
returned subnet is unassigned.

15.14.37. The remote-subnet4-set, remote-subnet6-set Commands

These commands are used to create a new IPv4 or IPv6 subnet or replace
an existing subnet in the database. Setting the subnet also associates
or disassociates the subnet with a shared network.

The structure of the subnet information is similar to the structure used
in the configuration file (see DHCPv4 Server Configuration and
DHCPv6 Server Configuration). The subnet information conveyed in the
remote-subnet[46]-set command must include the additional parameter
shared-network-name, which denotes whether the subnet belongs to a
shared network.

Consider the following example:

{
 "command": "remote-subnet4-set",
 "arguments": {
 "subnets": [
 {
 "id": 5,
 "subnet": "192.0.2.0/24",
 "shared-network-name": "level3",
 "pools": [{ "pool": "192.0.2.100-192.0.2.200" }],
 "option-data": [{
 "name": "routers",
 "data": "192.0.2.1"
 }]
 }
],
 "remote": {
 "type": "mysql"
 },
 "server-tags": ["all"]
 }
}

It creates the subnet and associates it with the “level3” shared
network. The “level3” shared network must be created with the remote-network4-set
command prior to creating the subnet.

If the created subnet must be global - that is, not associated with any shared
network - the shared-network-name must be explicitly set to
null:

{
 "command": "remote-subnet4-set",
 "arguments": {
 "subnets": [
 {
 "id": 5,
 "subnet": "192.0.2.0/24",
 "shared-network-name": null,
 "pools": [{ "pool": "192.0.2.100-192.0.2.200" }],
 "option-data": [{
 "name": "routers",
 "data": "192.0.2.1"
 }]
 }
],
 "server-tags": ["all"]
 }
}

The subnet created in the previous example is replaced with the new
subnet having the same parameters, but it becomes global.

The shared-network-name parameter is mandatory for the
remote-subnet4-set command. The server-tags list is mandatory and it must
include one or more server tags. As a result, the subnet is associated with all
of the listed servers. It may also be associated with “all” servers connecting
to the database when the keyword “all” is used as the server tag.</para>

Note

As with other “set” commands, this command replaces all the
information about the particular subnet in the database, if the
subnet information is already present. Therefore, when sending this
command, make sure to always include all parameters that must be
specified for the updated subnet instance. Any unspecified parameter
will be marked as unspecified in the database, even if its value was
present prior to sending the command.

15.15. ha: High Availability

This section describes the High Availability hooks library, which can be
loaded on a pair of DHCPv4 or DHCPv6 servers to increase the reliability
of the DHCP service in the event of an outage of one of the servers.
This library was previously only available to ISC’s paid subscribers,
but is now part of the open source Kea, available to all users.

Note

This library may only be loaded by the kea-dhcp4 or
kea-dhcp6 process.

High Availability (HA) of the DHCP service is provided by running
multiple cooperating server instances. If any of these instances becomes
unavailable for any reason (DHCP software crash, Control Agent software
crash, power outage, hardware failure), a surviving server instance can
continue providing reliable service to clients. Many DHCP server
implementations include the “DHCP Failover” protocol, whose most
significant features are communication between the servers, partner
failure detection, and lease synchronization between the servers.
However, the DHCPv4 failover standardization process was never completed
by the IETF. The DHCPv6 failover standard (RFC 8156) was published, but
it is complex, difficult to use, has significant operational
constraints, and is different than its v4 counterpart. Although it may
be useful for some users to use a “standard” failover protocol, it seems
that most Kea users are simply interested in a working solution which
guarantees high availability of the DHCP service. Therefore, the Kea HA
hook library derives major concepts from the DHCP Failover protocol but
uses its own solutions for communication and configuration. It offers
its own state machine, which greatly simplifies its implementation and
generally fits better into Kea, and it provides the same features in
both DHCPv4 and DHCPv6. This document intentionally uses the term “High
Availability” rather than “Failover” to emphasize that it is not the
Failover protocol implementation.

The following sections describe the configuration and operation of the
Kea HA hook library.

15.15.1. Supported Configurations

The Kea HA hook library supports three configurations, also known as HA
modes: load-balancing, hot-standby and passive-backup. In the
load-balancing mode, two servers respond to DHCP requests. The
load-balancing function is implemented as described in RFC
3074 [https://tools.ietf.org/html/rfc3074], with each server
responding to half the received DHCP queries. When one of the servers
allocates a lease for a client, it notifies the partner server over the
control channel (the RESTful API), so the partner can save the lease
information in its own database. If the communication with the partner
is unsuccessful, the DHCP query is dropped and the response is not
returned to the DHCP client. If the lease update is successful, the
response is returned to the DHCP client by the server which has
allocated the lease. By exchanging lease updates, both servers get a
copy of all leases allocated by the entire HA setup, and either server
can be switched to handle the entire DHCP traffic if its partner becomes
unavailable.

In the load-balancing configuration, one of the servers must be
designated as "primary" and the other as "secondary." Functionally,
there is no difference between the two during normal operation. This
distinction is required when the two servers are started at (nearly) the
same time and have to synchronize their lease databases. The primary
server synchronizes the database first. The secondary server waits for
the primary server to complete the lease database synchronization before
it starts the synchronization.

In the hot-standby configuration, one of the servers is also designated
as “primary” and the second as “secondary.” However, during normal
operation, the primary server is the only one that responds to DHCP
requests. The secondary or standby server receives lease updates from
the primary over the control channel; however, it does not respond to
any DHCP queries as long as the primary is running or, more accurately,
until the secondary considers the primary to be offline. If the
secondary server detects the failure of the primary, it starts
responding to all DHCP queries.

In the configurations described above, the primary and secondary/standby
are referred to as "active" servers, because they receive lease
updates and can automatically react to the partner’s failures by
responding to the DHCP queries which would normally be handled by the
partner. The HA hook library supports another server type/role: "backup"
server. The use of a backup server is optional, and can be implemented in both
load-balancing and hot-standby setup, in addition to the active servers.
There is no limit on the number of backup servers in the HA setup;
however, the presence of backup servers may increase the latency
of DHCP responses, because not only do active servers send lease updates
to each other, but also to the backup servers. As of Kea 1.7.8 the active
servers no longer expect the acknowledgments from the backup servers
before responding to the DHCP clients, therefore the overhead of sending
the lease updates to the backup servers is minimized comparing to the
earlier Kea versions.

The last supported configuration, passive-backup, has been introduced
in Kea 1.7.8 release. In this configuration there is only one active
server and typically one or more backup servers. A passive-backup
configuration with no backup servers is also accepted but it is no
different than running a single server with no HA function at all.

The passive-backup configuration is used in situations when an administrator
wants to take advantage of the backup servers as an additional storage
for leases without a need for running the fully blown failover setup.
In this case, if the primary server fails, the DHCP service is lost
and it requires that the administrator manually starts the primary to resume
the DHCP service. The administrator may also configure one of the
backup servers to provide the DHCP service to the clients as these
servers should have accurate or nearly accurate information about the
allocated leases. The major advantage of the passive-backup mode is that
it provides some redundancy of the lease information but with better
performance of the primary server responding to the DHCP queries. Since
Kea 1.7.8 release, the primary server does not have to wait for the
acknowledgments to the lease updates from the backup servers before it
sends a response to the DHCP client. This reduces the response time
comparing to the load-balancing and hot-standby cases in which the
server responding to the DHCP query has to wait for the acknowledgment
from the other active server before it can respond to the client.

Note

An interesting use case for a single active server running in the
passive-backup mode is a notification service in which a software
pretending to be a backup server receives live notifications about
allocated and deleted leases from the primary server and can display
them on the monitoring screen, trigger alerts etc.

15.15.2. Clocks on Active Servers

Synchronized clocks are essential for the HA setup to operate reliably.
The servers share lease information via lease updates and during
synchronization of the databases. The lease information includes the
time when the lease was allocated and when it expires. Some clock
skew between the servers participating in the HA setup usually exists;
this is acceptable as long as the clock skew is relatively low, compared
to the lease lifetimes. However, if the clock skew becomes too high, the
different lease expiration times on different servers may cause the HA
system to malfunction. For example, one server may consider a lease to
be expired when it is actually still valid. The lease reclamation
process may remove a name associated with this lease from the DNS,
causing problems when the client later attempts to renew the lease.

Each active server monitors the clock skew by comparing its current time
with the time returned by its partner in response to the heartbeat
command. This gives a good approximation of the clock skew, although it
doesn’t take into account the time between sending the response by the
partner and receiving this response by the server which sent the
heartbeat command. If the clock skew exceeds 30 seconds, a warning log
message is issued. The administrator may correct this problem by
synchronizing the clocks (e.g. using NTP); the servers should notice the
clock skew correction and stop issuing the warning.

If the clock skew is not corrected and exceeds 60 seconds, the HA
service on each of the servers is terminated, i.e. the state machine
enters the terminated state. The servers will continue to respond to
DHCP clients (as in the load-balancing or hot-standby mode), but will
exchange neither lease updates nor heartbeats and their lease databases
will diverge. In this case, the administrator should synchronize the
clocks and restart the servers.

Note

Prior to Kea 1.7.8 release, in order to recover from the terminated
state, the administrator had to shutdown both servers and then start
both of them. Since Kea 1.7.8 release it is allowed to restart the
servers sequentially, i.e. restart one server and then restart another
one. The clocks must be in sync before restarting the servers.

Note

The clock skew is only assessed between two active servers and
only the active servers may enter the terminated state if it is
too high. As of Kea 1.7.8, the clock skew between the active and
the backup servers is not assessed because the active servers do
not exchange heartbeat messages with the backup servers.

15.15.3. Server States

A DHCP server operating within an HA setup runs a state machine, and the
state of the server can be retrieved by its peers using the
ha-heartbeat command sent over the RESTful API. If the partner
server doesn’t respond to the ha-heartbeat command within the
specified amount of time, the communication is considered interrupted
and the server may, depending on the configuration, use additional
measures (described later in this document) to verify that the partner
is still operating. If it finds that the partner is not operating, the
server transitions to the partner-down state to handle all the
DHCP traffic directed to the system.

In this case, the surviving server continues to send the
ha-heartbeat command to detect when the partner wakes up. At that
time, the partner synchronizes the lease database and when it is again
ready to operate, the surviving server returns to normal operation, i.e.
the load-balancing or hot-standby state.

The following is the list of all possible server states:

	backup - normal operation of the backup server. In this state it
receives lease updates from the active servers.

	hot-standby - normal operation of the active server running in
the hot-standby mode; both the primary and the standby server are in
this state during their normal operation. The primary server responds
to DHCP queries and sends lease updates to the standby server and to
any backup servers that are present.

	load-balancing - normal operation of the active server running in
the load-balancing mode; both the primary and the secondary server
are in this state during their normal operation. Both servers respond
to DHCP queries and send lease updates to each other and to any
backup servers that are present.

	in-maintenance - an active server transitions to this state as a result
of being notified by its partner that the administrator requested
maintenance of the HA setup. The administrator requests the maintenance
by sending the ha-maintenance-start to the server which is supposed
to take over the responsibility for responding to the DHCP clients while
the other server is taken offline for maintenance. If the server is
in the in-maintenance state it can be safely shut down. The partner
is in the partner-in-maintenance state from which it will transition
to the partner-down state immediately after it finds that the
server in maintenance was shut down.

	partner-down - an active server transitions to this state after
detecting that its partner (another active server) is offline. The
server does not transition to this state if only a backup server is
unavailable. In the partner-down state the active server responds
to all DHCP queries, including those queries which are normally
handled by the server that is now unavailable.

	partner-in-maintenance - an active server transitions to this state
after receiving a ha-maintenance-start command from the
administrator. The server in this state becomes responsible
for responding to all DHCP requests. The server sends
ha-maintenance-notify command to the partner which is supposed
to enter the in-maintenance state. If that is the case, the server
remaining in the partner-in-maintenance state keeps sending lease
updates to the partner until it finds that the parter stops
responding to those lease updates, heartbeats or any other commands.
In this case, the server in the partner-in-maintenance state
transitions to the partner-down state and keeps responding to
the queries, but no longer sends lease updates.

	passive-backup - a primary server running in the passive-backup HA
mode transitions to this state immediately after it is booted up. The
primary server being in this state responds to the entire DHCP traffic
and sends lease updates to the backup servers it is connected to. By
default, the primary server does not wait for the acknowledgments from
the backup servers and responds to the DHCP query right after sending
the lease updates to all backup servers. If any of the lease updates
fails, a backup server misses such lease update but the DHCP client
is still provisioned. This default configuration can be changed by
setting the wait-backup-ack configuration parameter to true,
in which case the primary server always waits for the acknowledgements
and drops the DHCP query if sending any of the correponding lease
updates fails. This improves lease database consistency between the
primary and the secondary. However, if a communication failure between
the active server and any of the backups occurs, it effectively causes
the failure of the DHCP service from the DHCP clients’ perspective.

	ready - an active server transitions to this state after
synchronizing its lease database with an active partner. This state
indicates to the partner - which may be in the partner-down state
- that it should return to normal operation. If and when it does, the
server in the ready state will also start normal operation.

	syncing - an active server transitions to this state to fetch
leases from the active partner and update the local lease database.
When in this state, the server issues the dhcp-disable command to
disable the DHCP service of the partner from which the leases are
fetched. The DHCP service is disabled for a maximum time of 60
seconds, after which it is automatically re-enabled, in case the
syncing partner was unable to re-enable the service. If the
synchronization is completed, the syncing server issues the
dhcp-enable command to re-enable the DHCP service of its partner.
The syncing operation is synchronous; the server waits for an answer
from the partner and does nothing else while the lease
synchronization takes place. A server that is configured not to
synchronize the lease database with its partner, i.e. when the
sync-leases configuration parameter is set to false, will
never transition to this state. Instead, it will transition directly
from the waiting state to the ready state.

	terminated - an active server transitions to this state when the
High Availability hooks library is unable to further provide reliable
service and a manual intervention of the administrator is required to
correct the problem. Various issues with the HA setup may cause the
server to transition to this state. While in this state, the server
continues responding to DHCP clients based on the HA mode selected
(load-balancing or hot-standby), but the lease updates are not
exchanged and the heartbeats are not sent. Once a server has entered
the “terminated” state, it will remain in this state until it is
restarted. The administrator must correct the issue which caused this
situation prior to restarting the server (e.g. synchronize the clocks);
otherwise, the server will return to the “terminated” state once it
finds that the issue persists.

	waiting - each started server instance enters this state. The
backup server transitions directly from this state to the backup
state. An active server sends a heartbeat to its partner to check its
state; if the partner appears to be unavailable, the server
transitions to the partner-down state. If the partner is
available, the server transitions to the syncing or ready
state, depending on the setting of the sync-leases configuration
parameter. If both servers appear to be in the waiting state
(concurrent startup), the primary server transitions to the next
state first. The secondary or standby server remains in the
waiting state until the primary transitions to the ready
state.

Note

Currently, restarting the HA service from the terminated state
requires restarting the DHCP server or reloading its configuration.

Whether the server responds to the DHCP queries and which queries it
responds to is a matter of the server’s state, if no administrative
action is performed to configure the server otherwise. The following
table provides the default behavior for various states.

The DHCP Server Scopes denote what group of received DHCP queries
the server responds to in the given state. An in-depth explanation of
the scopes can be found below.

Default Behavior of the Server in Various HA States

	State

	Server Type

	DHCP Service

	DHCP Service
Scopes

	backup

	backup server

	disabled

	none

	hot-standby

	primary or
standby
(hot-standby
mode)

	enabled

	HA_server1
if primary,
none otherwise

	load-balancing

	primary or
secondary
(load-balancing
mode)

	enabled

	HA_server1
or
HA_server2

	in-maintenance

	active server

	disabled

	none

	partner-down

	active server

	enabled

	all scopes

	partner-in-maintenance

	active server

	enabled

	all scopes

	passive-backup

	active server

	enabled

	all scopes

	ready

	active server

	disabled

	none

	syncing

	active server

	disabled

	none

	terminated

	active server

	enabled

	same as in the
load-balancing
or hot-standby
state

	waiting

	any server

	disabled

	none

The DHCP service scopes require some explanation. The HA configuration
must specify a unique name for each server within the HA setup. This
document uses the following convention within the provided examples:
server1 for a primary server, server2 for the secondary or
standby server, and server3 for the backup server. In real life any
names can be used as long as they remain unique.

In the load-balancing mode there are two scopes specified for the active
servers: HA_server1 and HA_server2. The DHCP queries
load-balanced to server1 belong to the HA_server1 scope and the
queries load-balanced to server2 belong to the HA_server2 scope.
If either of the servers is in the partner-down state, the active
partner is responsible for serving both scopes.

In the hot-standby mode, there is only one scope - HA_server1 -
because only server1 is responding to DHCP queries. If that server
becomes unavailable, server2 becomes responsible for this scope.

The backup servers do not have their own scopes. In some cases they can
be used to respond to queries belonging to the scopes of the active
servers. Also, a server which is neither in the partner-down state nor
in normal operation serves no scopes.

The scope names can be used to associate pools, subnets, and networks
with certain servers, so only these servers can allocate addresses or
prefixes from those pools, subnets, or networks. This is done via the
client classification mechanism (see Load Balancing with Advanced Classification
for more details).

15.15.4. Scope Transition in a Partner-Down Case

When one of the servers finds that its partner is unavailable, it starts
serving clients from both its own scope and the scope of the unavailable
partner. This is straightforward for new clients, i.e. those sending
DHCPDISCOVER (DHCPv4) or Solicit (DHCPv6), because those requests are
not sent to any particular server. The available server will respond to
all such queries when it is in the partner-down state.

When a client renews a lease, it sends its DHCPREQUEST (DHCPv4) or Renew
(DHCPv6) message directly to the server which has allocated the lease
being renewed. If this server is no longer available, the client will
get no response. In that case, the client continues to use its lease and
attempts to renew until the rebind timer (T2) elapses. The client then
enters the rebinding phase, in which it sends a DHCPREQUEST (DHCPv4) or
Rebind (DHCPv6) message to any available server. The surviving server
will receive the rebinding request and will typically extend the
lifetime of the lease. The client then continues to contact that new
server to renew its lease as appropriate.

If and when the other server once again becomes available, both active
servers will eventually transition to the load-balancing or
hot-standby state, in which they will again be responsible for their
own scopes. Some clients belonging to the scope of the restarted server
will try to renew their leases via the surviving server, but this server
will not respond to them anymore; the client will eventually transition
back to the correct server via the rebinding mechanism.

15.15.5. Load-Balancing Configuration

The following is the configuration snippet to enable high availability
on the primary server within the load-balancing configuration. The same
configuration should be applied on the secondary and backup servers,
with the only difference that this-server-name should be set to
server2 and server3 on those servers, respectively.

"Dhcp4": {
 "hooks-libraries": [{
 "library": "/usr/lib/kea/hooks/libdhcp_lease_cmds.so",
 "parameters": { }
 }, {
 "library": "/usr/lib/kea/hooks/libdhcp_ha.so",
 "parameters": {
 "high-availability": [{
 "this-server-name": "server1",
 "mode": "load-balancing",
 "heartbeat-delay": 10000,
 "max-response-delay": 10000,
 "max-ack-delay": 5000,
 "max-unacked-clients": 5,
 "peers": [{
 "name": "server1",
 "url": "http://192.168.56.33:8000/",
 "role": "primary",
 "auto-failover": true
 }, {
 "name": "server2",
 "url": "http://192.168.56.66:8000/",
 "role": "secondary",
 "auto-failover": true
 }, {
 "name": "server3",
 "url": "http://192.168.56.99:8000/",
 "role": "backup",
 "auto-failover": false
 }]
 }]
 }
 }],

 "subnet4": [{
 "subnet": "192.0.3.0/24",
 "pools": [{
 "pool": "192.0.3.100 - 192.0.3.150",
 "client-class": "HA_server1"
 }, {
 "pool": "192.0.3.200 - 192.0.3.250",
 "client-class": "HA_server2"
 }],

 "option-data": [{
 "name": "routers",
 "data": "192.0.3.1"
 }],

 "relay": { "ip-address": "10.1.2.3" }
 }]
}

Two hooks libraries must be loaded to enable HA:
libdhcp_lease_cmds.so and libdhcp_ha.so. The latter implements
the HA feature, while the former enables control commands required by HA
to fetch and manipulate leases on the remote servers. In the example
provided above, it is assumed that Kea libraries are installed in the
/usr/lib directory. If Kea is not installed in the /usr directory,
the hooks libraries locations must be updated accordingly.

The HA configuration is specified within the scope of libdhcp_ha.so.
Note that the top-level parameter high-availability is a list, even
though it currently contains only one entry.

The following are the global parameters which control the server’s
behavior with respect to HA:

	this-server-name - is a unique identifier of the server within
this HA setup. It must match with one of the servers specified within
the peers list.

	mode - specifies an HA mode of operation. Currently supported
modes are load-balancing and hot-standby.

	heartbeat-delay - specifies a duration in milliseconds between
sending the last heartbeat (or other command sent to the partner) and
the next heartbeat. The heartbeats are sent periodically to gather
the status of the partner and to verify whether the partner is still
operating. The default value of this parameter is 10000 ms.

	max-response-delay - specifies a duration in milliseconds since
the last successful communication with the partner, after which the
server assumes that communication with the partner is interrupted.
This duration should be greater than the heartbeat-delay. Usually
it is greater than the duration of multiple heartbeat-delay
values. When the server detects that communication is interrupted, it
may transition to the partner-down state (when
max-unacked-clients is 0) or trigger the failure-detection
procedure using the values of the two parameters below. The default
value of this parameter is 60000 ms.

	max-ack-delay - is one of the parameters controlling partner
failure-detection. When communication with the partner is
interrupted, the server examines the values of the secs field
(DHCPv4) or Elapsed Time option (DHCPv6), which denote how long
the DHCP client has been trying to communicate with the DHCP server.
This parameter specifies the maximum time in milliseconds for the
client to try to communicate with the DHCP server, after which this
server assumes that the client failed to communicate with the DHCP
server (is “unacked”). The default value of this parameter is 10000.

	max-unacked-clients - specifies how many “unacked” clients are
allowed (see max-ack-delay) before this server assumes that the
partner is offline and transitions to the partner-down state. The
special value of 0 is allowed for this parameter, which disables the
failure-detection mechanism. In this case, a server that can’t
communicate with its partner over the control channel assumes that
the partner server is down and transitions to the partner-down
state immediately. The default value of this parameter is 10.

The values of max-ack-delay and max-unacked-clients must be
selected carefully, taking into account the specifics of the network in
which the DHCP servers are operating. Note that the server in question
may not respond to some DHCP clients because these clients are not to be
serviced by this server according to administrative policy. The server
may also drop malformed queries from clients. Therefore, selecting too
low a value for the max-unacked-clients parameter may result in a
transition to the partner-down state even though the partner is
still operating. On the other hand, selecting too high a value may
result in never transitioning to the partner-down state if the DHCP
traffic in the network is very low (e.g. at nighttime), because the number
of distinct clients trying to communicate with the server could be lower
than the max-unacked-clients setting.

In some cases it may be useful to disable the failure-detection
mechanism altogether, if the servers are located very close to each
other and network partitioning is unlikely, i.e. failure to respond to
heartbeats is only possible when the partner is offline. In such cases,
set the max-unacked-clients to 0.

The peers parameter contains a list of servers within this HA setup.
This configuration must contain at least one primary and one secondary
server. It may also contain an unlimited number of backup servers. In
this example, there is one backup server which receives lease updates
from the active servers.

These are the parameters specified for each of the peers within this
list:

	name - specifies a unique name for the server.

	url - specifies the URL to be used to contact this server over
the control channel. Other servers use this URL to send control
commands to that server.

	role - denotes the role of the server in the HA setup. The
following roles are supported in the load-balancing configuration:
primary, secondary, and backup. There must be exactly one
primary and one secondary server in the load-balancing setup.

	auto-failover - a boolean value which denotes whether a server
detecting a partner’s failure should automatically start serving the
partner’s clients. The default value of this parameter is true.

In our example configuration, both active servers can allocate leases
from the subnet “192.0.3.0/24”. This subnet contains two address pools:
“192.0.3.100 - 192.0.3.150” and “192.0.3.200 - 192.0.3.250”, which are
associated with HA server scopes using client classification. When
server1 processes a DHCP query, it uses the first pool for lease
allocation. Conversely, when server2 processes a DHCP query it uses
the second pool. When either of the servers is in the partner-down
state, it can serve leases from both pools and it selects the pool which
is appropriate for the received query. In other words, if the query
would normally be processed by server2 but this server is not
available, server1 will allocate the lease from the pool of
“192.0.3.200 - 192.0.3.250”.

15.15.6. Load Balancing with Advanced Classification

In the previous section, we provided an example of a load-balancing
configuration with client classification limited to the HA_server1
and HA_server2 classes, which are dynamically assigned to the
received DHCP queries. In many cases, HA will be needed in deployments
which already use some other client classification.

Suppose there is a system which classifies devices into two groups:
phones and laptops, based on some classification criteria specified in the
Kea configuration file. Both types of devices are allocated leases from
different address pools. Introducing HA in the load-balancing mode
results in a further split of each of those pools, as each server
allocates leases for some phones and some laptops. This requires each of
the existing pools to be split between HA_server1 and
HA_server2, so we end up with the following classes:

	phones_server1

	laptops_server1

	phones_server2

	laptops_server2

The corresponding server configuration using advanced classification
(and the member expression) is provided below. For brevity’s sake, the
HA hook library configuration has been removed from this example.

"Dhcp4": {
 "client-classes": [{
 "name": "phones",
 "test": "substring(option[60].hex,0,6) == 'Aastra'",
 }, {
 "name": "laptops",
 "test": "not member('phones')"
 }, {
 "name": "phones_server1",
 "test": "member('phones') and member('HA_server1')"
 }, {
 "name": "phones_server2",
 "test": "member('phones') and member('HA_server2')"
 }, {
 "name": "laptops_server1",
 "test": "member('laptops') and member('HA_server1')"
 }, {
 "name": "laptops_server2",
 "test": "member('laptops') and member('HA_server2')"
 }],

 "hooks-libraries": [{
 "library": "/usr/lib/kea/hooks/libdhcp_lease_cmds.so",
 "parameters": { }
 }, {
 "library": "/usr/lib/kea/hooks/libdhcp_ha.so",
 "parameters": {
 "high-availability": [{
 ...
 }]
 }
 }],

 "subnet4": [{
 "subnet": "192.0.3.0/24",
 "pools": [{
 "pool": "192.0.3.100 - 192.0.3.125",
 "client-class": "phones_server1"
 }, {
 "pool": "192.0.3.126 - 192.0.3.150",
 "client-class": "laptops_server1"
 }, {
 "pool": "192.0.3.200 - 192.0.3.225",
 "client-class": "phones_server2"
 }, {
 "pool": "192.0.3.226 - 192.0.3.250",
 "client-class": "laptops_server2"
 }],

 "option-data": [{
 "name": "routers",
 "data": "192.0.3.1"
 }],

 "relay": { "ip-address": "10.1.2.3" }
 }],
}

The configuration provided above splits the address range into four
pools: two pools dedicated to server1 and two to server2. Each server
can assign leases to both phones and laptops. Both groups of devices are
assigned addresses from different pools. The HA_server1 and
HA_server2 classes are built-in (see
Built-in Client Classes) and do not need to be declared.
They are assigned dynamically by the HA hook library as a result of the
load-balancing algorithm. phones_* and laptop_* evaluate to
“true” when the query belongs to a given combination of other classes,
e.g. HA_server1 and phones. The pool is selected accordingly as
a result of such an evaluation.

Consult Client Classification for details on how to use the member
expression and class dependencies.

15.15.7. Hot-Standby Configuration

The following is an example configuration of the primary server in the
hot-standby configuration:

"Dhcp4": {
 "hooks-libraries": [{
 "library": "/usr/lib/kea/hooks/libdhcp_lease_cmds.so",
 "parameters": { }
 }, {
 "library": "/usr/lib/kea/hooks/libdhcp_ha.so",
 "parameters": {
 "high-availability": [{
 "this-server-name": "server1",
 "mode": "hot-standby",
 "heartbeat-delay": 10000,
 "max-response-delay": 10000,
 "max-ack-delay": 5000,
 "max-unacked-clients": 5,
 "peers": [{
 "name": "server1",
 "url": "http://192.168.56.33:8000/",
 "role": "primary",
 "auto-failover": true
 }, {
 "name": "server2",
 "url": "http://192.168.56.66:8000/",
 "role": "standby",
 "auto-failover": true
 }, {
 "name": "server3",
 "url": "http://192.168.56.99:8000/",
 "role": "backup",
 "auto-failover": false
 }]
 }]
 }
 }],

 "subnet4": [{
 "subnet": "192.0.3.0/24",
 "pools": [{
 "pool": "192.0.3.100 - 192.0.3.250",
 "client-class": "HA_server1"
 }],

 "option-data": [{
 "name": "routers",
 "data": "192.0.3.1"
 }],

 "relay": { "ip-address": "10.1.2.3" }
 }]
}

This configuration is very similar to the load-balancing configuration
described in Load-Balancing Configuration, with a few notable
differences.

The mode is now set to hot-standby, in which only one server
responds to DHCP clients. If the primary server is online, it responds
to all DHCP queries. The standby server takes over all DHCP traffic
if it discovers that the primary is unavailable.

In this mode, the non-primary active server is called standby and
that is its role.

Finally, because there is always one server responding to DHCP queries,
there is only one scope - HA_server1 - in use within pools
definitions. In fact, the client-class parameter could be removed
from this configuration without harm, because there can be no conflicts
in lease allocations by different servers as they do not allocate leases
concurrently. The client-class remains in this example mostly for
demonstration purposes, to highlight the differences between the
hot-standby and load-balancing modes of operation.

15.15.8. Passive-Backup Configuration

The following is an example configuration of the primary server in the
passive-backup configuration:

"Dhcp4": {
 "hooks-libraries": [{
 "library": "/usr/lib/kea/hooks/libdhcp_lease_cmds.so",
 "parameters": { }
 }, {
 "library": "/usr/lib/kea/hooks/libdhcp_ha.so",
 "parameters": {
 "high-availability": [{
 "this-server-name": "server1",
 "mode": "passive-backup",
 "wait-backup-ack": false,
 "peers": [{
 "name": "server1",
 "url": "http://192.168.56.33:8000/",
 "role": "primary"
 }, {
 "name": "server2",
 "url": "http://192.168.56.66:8000/",
 "role": "backup"
 }, {
 "name": "server3",
 "url": "http://192.168.56.99:8000/",
 "role": "backup"
 }]
 }]
 }
 }],

 "subnet4": [{
 "subnet": "192.0.3.0/24",
 "pools": [{
 "pool": "192.0.3.100 - 192.0.3.250",
 }],

 "option-data": [{
 "name": "routers",
 "data": "192.0.3.1"
 }],

 "relay": { "ip-address": "10.1.2.3" }
 }]
}

The configurations of three peers are included, one for the primary and
two for the backup servers. Many of the parameters present in the load-balancing
and hot-standby configuration examples are not relevant in the passive-backup
mode, thus they are not specified here. For example: heartbeat-delay,
max-unacked-clients and others related to the automatic failover mechanism
should not be specified in the passive-backup mode. The wait-backup-ack
is a boolean parameter not present in previous examples. It defaults to false and
must not be modified in the load-balancing and hot-standby modes. In the passive-backup
mode this parameter can be set to true which causes the primary server to expect
acknowledgments to the lease updates from the backup servers prior to responding
to the DHCP client. It ensures that the lease was propagated to all servers before
the client is given the lease, but it poses a risk of loosing a DHCP service if
there is a communication problem with one of the backup servers. This setting
also increases the latency of the DHCP response because of the time that the
primary spends waiting for the acknowledgements. We recommend that the
wait-backup-ack is left at its default value if the DHCP service reliability
is more important than consistency of the lease information between the
primary and the backups and in all cases when the DHCP service latency should
be minimal.

15.15.9. Lease Information Sharing

An HA-enabled server informs its active partner about allocated or
renewed leases by sending appropriate control commands, and the partner
updates the lease information in its own database. When the server
starts up for the first time or recovers after a failure, it
synchronizes its lease database with its partner. These two mechanisms
guarantee consistency of the lease information between the servers and
allow the designation of one of the servers to handle the entire DHCP
traffic load if the other server becomes unavailable.

In some cases, though, it is desirable to disable lease updates and/or
database synchronization between the active servers, if the exchange of
information about the allocated leases is performed using some other
mechanism. Kea supports various database types that can be used to store
leases, including MySQL, PostgreSQL, and Cassandra. Those databases
include built-in solutions for data replication which are often used by
Kea administrators to provide redundancy.

The HA hook library supports such scenarios by disabling lease updates
over the control channel and/or lease database synchronization, leaving
the server to rely on the database replication mechanism. This is
controlled by the two boolean parameters send-lease-updates and
sync-leases, whose values default to true:

{
"Dhcp4": {

 ...

 "hooks-libraries": [
 {
 "library": "/usr/lib/kea/hooks/libdhcp_lease_cmds.so",
 "parameters": { }
 },
 {
 "library": "/usr/lib/kea/hooks/libdhcp_ha.so",
 "parameters": {
 "high-availability": [{
 "this-server-name": "server1",
 "mode": "load-balancing",
 "send-lease-updates": false,
 "sync-leases": false,
 "peers": [
 {
 "name": "server1",
 "url": "http://192.168.56.33:8000/",
 "role": "primary"
 },
 {
 "name": "server2",
 "url": "http://192.168.56.66:8000/",
 "role": "secondary"
 }
]
 }]
 }
 }
],

 ...

}

In the most typical use case, both parameters are set to the same value,
i.e. both are false if database replication is in use, or both are
true otherwise. Introducing two separate parameters to control lease
updates and lease-database synchronization is aimed at possible special
use cases; for example, when synchronization is performed by copying a
lease file (therefore sync-leases is set to false), but lease
updates should be conducted as usual (send-lease-updates is set to
true). It should be noted that Kea does not natively support such
use cases, but users may develop their own scripts and tools around Kea
to provide such mechanisms. The HA hooks library configuration is
designed to maximize flexibility of administration.

15.15.10. Controlling Lease-Page Size Limit

An HA-enabled server initiates synchronization of the lease database
after downtime or upon receiving the ha-sync command. The server
uses commands described in The lease4-get-page, lease6-get-page Commands and
The lease4-get-page, lease6-get-page Commands to fetch
leases from its partner server (lease queries). The size of the results
page (the maximum number of leases to be returned in a single response
to one of these commands) can be controlled via configuration of the HA hooks
library. Increasing the page size decreases the number of lease
queries sent to the partner server, but it causes the partner server to
generate larger responses, which lengthens transmission time as well as
increases memory and CPU utilization on both servers. Decreasing the
page size helps to decrease resource utilization, but requires more
lease queries to be issued to fetch the entire lease database.

The default value of the sync-page-limit command controlling the
page size is 10000. This means that the entire lease database can be
fetched with a single command if the size of the database is equal to or
less than 10000 lines.

15.15.11. Timeouts

In deployments with a large number of clients connected to the network,
lease-database synchronization after a server failure may be a
time-consuming operation. The synchronizing server must gather all
leases from its partner, which yields a large response over the RESTful
interface. The server receives leases using the paging mechanism
described in Controlling Lease-Page Size Limit. Before the page of leases is fetched,
the synchronizing server sends a dhcp-disable command to disable the
DHCP service on the partner server. If the service is already disabled,
this command will reset the timeout for the DHCP service being disabled.
This timeout value is by default set to 60 seconds. If fetching a single
page of leases takes longer than the specified time, the partner server
will assume that the synchronizing server died and will resume its DHCP
service. The connection of the synchronizing server with its partner is
also protected by the timeout. If the synchronization of a single page
of leases takes longer than the specified time, the synchronizing server
terminates the connection and the synchronization fails. Both timeout
values are controlled by a single configuration parameter,
sync-timeout. The following configuration snippet demonstrates how
to modify the timeout for automatic re-enabling of the DHCP service on
the partner server and how to increase the timeout for fetching a single
page of leases from 60 seconds to 90 seconds:

{
"Dhcp4": {

 ...

 "hooks-libraries": [
 {
 "library": "/usr/lib/kea/hooks/libdhcp_lease_cmds.so",
 "parameters": { }
 },
 {
 "library": "/usr/lib/kea/hooks/libdhcp_ha.so",
 "parameters": {
 "high-availability": [{
 "this-server-name": "server1",
 "mode": "load-balancing",
 "sync-timeout": 90000,
 "peers": [
 {
 "name": "server1",
 "url": "http://192.168.56.33:8000/",
 "role": "primary"
 },
 {
 "name": "server2",
 "url": "http://192.168.56.66:8000/",
 "role": "secondary"
 }
]
 }]
 }
 }
],

 ...

}

It is important to note that extending this sync-timeout value may
sometimes be insufficient to prevent issues with timeouts during
lease-database synchronization. The control commands travel via the
Control Agent, which also monitors incoming (with a synchronizing
server) and outgoing (with a DHCP server) connections for timeouts. The
DHCP server also monitors the connection from the Control Agent for
timeouts. Those timeouts cannot currently be modified via configuration;
extending these timeouts is only possible by modifying them in the Kea
code and recompiling the server. The relevant constants are located in
the Kea source at: src/lib/config/timeouts.h.

15.15.12. Pausing the HA State Machine

The high-availability state machine includes many different states
described in detail in Server States. The server
enters each state when certain conditions are met, most often taking
into account the partner server’s state. In some states the server
performs specific actions, e.g. synchronization of the lease database in
the syncing state or responding to DHCP queries according to the
configured mode of operation in the load-balancing and
hot-standby states.

By default, transitions between the states are performed automatically
and the server administrator has no direct control when the transitions
take place; in most cases, the administrator does not need such control.
In some situations, however, the administrator may want to “pause” the
HA state machine in a selected state to perform some additional
administrative actions before the server transitions to the next state.

Consider a server failure which results in the loss of the entire lease
database. Typically, the server will rebuild its lease database when it
enters the syncing state by querying the partner server for leases,
but it is possible that the partner was also experiencing a failure and
lacks lease information. In this case, it may be required to reconstruct
lease databases on both servers from some external source, e.g. a backup
server. If the lease database is to be reconstructed via the RESTful API,
the servers should be started in the initial, i.e. waiting, state
and remain in this state while leases are being added. In particular,
the servers should not attempt to synchronize their lease databases nor
start serving DHCP clients.

The HA hooks library provides configuration parameters and a command to
control when the HA state machine should be paused and resumed. The
following configuration causes the HA state machine to pause in the
waiting state after server startup.

"Dhcp4": {

 ...

 "hooks-libraries": [
 {
 "library": "/usr/lib/kea/hooks/libdhcp_lease_cmds.so",
 "parameters": { }
 },
 {
 "library": "/usr/lib/kea/hooks/libdhcp_ha.so",
 "parameters": {
 "high-availability": [{
 "this-server-name": "server1",
 "mode": "load-balancing",
 "peers": [
 {
 "name": "server1",
 "url": "http://192.168.56.33:8000/",
 "role": "primary"
 },
 {
 "name": "server2",
 "url": "http://192.168.56.66:8000/",
 "role": "secondary"
 }
],
 "state-machine": {
 "states": [
 {
 "state": "waiting",
 "pause": "once"
 }
]
 }
 }]
 }
 }
],

 ...

}

The pause parameter value once denotes that the state machine
should be paused upon the first transition to the waiting state;
later transitions to this state will not cause the state machine to
pause. Two other supported values of the pause parameter are
always and never. The latter is the default value for each
state, which instructs the server never to pause the state machine.

In order to “unpause” the state machine, the ha-continue command
must be sent to the paused server. This command does not take any
arguments. See Control Commands for High Availability for details about commands
specific to the HA hooks library.

It is possible to configure the state machine to pause in more than one
state. Consider the following configuration:

"Dhcp4": {

 ...

 "hooks-libraries": [
 {
 "library": "/usr/lib/kea/hooks/libdhcp_lease_cmds.so",
 "parameters": { }
 },
 {
 "library": "/usr/lib/kea/hooks/libdhcp_ha.so",
 "parameters": {
 "high-availability": [{
 "this-server-name": "server1",
 "mode": "load-balancing",
 "peers": [
 {
 "name": "server1",
 "url": "http://192.168.56.33:8000/",
 "role": "primary"
 },
 {
 "name": "server2",
 "url": "http://192.168.56.66:8000/",
 "role": "secondary"
 }
],
 "state-machine": {
 "states": [
 {
 "state": "ready",
 "pause": "always"
 },
 {
 "state": "partner-down",
 "pause": "once"
 }
]
 }
 }]
 }
 }
],

 ...

}

This configuration instructs the server to pause the state machine every
time it transitions to the ready state and upon the first transition
to the partner-down state.

Refer to Server States for a complete list of
server states. The state machine can be paused in any of the supported
states; however, it is not practical for the backup and
terminated states because the server never transitions out of these
states anyway.

Note

In the syncing state the server is paused before it makes an
attempt to synchronize the lease database with a partner. To pause
the state machine after lease-database synchronization, use the
ready state instead.

Note

The state of the HA state machine depends on the state of the
cooperating server. Therefore, it must be taken into account that
pausing the state machine of one server may affect the operation of
the partner server. For example: if the primary server is paused in
the waiting state, the partner server will also remain in the
waiting state until the state machine of the primary server is
resumed and that server transitions to the ready state.

15.15.13. Control Agent Configuration

The Kea Control Agent describes in detail the Kea daemon, which
provides a RESTful interface to control the Kea servers. The same
functionality is used by the High Availability hooks library to establish
communication between the HA peers. Therefore, the HA library requires
that the Control Agent (CA) be started for each DHCP instance within the
HA setup. If the Control Agent is not started, the peers will not be
able to communicate with the particular DHCP server (even if the DHCP
server itself is online) and may eventually consider this server to be
offline.

The following is an example configuration for the CA running on the same
machine as the primary server. This configuration is valid for both the
load-balancing and the hot-standby cases presented in previous sections.

{
"Control-agent": {
 "http-host": "192.168.56.33",
 "http-port": 8000,

 "control-sockets": {
 "dhcp4": {
 "socket-type": "unix",
 "socket-name": "/tmp/kea-dhcp4-ctrl.sock"
 },
 "dhcp6": {
 "socket-type": "unix",
 "socket-name": "/tmp/kea-dhcp6-ctrl.sock"
 }
 }
}
}

15.15.14. Controlled Shutdown and Maintenance of DHCP servers

Having a pair of servers providing High Availability allows for controlled
shutdown and maintenance of those servers without disrupting the DHCP
service. For example, an administrator can perform an upgrade of one of
the servers while the other one continues to respond to the DHCP queries.
When the upgraded server is back online, the upgrade can be performed for
the second server. The typical problem reported for the earlier versions
of the High Availability hooks library was that the administrator did not
have a direct control over the state of the DHCP server. Shutting down
one of the servers for maintenance didn’t necessarily cause the other
server to start reponding to all DHCP queries because the failure
detection algorithm described in Scope Transition in a Partner-Down Case requires that
the partner does not respond for a configured period of time and,
depending on the configuration, may also require that a number of DHCP
requests are not responded for a configured period of time. The
maintenance procedure, however, requires that the administrator is able
to instruct one of the servers to instantly start serving all DHCP clients
and the other server to instantly stop serving any DHCP clients so as it
can be safely shut down.

The maintenance feature of the High Availability hooks library addresses
this problem. The ha-maintenance-start command was introduced to allow
the administrator to put the pair of the active servers in states in which
one of them is responding to all DHCP queries and the other one is awaiting
a shutdown.

Suppose that the HA setup includes two active servers, e.g. server1
and server2 and the latter needs to be shut down for the maintenance.
The administrator should send the ha-maintenance-start to server1,
as this is the server which is going to handle the DHCP traffic while the
other one is offline. The server1 may respond with an error if its state
or the partner’s state does not allow for the maintenance. For example,
the maintenance is not supported for the backup server or the server being
in the terminated state. Also, an error will be returned if the maintenance
request was already sent to the other server.

Upon receiving the ha-maintenance-start command, the server1 will
send the ha-maintenance-notify command to the server2 to put this
server in the in-maintenance state. If the server2 confirms, the server1
will transition to the partner-in-maintenance state. This is similar
to the partner-down state, except that in the partner-in-maintenance
state the server1 continues to send lease updates to the server2 until
the administrator shuts down the server2. The server1 now responds to all
DHCP queries.

The administrator may safely shut down the server2 being in the
in-maintenance state and perform necessary maintenance actions. When
the server2 is offline, the server1 will encounter communication issues
with the partner and will immediately transition to the partner-down
state in which it will continue to respond to all DHCP queries but will
no longer send lease updates to the server2. Starting the server2 after
the maintenance will trigger normal state negotiation, lease database
synchronization and, ultimately, a transition to the load-balancing or
hot-standby state. The maintenance can now be performed for the server1.
It should be initiated by sending the ha-maintenance-start to the
server2.

If the ha-maintenance-start command was sent to the server and the
server has transitioned to the partner-in-maintenance state it is
possible to transition it and its partner back to the previous states
to resume the normal operation of the HA pair. This is achieved by
sending the ha-maintenance-cancel command to the server being
in the partner-in-maintenance state. However, if the server has
already transitioned to the partner-down state as a result of
detecting that the partner is offline, canceling the maintenance
is no longer possible.

15.15.15. Upgrading from Older HA Versions

The maintenance mechanism was first introduced in the Kea 1.7.4 release.
In order to upgrade the HA hooks library from the older version the
administrator must shut down one of the servers and rely on the
failover mechanism to get the online server to transition to the
partner-down state and start serving all DHCP clients. After the
successful upgrade of one of the servers to the version supporting
the maintenance mechanism it is possible to benefit from this
mechanism during the upgrade of the second server.

In such case, shut down the server running the old version. Next,
send the ha-maintenance-start to the server that has been
upgraded and supports the maintenance mechanism. This server should
immediately transition to the partner-down state as it cannot
communicate with the partner being offline. In the partner-down
state the server will be responding to all DHCP requests.

Note

Do not send the ha-maintenance-start command while the server
running the old version is still online. The server receiving
this command will return an error seeing that the partner does
not support the maintenance mechanism.

15.15.16. Control Commands for High Availability

Even though the HA hook library is designed to automatically resolve
issues with DHCP service interruptions by redirecting the DHCP traffic
to a surviving server and synchronizing the lease database when
required, it may be useful for the administrator to have more control
over the server behavior. In particular, it may be useful to be able to
trigger lease-database synchronization on demand. It may also be useful
to manually set the HA scopes that are being served.

Note that the backup server can sometimes be used to handle DHCP traffic
if both active servers are down. The backup server does not perform
failover function automatically; thus, in order to use the backup server
to respond to DHCP queries, the server administrator must enable this
function manually.

The following sections describe commands supported by the HA hooks
library which are available for the administrator.

15.15.16.1. The ha-sync Command

The ha-sync command instructs the server to synchronize its local
lease database with the selected peer. The server fetches all leases
from the peer and updates those locally stored leases which are older
than those fetched. It also creates new leases when any of those fetched
do not exist in the local database. All leases that are not returned by
the peer but are in the local database are preserved. The database
synchronization is unidirectional; only the database on the server to
which the command has been sent is updated. In order to synchronize the
peer’s database a separate ha-sync command must be issued to that peer.

Database synchronization may be triggered for both active and backup
server types. The ha-sync command has the following structure
(DHCPv4 server case):

{
 "command": "ha-sync",
 "service": ["dhcp4 "],
 "arguments": {
 "server-name": "server2",
 "max-period": 60
 }
}

When the server receives this command it first disables the DHCP service
of the server from which it will be fetching leases, by sending the
dhcp-disable command to that server. The max-period parameter
specifies the maximum duration (in seconds) for which the DHCP service
should be disabled. If the DHCP service is successfully disabled, the
synchronizing server fetches leases from the remote server by issuing
one or more lease4-get-page commands. When the lease-database
synchronization is complete, the synchronizing server sends the
dhcp-enable command to the peer to re-enable its DHCP service.

The max-period value should be sufficiently long to guarantee that
it does not elapse before the synchronization is completed. Otherwise,
the DHCP server will automatically enable its DHCP function while the
synchronization is still in progress. If the DHCP server subsequently
allocates any leases during the synchronization, those new (or updated)
leases will not be fetched by the synchronizing server, leading to
database inconsistencies.

15.15.16.2. The ha-scopes Command

This command allows modification of the HA scopes that the server is
serving. Consult Load-Balancing Configuration and
Hot-Standby Configuration to learn what scopes are
available for different HA modes of operation. The ha-scopes command
has the following structure (DHCPv4 server case):

{
 "command": "ha-scopes",
 "service": ["dhcp4"],
 "arguments": {
 "scopes": ["HA_server1", "HA_server2"]
 }
}

This command configures the server to handle traffic from both the
HA_server1 and HA_server2 scopes. To disable all scopes
specify an empty list:

{
 "command": "ha-scopes",
 "service": ["dhcp4 "],
 "arguments": {
 "scopes": []
 }
}

15.15.16.3. The ha-continue Command

This command is used to resume the operation of the paused HA state
machine, as described in Pausing the HA State Machine. It takes no arguments, so the
command structure is as simple as:

{
 "command": "ha-continue",
 "service": ["dhcp4"]
}

15.15.16.4. The ha-heartbeat Command

The Server States describes how the ha-heartbeat command is used by
the active HA servers to detect a failure of one of them. This command, however,
can also be sent by the system administrator to one or both servers to check their
state with regards to the HA relationship. This allows for hooking up a monitoring
system to the HA enabled servers to periodically check if they are operational
or if any manual intervention is required. The ha-heartbeat command takes no
arguments, e.g.:

{
 "command": "ha-heartbeat",
 "service": ["dhcp4"]
}

Upon successful communication with the server a response similar to this should
be returned:

{
 "result": 0,
 "text": "HA peer status returned.",
 "arguments":
 {
 "state": "partner-down",
 "date-time": "Thu, 07 Nov 2019 08:49:37 GMT"
 }
}

The returned state value may be one of the values listed in Server States.
In the example above the partner-down state is returned, which indicates that
the server which responded to the command is assuming that its partner is offline,
thus it is serving all DHCP requests sent to the servers. In order to ensure that
the partner is indeed offline the administrator should send the ha-heartbeat
command to the second server. If sending the command fails, e.g. as a result of
inability to establish TCP connection to the Control Agent or the Control Agent
reports issues with communication with the DHCP server, it is very likely that
the server is not running.

The typical response returned by one of the servers when both servers are
operational is:

{
 "result": 0,
 "text": "HA peer status returned.",
 "arguments":
 {
 "state": "load-balancing",
 "date-time": "Thu, 07 Nov 2019 08:49:37 GMT"
 }
}

In most cases it is desired to send the ha-heartbeat command to both HA
enabled servers to verify the state of the entire HA setup. In particular,
if the response sent to one of the servers indicates that the server is in the
load-balancing state, it merely means that this server is operating as if
the partner is still functional. When the partner dies it actually takes some
time for the surviving server to realize it. The Scope Transition in a Partner-Down Case
section describes the algorithm which the surviving server follows before
it transitions to the partner-down state. If the ha-heartbeat command
is sent during the time window between the failure of one of the servers and the
transition of the surviving server to the partner-down state, the response
from the surviving server doesn’t reflect the failure. Sending the command
to the failing server allows for detecting the failure.

Note

Remember! Always send the ha-heartbeat command to both active HA servers
to check the state of the entire HA setup. Sending it to only one of the
servers may not reflect issues with one of the servers that just began.

15.15.16.5. The status-get Command

The status-get is the general purpose command supported by several Kea deamons,
not only DHCP servers. However, when sent to the DHCP server with HA enabled, it
can be used to get insight into the details of the HA specific status information
of the servers being in the HA configuration. Not only does the response contain
the status information of the server receiving this command but also the
information about its partner, if this information is available.

The following is the example response to the status-get command including
the HA status of two load balancing servers:

{
 "result": 0,
 "text": "",
 "arguments": {
 "pid": 1234,
 "uptime": 3024,
 "reload": 1111,
 "high-availability": [
 {
 "ha-mode": "load-balancing",
 "ha-servers": {
 "local": {
 "role": "primary",
 "scopes": ["server1"],
 "state": "load-balancing"
 },
 "remote": {
 "age": 10,
 "in-touch": true,
 "role": "secondary",
 "last-scopes": ["server2"],
 "last-state": "load-balancing",
 "communication-interrupted": true,
 "connecting-clients": 2,
 "unacked-clients": 1,
 "unacked-clients-left": 2,
 "analyzed-packets": 8
 }
 }
 }
]
 }
}

The high-availability argument is a list which currently always comprises
one element. There are plans to extend the HA implementation to facilitate
multiple HA relationships for a single server instance. In that case, the
returned list will comprise more elements, each describing the status of
a different relationship in which the server participates. Currently, it
is only one status.

Note

In Kea 1.7.8 an incompatible change was introduced to the syntax of the
status-get response. Previously, the HA status for a single relationship
was returned within the arguments map. As of Kea 1.7.8, the returned status
is enclosed in the list as described above. Any existing code relying on the
previous syntax must be updated to work with the new Kea versions.

The ha-servers map contains two structures: local and remote. The former
contains the status information of the server which received the command. The
latter contains the status information known to the local server about the
partner. The role of the partner server is gathered from the local
configuration file, therefore it should always be available. The remaining
status information such as last-scopes and last-state is not available
until the local server communicates with the remote by successfully sending
the ha-heartbeat command. If at least one such communication took place,
the returned value of in-touch parameter is set to true. By examining
this value, the command sender can determine whether the information about
the remote server is reliable.

The last-scopes and last-state contain the information about the
HA scopes served by the partner and its state. Note that this information
is gathered during the heartbeat command exchange, so it may not be
accurate if the communication problem occur between the partners and this
status information is not refreshed. In such case, it may be useful to
send the status-get command to the partner server directly to check
its current state. The age parameter specifies the number of seconds
since the information from the partner was gathered (the age of this
information).

The communication-interrupted boolean value indicates if the server
receiving the status-get command (local server) has been unable to
communicate with the partner longer than the duration specified as
max-response-delay. In such a situation we say that active servers are
in the communication interrupted state or that the communication between
them is interrupted. At this point, the local server may start monitoring
the DHCP traffic directed to the partner to see if the partner is
responding to this traffic. More about the failover procedure can be found
in Load-Balancing Configuration.

The connecting-clients, unacked-clients, unacked-clients-left
and analyzed-packets parameters have been introduced together with the
communication-interrupted parameter in the Kea 1.7.8 release and they
convey useful information about the state of the DHCP traffic monitoring
in the communication interrupted state. If the server leaves the
communication interrupted state these parameters are all reset to 0.

These parameters have the following meaning in the communication interrupted
state:

	connecting-clients - number of different clients which have attempted
to get a lease from the remote server. The clients are differentiated by
their MAC address and client identifier (in DHCPv4) or DUID (in DHCPv6).
This number includes both “unacked” clients (for which “secs” field or
“elapsed time” value exceeded the max-response-delay).

	unacked-clients - number of different clients which have been considered
“unacked”, i.e. the clients which have been trying to get the lease long
enough, so as the value of the “secs” field or “elapsed time” exceeded the
max-response-delay.

	unacked-clients-left - number of additional clients which have to be
considered “unacked” before the server enters the partner-down state.
This value decreases when the unacked-clients value increases. The
local server will enter the partner-down state when this value
decreases to 0.

	analyzed-packets - total number of all packets directed to the partner
server and analyzed by the local server since entering the communication
interrupted state. It includes retransmissions from the same clients.

Monitoring these values helps to predict when the local server will
enter the partner-down state or why the server hasn’t yet entered this
state.

The last parameter introduced in the Kea 1.7.8 release was the ha-mode.
It returns the HA mode of operation selected using the mode parameter
in the configuration file. It can hold one of the following values:
load-balancing, hot-standby or passive-backup.

The status-get response has the format described above only in the
load-balancing and hot-standby modes. In the passive-backup
mode the remote map is not included in the response because in this
mode there is only one active server (local). The response comprises no
information about the status of the backup servers.

15.15.16.6. The ha-maintenance-start Command

This command is used to initiate transition of the server’s partner into
the in-maintenance state and the transition of the server receiving the
command into the partner-in-maintenance state. See the
Controlled Shutdown and Maintenance of DHCP servers for the details.

{
 "command": "ha-maintenance-start",
 "service": ["dhcp4"]
}

15.15.16.7. The ha-maintenance-cancel Command

This command is used to cancel the maintenance previously initiated using
the ha-maintenance-start command. The server receiving this command
will first send the ha-maintenance-notify with the cancel flag set
to true to its partner. Next, the server will revert from the
partner-in-maintenance state to the previous state. See the
Controlled Shutdown and Maintenance of DHCP servers for the details.

{
 "command": "ha-maintenance-cancel",
 "service": ["dhcp4"]
}

15.15.16.8. The ha-maintenance-notify Command

This command is sent by the server receiving the ha-maintenance-start
or the ha-maintenance-cancel command to its partner to cause the
partner to transition to the in-maintenance state or to revert from this
state to a previous state. See the Controlled Shutdown and Maintenance of DHCP servers for the details.

{
 "command": "ha-maintenance-notify",
 "service": ["dhcp4"],
 "arguments": {
 "cancel": false
 }
}

Warning

The ha-maintenance-notify command is not meant to be used by the
system administrators. It is used for internal communication between
a pair of HA enabled DHCP servers. Direct use of this command is not
supported and may produce unintended consequences.

15.16. stat_cmds: Supplemental Statistics Commands

This library provides additional commands for retrieving lease
statistics from Kea DHCP servers. These commands were added to address
an issue with obtaining accurate lease statistics in deployments running
multiple Kea servers that use a shared lease backend. The in-memory
statistics kept by individual servers only track lease changes made by
that server; thus, in a deployment with multiple servers (e.g. two
kea-dhcp6 servers using the same PostgreSQL database for lease storage),
these statistics are incomplete. The MySQL and PostgreSQL backends in
Kea track lease allocation changes as they occur via database triggers.
Additionally, all four lease backends were extended to support
retrieving lease statistics for all subnets, a single subnet, or a range
of subnets. Finally, this library was constructed to provide commands
for retrieving these statistics.

Note

This library may only be loaded by the kea-dhcp4 or
kea-dhcp6 process.

The commands currently provided by this library are:

	stat-lease4-get - fetches DHCPv4 lease statistics.

	stat-lease6-get - fetches DHCPv6 lease statistics.

The stat commands library is part of the open source code and is
available to every Kea user.

All commands use JSON syntax and can be issued directly to the servers
via either the control channel (see Management API) or the
Control Agent (see The Kea Control Agent).

This library may be loaded by both the kea-dhcp4 and kea-dhcp6 servers. It
is loaded in the same way as other libraries and currently has no
parameters:

"Dhcp6": {
 "hooks-libraries": [
 {
 "library": "/path/libdhcp_stat_cmds.so"
 }
 ...
]
}

In a deployment with multiple Kea DHCP servers sharing a common lease
storage, this hooks library may be loaded by any or all of the servers. However, one
thing to keep in mind is that a server’s response to a
stat-lease[46]-get command will only contain data for subnets known to
that server. In other words, if a subnet does not appear in a server’s
configuration, Kea will not retrieve statistics for it.

15.16.1. The stat-lease4-get, stat-lease6-get Commands

The stat-lease4-get and stat-lease6-get commands fetch lease
statistics for a range of known subnets. The range of subnets is
determined through the use of optional command input parameters:

	subnet-id - the ID of the subnet for which lease statistics
should be fetched. Use this to get statistics for a single subnet. If
the subnet does not exist, the command result code is 3 (i.e.
CONTROL_RESULT_EMPTY).

	subnet-range - a pair of subnet IDs which describe an inclusive
range of subnets for which statistics should be retrieved. The range
may include one or more IDs that correspond to no subnet; in this
case, the command will only output lease statistics for those that
exist. However, if the range does not include any known subnets, the
command result code is 3 (i.e. CONTROL_RESULT_EMPTY).

	first-subnet-id - the ID of the first subnet in the range.

	last-subnet-id - the ID of the last subnet in the range.

The use of subnet-id and subnet-range are mutually exclusive. If no
parameters are given, the result will contain data for all known
subnets. Note that in configurations with large numbers of subnets, this
can result in a large response.

The following command fetches lease statistics for all known subnets
from a kea-dhcp4 server:

{
 "command": "stat-lease4-get"
}

The following command fetches lease statistics for subnet ID 10 from a
kea-dhcp6 server:

{
 "command": "stat-lease6-get",
 "arguments": {
 "subnet-id" : 10
 }
}

The following command fetches lease statistics for all subnets with IDs
in the range 10 through 50 from a kea-dhcp4 server:

{
 "command": "stat-lease4-get",
 "arguments": {
 "subnet-range" {
 "first-subnet-id": 10,
 "last-subnet-id": 50,
 }
 }
}

The response to either command will contain three elements:

	result - a numeric value indicating the outcome of the command
where:

	0 - the command was successful;

	1 - an error occurred, and an explanation will be the “text”
element; or

	2 - the fetch found no matching data.

	text - an explanation of the command outcome. When the command
succeeds it will contain the command name along with the number of
rows returned.

	arguments - a map containing the data returned by the command as
the element “result-set”, which is patterned after SQL statement
responses:

	columns - a list of text column labels. The columns returned
for DHCPv4 are:

	subnet-id - the ID of the subnet.

	total-addresses - the total number of addresses available for
DHCPv4 management in the subnet. In other words, this is the
sum of all addresses in all the configured pools in the subnet.

	cumulative-assigned-addresses - the cumulative number of addresses
in the subnet that have been assigned to a client by the server
since it started.

	assigned-addresses - the number of addresses in the subnet that
are currently assigned to a client.

	declined-addresses - the number of addresses in the subnet that
are currently declined and are thus unavailable for assignment.

	The columns returned for DHCPv6 are:

	subnet-id - the ID of the subnet.

	total-nas - the number of NA addresses available for DHCPv6
management in the subnet. In other words, this is the sum of
all the NA addresses in all the configured NA pools in the
subnet.

	cumulative-assigned-nas - the cumulative number of NA addresses
in the subnet that have been assigned to a client by the server
since it started.

	assigned-nas - the number of NA addresses in the subnet that
are currently assigned to a client.

	declined-nas - the number of NA addresses that are currently
declined and are thus unavailable for assignment.

	total-pds - the total number of PD prefixes available of DHCPv6
management in the subnet. In other words, this is the sum of
all prefixes in all the configured prefix pools in the subnet.

	cumulative-assigned-pds - the cumulative number of PD prefixes
in the subnet that have been assigned to a client by the server
since it started.

	assigned-pds - the number of PD prefixes in the subnet that are
currently assigned to a client.

	rows - a list of rows, one per subnet ID. Each row contains a
data value corresponding to and in the same order as each column
listed in “columns” for a given subnet.

	timestamp - the textual date and time the data were fetched,
expressed as GMT.

The response to a DHCPv4 command might look as follows:

{
 "result": 0,
 "text": "stat-lease4-get: 2 rows found",
 "arguments": {
 "result-set": {
 "columns": ["subnet-id", "total-addresses", "cumulative-assigned-addresses", "assigned-addresses", "declined-addresses"]
 "rows": [
 [10, 256, 300, 111, 0],
 [20, 4098, 2034, 2034, 4]
],
 "timestamp": "2018-05-04 15:03:37.000000"
 }
 }
}

The response to a DHCPv6 command might look as follows (subnet 10 has no
prefix pools, subnet 20 has no NA pools, and subnet 30 has both NA and
PD pools):

{
 "result": 0,
 "text": "stat-lease6-get: 2 rows found",
 "arguments": {
 "result-set": {
 "columns": ["subnet-id", "total-nas", "cumulative-assigned-nas", "assigned-nas", "declined-nas", "total-pds", "cumulative-assigned-pds", "assigned-pds"]
 "rows": [
 [10, 4096, 5000, 2400, 3, 0, 0, 0],
 [20, 0, 0, 0, 0, 1048, 300, 233]
 [30, 256, 60, 60, 0, 1048, 15, 15]
],
 "timestamp": "2018-05-04 15:03:37.000000"
 }
 }
}

15.17. radius: RADIUS Server Support

The RADIUS hooks library allows Kea to interact with two types of RADIUS
servers: access and accounting. Although the most common DHCP and RADIUS
integration is done on the DHCP relay-agent level (DHCP clients send
DHCP packets to DHCP relays; those relays contact the RADIUS server and
depending on the response either send the packet to the DHCP server or
drop it), it does require DHCP relay hardware to support RADIUS
communication. Also, even if the relay has the necessary support, it is
often not flexible enough to send and receive additional RADIUS
attributes. As such, the alternative looks more appealing: to extend the
DHCP server to talk to RADIUS directly. That is the goal this library
intends to fulfill.

Note

This library may only be loaded by the kea-dhcp4 or the
kea-dhcp6 process.

The major feature of this hooks library is the ability to use RADIUS
authorization. When a DHCP packet is received, the Kea server sends an
Access-Request to the RADIUS server and waits for a response. The server
then sends back either an Access-Accept with specific client attributes,
or an Access-Reject. There are two cases supported here: first, the
Access-Accept includes a Framed-IP-Address (for DHCPv4) or
Framed-IPv6-Address (for DHCPv6), which will be interpreted by Kea as an
instruction to assign that specified IPv4 or IPv6 address. This
effectively means RADIUS can act as an address-reservation database.

The second case supported is the ability to assign clients to specific
pools based on a RADIUS response. In this case, the RADIUS server sends
back an Access-Accept with a Framed-Pool (IPv4) or Framed-IPv6-Pool
(IPv6). In both cases, Kea interprets those attributes as client
classes. With the addition of the ability to limit access to pools to
specific classes (see Configuring Pools With Class Information), RADIUS can be
used to force the client to be assigned a dynamic address from a
specific pool. Furthermore, the same mechanism can be used to control
what kind of options the client will get if there are DHCP options
specified for a particular class.

15.17.1. Compilation and Installation of the RADIUS Hook

The following section describes how to compile and install the software
on CentOS 7.0. Other systems may differ slightly.

STEP 1: Install dependencies

Several tools are needed to build the dependencies and Kea itself. The
following commands should install them:

$ sudo rpm -Uvh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
$ sudo yum install gcc-g++ openssl-devel log4cplus-devel wget git

STEP 2: Install FreeRADIUS

The Kea RADIUS hooks library uses the FreeRADIUS client library to
conduct RADIUS communication. Unfortunately, the standard 1.1.7 release
available from the project website https://freeradius.org/sub_projects/
has several serious deficiencies; ISC engineers observed a segmentation
fault during testing. Also, the base version of the library does not
offer asynchronous transmissions, which are essential for effective
accounting implementation. Both of these issues were addressed by ISC
engineers, and the changes have been reported to the FreeRADIUS client
project. Acceptance of those changes is outside of ISC’s control, so
until those are processed, it is strongly recommended to use the
FreeRADIUS client with ISC’s patches. To download and compile this
version, please use the following steps:

$ git clone https://github.com/fxdupont/freeradius-client.git
$ cd freeradius-client/
$ git checkout iscdev
$./configure
$ make
$ sudo make install

Additional parameters may be passed to the configure script, if needed.
Once installed, the FreeRADIUS client will be installed in
/usr/local. This is the default path where Kea will be looking for it.
It can be installed in a different directory; if so,
make sure to add that path to the configure script when compiling Kea.

STEP 3: Install recent BOOST version

Kea requires a reasonably recent Boost version. Unfortunately, the
version available in CentOS 7 is too old, so a newer Boost version is
necessary. Furthermore, CentOS 7 has an old version of the g++ compiler
that does not handle the latest Boost versions. Fortunately, Boost 1.65
meets both requirements; it is both recent enough for Kea and able to be
compiled using the g++ 4.8 version in CentOS.

To download and compile Boost 1.65, please use the following commands:

$ wget -nd https://dl.bintray.com/boostorg/release/1.65.1/source/boost_1_65_1.tar.gz
$ tar zxvf boost_1_65_1.tar.gz
$ cd boost_1_65_1/
$./bootstrap.sh
$./b2 --without-python
$ sudo ./b2 install

Note that the b2 script may optionally take extra parameters; one of
them specifies the destination path where the sources are to be
compiled.

STEP 4: Compile and install Kea

Obtain the Kea sources either by downloading them from the git
repository or extracting the tarball. Use one of those commands
to obtain the Kea sources.

Choice 1: get from github

$ git clone https://github.com/isc-projects/kea

Choice 2: get a tarball and extract it

$ tar zxvf kea-1.7.8-git.tar.gz

The next step is to extract the premium Kea package that contains the
RADIUS repository into the Kea sources. After the tarball is extracted,
the Kea sources should have a premium/ subdirectory.

$ cd kea
$ tar zxvf ../kea-premium-radius-1.7.8-git.tar.gz

Once this is done, verify that the Kea sources look similar to this:

$ ls -l
total 952
-rw-r--r-- 1 thomson staff 6192 Apr 25 17:38 AUTHORS
-rw-r--r-- 1 thomson staff 29227 Apr 25 17:38 COPYING
-rw-r--r-- 1 thomson staff 360298 Apr 25 20:00 ChangeLog
-rw-r--r-- 1 thomson staff 645 Apr 25 17:38 INSTALL
-rw-r--r-- 1 thomson staff 5015 Apr 25 17:38 Makefile.am
-rw-r--r-- 1 thomson staff 587 Apr 25 17:38 README
-rw-r--r-- 1 thomson staff 62323 Apr 25 17:38 configure.ac
drwxr-xr-x 12 thomson staff 408 Apr 26 19:04 doc
drwxr-xr-x 7 thomson staff 238 Apr 25 17:38 examples
drwxr-xr-x 5 thomson staff 170 Apr 26 19:04 ext
drwxr-xr-x 8 thomson staff 272 Apr 26 19:04 m4macros
drwxr-xr-x 20 thomson staff 680 Apr 26 11:22 premium
drwxr-xr-x 10 thomson staff 340 Apr 26 19:04 src
drwxr-xr-x 14 thomson staff 476 Apr 26 19:04 tools

The makefiles must be regenerated using autoreconf.

The next step is to configure Kea, and there are several essential steps
necessary here. Running autoreconf -if is necessary to compile the
premium package that contains RADIUS. Also, the –with-freeradius option
is necessary to tell Kea where the FreeRADIUS client sources can be
found. Also, since the non-standard Boost is used, the path to it must
be specified.

$ autoreconf -i
$./configure --with-freeradius=/path/to/freeradius --with-boost-include=/path/to/boost --with-boost-lib-dir=/path/to/boost/state/lib

For example, assuming the FreeRADIUS client was installed in the default
directory (/usr/local) and the Boost 1.65 sources were compiled in
/home/thomson/devel/boost1_65_1, the configure path should look as
follows:

$./configure --with-freeradius=/usr/local \
 --with-boost-include=/home/thomson/devel/boost_1_65_1 \
 --with-boost-lib-dir=/home/thomson/devel/boost_1_65_1/stage/lib

After some checks, the configure script should print a report similar to
the following:

 Kea source configure results:
 -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-

Package:
 Name: kea
 Version: 1.7.8-git
 Extended version: 1.7.8-git (tarball)
 OS Family: Linux

 Hooks directory: /usr/local/lib/kea/hooks
 Premium hooks: yes
 Included Hooks: forensic_log flex_id host_cmds subnet_cmds radius host_cache

C++ Compiler:
 CXX: g++ --std=c++11
 CXX_VERSION: g++ (GCC) 4.8.5 20150623 (Red Hat 4.8.5-16)
 CXX_STANDARD: 201103
 DEFS: -DHAVE_CONFIG_H
 CPPFLAGS: -DOS_LINUX -DBOOST_ASIO_HEADER_ONLY
 CXXFLAGS: -g -O2
 LDFLAGS: -lpthread
 KEA_CXXFLAGS: -Wall -Wextra -Wnon-virtual-dtor -Wwrite-strings -Woverloaded-virtual -Wno-sign-compare -pthread -Wno-missing-field-initializers -fPIC

Python:
 PYTHON_VERSION: not needed (because kea-shell is disabled)

Boost:
 BOOST_VERSION: 1.65.1
 BOOST_INCLUDES: -I/home/thomson/devel/boost_1_65_1
 BOOST_LIBS: -L/home/thomson/devel/boost_1_65_1/stage/lib -lboost_system

OpenSSL:
 CRYPTO_VERSION: OpenSSL 1.0.2k 26 Jan 2017
 CRYPTO_CFLAGS:
 CRYPTO_INCLUDES:
 CRYPTO_LDFLAGS:
 CRYPTO_LIBS: -lcrypto

Botan: no

Log4cplus:
 LOG4CPLUS_VERSION: 1.1.3
 LOG4CPLUS_INCLUDES: -I/usr/include
 LOG4CPLUS_LIBS: -L/usr/lib -L/usr/lib64 -llog4cplus

Flex/bison:
 FLEX: flex
 BISON: bison -y

MySQL:
 no

PostgreSQL:
 no

Cassandra CQL:
 no
Google Test:
 no
Google Benchmark:
 no

FreeRADIUS client:
 FREERADIUS_INCLUDE: -I/usr/local/include
 FREERADIUS_LIB: -L/usr/local/lib -lfreeradius-client
 FREERADIUS_DICTIONARY: /usr/local/etc/radiusclient/dictionary

Developer:
 Enable Debugging: no
 Google Tests: no
 Valgrind: not found
 C++ Code Coverage: no
 Logger checks: no
 Generate Documentation: no
 Parser Generation: no
 Kea-shell: no
 Perfdhcp: no

Please make sure that the compilation includes the following:

	RADIUS listed in Included Hooks;

	FreeRADIUS client directories printed and pointing to the right
directories;

	Boost version at least 1.65.1. The versions available in CentOS 7
(1.48 and and 1.53) are too old.

Once the configuration is complete, compile Kea using make. If the
system has more than one core, using the “-j N”
option is recommended to speed up the build.

$ make -j5
$ sudo make install

15.17.2. RADIUS Hook Configuration

The RADIUS hook is a library that has to be loaded by either DHCPv4 or
DHCPv6 Kea servers. Unlike some other available hooks libraries, this one
takes many parameters. For example, this configuration could be used:

"Dhcp4": {

Your regular DHCPv4 configuration parameters here.

"hooks-libraries": [
{
 # Note that RADIUS requires host-cache for proper operation,
 # so that library is loaded as well.
 "library": "/usr/local/lib/kea/hooks/libdhcp_host_cache.so"
},
{
 "library": "/usr/local/lib/kea/hooks/libdhc_radius.so",
 "parameters": {

 # Specify where FreeRADIUS dictionary could be located
 "dictionary": "/usr/local/etc/freeradius/dictionary",

 # Specify which address to use to communicate with RADIUS servers
 "bindaddr": "*",

 # more RADIUS parameters here
 }
}]

RADIUS is a complicated environment. As such, it is not feasible
to provide a default configuration that works for everyone.
However, we do have one example that showcases some of the more common
features. Please see doc/examples/kea4/hooks-radius.json in the Kea
sources.

The RADIUS hook library supports the following global configuration
flags, which correspond to FreeRADIUS client library options:

	bindaddr (default “*”) - specifies the address to be used by the
hooks library in communication with RADIUS servers. The “*” special
value tells the kernel to choose the address.

	canonical-mac-address (default false) - specifies whether MAC
addresses in attributes follow the canonical RADIUS format (lowercase
pairs of hexadecimal digits separated by ‘-‘).

	client-id-pop0 (default false) - used with flex-id, removes the
leading zero (or pair of zeroes in DHCPv6) type in client-id (aka
duid in DHCPv6). Implied by client-id-printable.

	client-id-printable (default false) - checks whether the
client-id/duid content is printable and uses it as is instead of in
hexadecimal. Implies client-id-pop0 and extract-duid as 0 and 255 are
not printable.

	deadtime (default 0) is a mechanism to try unresponsive servers
after responsive servers. Its value specifies the number of seconds
after which a server is considered not to have answered, so 0
disables the mechanism. As the asynchronous communication does not
use locks or atomics, it is recommended that you do not use this
feature when running in this mode.

	dictionary (default set by configure at build time) - is the
attribute and value dictionary. Note that it is a critical parameter.

	extract-duid (default true) - extracts the embedded duid from an
RFC 4361-compliant DHCPv4 client-id. Implied by client-id-printable.

	identifier-type4 (default client-id) - specifies the identifier
type to build the User-Name attribute. It should be the same as the
host identifier, and when the flex-id hook library is used the
replace-client-id must be set to true; client-id will be used with
client-id-pop0.

	identifier-type6 (default duid) - specifies the identifier type to
build the User-Name attribute. It should be the same as the host
identifier, and when the flex-id hook library is used the
replace-client-id must be set to true; duid will be used with
client-id-pop0.

	realm (default “”) - is the default realm.

	reselect-subnet-address (default false) - uses the Kea reserved
address/RADIUS Framed-IP-Address or Framed-IPv6-Address to reselect
subnets where the address is not in the subnet range.

	reselect-subnet-pool (default false) - uses the Kea
client-class/RADIUS Frame-Pool to reselect subnets where no available
pool can be found.

	retries (default 3) - is the number of retries before trying the
next server. Note that it is not supported for asynchronous
communication.

	session-history (default “”) - is the name of the file providing
persistent storage for accounting session history.

	timeout (default 10) - is the number of seconds during which a
response is awaited.

When reselect-subnet-pool or reselect-subnet-address is set to
true at the reception of RADIUS Access-Accept, the selected subnet is
checked against the client-class name or the reserved address; if it
does not match, another subnet is selected among matching subnets.

Two services are supported:

	access - the authentication service.

	accounting - the accounting service.

Configuration of services is divided into two parts:

	Servers that define RADIUS servers that the library is expected to
contact. Each server may have the following items specified:

	name - specifies the IP address of the server (it is
possible to use a name which will be resolved, but it is not
recommended).

	port (default RADIUS authentication or accounting service) -
specifies the UDP port of the server. Note that the
FreeRADIUS client library by default uses ports 1812
(authorization) and 1813 (accounting). Some server implementations
use 1645 (authorization) and 1646 (accounting). The
“port” parameter may be used to adjust as needed.

	secret - authenticates messages.

There may be up to eight servers. Note that when no server is
specified, the service is disabled.

	Attributes which define additional information that the Kea server
will send to a RADIUS server. The parameter must be identified either
by a name or type. Its value can be specified in one of three
possible ways: data (which defines a plain text value), raw (which
defines the value in hex), or expr (which defines an expression,
which will be evaluated for each incoming packet independently).

	name - the name of the attribute.

	type - the type of the attribute. Either the type or the name must be
provided, and the attribute must be defined in the dictionary.

	data - the first of three ways to specify the attribute
content. The data entry is parsed by the FreeRADIUS library, so
values defined in the dictionary of the attribute may be used.

	raw - the second of three ways to specify the attribute
content; it specifies the content in hexadecimal. Note that it
does not work with integer-content attributes (date, integer, and
IPv4 address); a string-content attribute (string, IPv6 address,
and IPv6 prefix) is required.

	expr - the last way to specify the attribute content. It
specifies an evaluation expression which must return a not-empty
string when evaluated with the DHCP query packet. Currently this
is restricted to the access service.

For example, to specify a single access server available on localhost
that uses “xyz123” as a secret, and tell Kea to send three additional
attributes (Password, Connect-Info, and Configuration-Token), the
following snippet could be used:

"parameters": {

 # Other RADIUS parameters here

 "access": {

 # This starts the list of access servers
 "servers": [
 {
 # These are parameters for the first (and only) access server
 "name": "127.0.0.1",
 "port": 1812,
 "secret": "xyz123"
 }
 # Additional access servers could be specified here
],

 # This defines a list of additional attributes Kea will send to each
 # access server in Access-Request.
 "attributes": [
 {
 # This attribute is identified by name (must be present in the
 # dictionary) and has static value (i.e. the same value will be
 # sent to every server for every packet)
 "name": "Password",
 "data": "mysecretpassword"
 },
 {
 # It is also possible to specify an attribute using its type,
 # rather than a name. 77 is Connect-Info. The value is specified
 # using hex. Again, this is a static value. It will be sent the
 # same for every packet and to every server.
 "type": 77,
 "raw": "65666a6a71"
 },
 {
 # This example shows how an expression can be used to send dynamic
 # value. The expression (see Section 13) may take any value from
 # the incoming packet or even its metadata (e.g. the interface
 # it was received over from)
 "name": "Configuration-Token",
 "expr": "hexstring(pkt4.mac,':')"
 }
] # End of attributes
 } # End of access

 # Accounting parameters.
 "accounting": {
 # This starts the list of accounting servers
 "servers": [
 {
 # These are parameters for the first (and only) accounting server
 "name": "127.0.0.1",
 "port": 1813,
 "secret": "sekret"
 }
 # Additional accounting servers could be specified here
]
 }

}

For the RADIUS hooks library to operate properly in DHCPv4,
the Host Cache hooks library must also be loaded. The reason for this
is somewhat complex. In a typical deployment, the DHCP clients send
their packets via DHCP relay which inserts certain Relay Agent
Information options, such as circuit-id or remote-id. The values of
those options are then used by the Kea DHCP server to formulate the
necessary attributes in the Access-Request message sent to the RADIUS
server. However, once the DHCP client gets its address, it then renews
by sending packets directly to the DHCP server. As a result, the relays
are not able to insert their RAI options, and the DHCP server cannot send
the Access-Request queries to the RADIUS server by using just the
information from incoming packets. Kea needs to keep the information
received during the initial Discover/Offer exchanges and use it again
later when sending accounting messages.

This mechanism is implemented based on user context in host
reservations. (See Comments and User Context and User Contexts in Hooks for
details.) The host cache mechanism allows the information retrieved by
RADIUS to be stored and later used for sending accounting and access
queries to the RADIUS server. In other words, the host-cache mechanism
is mandatory, unless administrators do not want RADIUS communication for messages
other than Discover and the first Request from each client.

15.18. host_cache: Caching Host Reservations

Some database backends, such as RADIUS, are considered slow and may take
a long time to respond. Since Kea in general is synchronous, backend
performance directly affects DHCP performance. To minimize the
impact and improve performance, the Host Cache library provides a way to
cache information from the database locally. This includes negative
caching, i.e. the ability to remember that there is no client
information in the database.

Note

This library may only be loaded by the kea-dhcp4 or
kea-dhcp6 process.

In principle, this hooks library can be used with any backend that may
introduce performance degradation (MySQL, PostgreSQL, Cassandra, or
RADIUS). Host Cache must be loaded for the RADIUS accounting mechanism
to work.

The Host Cache hooks library is currently very simple. It takes only one
optional parameter (“maximum”), which defines the maximum number of hosts
to be cached. If not specified, the default value of 0 is used, which
means there is no limit. This hooks library can be loaded the same way as
any other hooks library; for example, this configuration could be used:

"Dhcp4": {

Your regular DHCPv4 configuration parameters here.

"hooks-libraries": [
{
 "library": "/usr/local/lib/kea/hooks/libdhc_host_cache.so",
 "parameters": {

 # Tells Kea to never cache more than 1000 hosts.
 "maximum": 1000

 }
}]

Once loaded, the Host Cache hooks library provides a number of new
commands which can be used either over the control channel (see
Using the Control Channel) or the RESTful API (see
Overview of the Kea Control Agent). An example RESTful API client is described in
Overview of the Kea Shell. The following sections describe the commands
available.

15.18.1. The cache-flush Command

This command allows removal of a specified number of cached host
entries. It takes one parameter, which defines the number of hosts to be
removed. An example usage looks as follows:

{
 "command": "cache-flush",
 "arguments": 1000
}

This command will remove 1000 hosts. To delete all cached
hosts, please use cache-clear instead. The hosts are stored in FIFO
(first-in, first-out) order, so the oldest entries are always removed.

15.18.2. The cache-clear Command

This command allows removal of all cached host entries. An example usage
looks as follows:

{
 "command": "cache-clear"
}

This command will remove all hosts. To delete only a certain
number of cached hosts, please use cache-flush instead.

15.18.3. The cache-size Command

This command returns the number of host entries. An example usage looks
as follows:

{
 "command": "cache-size"
}

15.18.4. The cache-write Command

In general, the cache content is considered a runtime state and the
server can be shut down or restarted as usual; the cache will then be
repopulated after restart. However, there are some cases when it is
useful to store the contents of the cache. One such case is RADIUS,
where the cached hosts also retain additional cached RADIUS attributes;
there is no easy way to obtain this information again, because renewing
clients send their packet to the DHCP server directly. Another use case
is when an administrator wants to restart the server and, for performance reasons,
wants it to start with a hot (populated) cache.

This command allows writing the contents of the in-memory cache to a
file on disk. It takes one parameter, which defines the filename. An
example usage looks as follows:

{
 "command": "cache-write",
 "arguments": "/tmp/kea-host-cache.json"
}

This causes the contents to be stored in the /tmp/kea-host-cache.json
file. That file can then be loaded with the cache-load command or
processed by any other tool that is able to understand JSON format.

15.18.5. The cache-load Command

See the previous section for a discussion of use cases where it may be
useful to write and load contents of the host cache to disk.

This command allows the contents of a file on disk to be loaded into an
in-memory cache. It takes one parameter, which defines the filename. An
example usage looks as follows:

{
 "command": "cache-load",
 "arguments": "/tmp/kea-host-cache.json"
}

This command will store the contents to the /tmp/kea-host-cache.json
file. That file can then be loaded with the cache-load command or
processed by any other tool that is able to understand JSON format.

15.18.6. The cache-get Command

This command is similar to cache-write, but instead of writing the cache
contents to disk, it returns the contents to whoever sent the command.

This command allows the contents of a file on disk to be loaded into an
in-memory cache. It takes one parameter, which defines the filename. An
example usage looks as follows:

{
 "command": "cache-get"
}

This command will return all the cached hosts. Note that the response
may be large.

15.18.7. The cache-get-by-id Command

This command is similar to cache-get, but instead of returning the whole
content it returns only the entries matching the given identifier.

It takes one parameter, which defines the identifier of wanted cached
host reservations. An example usage looks as follows:

{
 "command": "cache-get-by-id",
 "arguments": {
 "hw-address": "01:02:03:04:05:06"
 }
}

This command will return all the cached hosts with the given hardware
address.

15.18.8. The cache-insert Command

This command may be used to manually insert a host into the cache; there
are very few use cases when this command might be useful. This command
expects its arguments to follow the usual syntax for specifying host
reservations (see Host Reservation in DHCPv4 or
Host Reservation in DHCPv6), with one difference: the subnet-id
value must be specified explicitly.

An example command that will insert an IPv4 host into the host cache
looks as follows:

{
 "command": "cache-insert",
 "arguments": {
 "hw-address": "01:02:03:04:05:06",
 "subnet-id4": 4,
 "subnet-id6": 0,
 "ip-address": "192.0.2.100",
 "hostname": "somehost.example.org",
 "client-classes4": [],
 "client-classes6": [],
 "option-data4": [],
 "option-data6": [],
 "next-server": "192.0.0.2",
 "server-hostname": "server-hostname.example.org",
 "boot-file-name": "bootfile.efi",
 "host-id": 0
 }
}

An example command that will insert an IPv6 host into the host cache
looks as follows:

{
 "command": "cache-insert",
 "arguments": {
 "hw-address": "01:02:03:04:05:06",
 "subnet-id4": 0,
 "subnet-id6": 6,
 "ip-addresses": ["2001:db8::cafe:babe"],
 "prefixes": ["2001:db8:dead:beef::/64"],
 "hostname": "",
 "client-classes4": [],
 "client-classes6": [],
 "option-data4": [],
 "option-data6": [],
 "next-server": "0.0.0.0",
 "server-hostname": "",
 "boot-file-name": "",
 "host-id": 0
 }
}

15.18.9. The cache-remove Command

Sometimes it is useful to remove a single entry from the host cache. A
good use case is a situation where the device is up, Kea has already
provided configuration, and the host entry is in cache. As a result of
administrative action (e.g. the customer hasn’t paid their bills or has
perhaps been upgraded to better service), the information in the backend
(e.g. MySQL or RADIUS) is being updated. However, since the cache is in use,
Kea does not notice the change as the cached values are used. The
cache-remove command can solve this problem by removing a cached entry
after administrative changes.

The cache-remove command works similarly to the reservation-get command.
It allows querying by two parameters: either subnet-id4 or subnet-id6;
or ip-address (may be an IPv4 or IPv6 address), hw-address (specifies
hardware/MAC address), duid, circuit-id, client-id, or flex-id.

An example command to remove an IPv4 host with reserved address
192.0.2.1 from a subnet with a subnet-id 123 looks as follows:

{
 "command": "cache-remove",
 "arguments": {
 "ip-address": "192.0.2.1",
 "subnet-id": 123
 }
}

Another example that removes an IPv6 host identifier by DUID and
specific subnet-id is:

{
 "command": "cache-remove",
 "arguments": {
 "duid": "00:01:ab:cd:f0:a1:c2:d3:e4",
 "subnet-id": 123
 }
}

15.19. lease_query: Leasequery

This library provides support for DHCPv4 Leasequery as described in
RFC 4388 [https://tools.ietf.org/html/rfc4388]. Support for DHCPv6
Lease Query (RFC 5007 [https://tools.ietf.org/html/rfc5007]) will be
added in the near future.

Note

This library may only be loaded by the kea-dhcp4 or
kea-dhcp6 process.

The Leasequery library is part of the premium source code and is
available to ISC’s paid support customers.

15.19.1. DHCPv4 Leasequery

DHCPv4 simple Leasequery provides a requester the ability to query for
active lease information for either a single IP address or a single client.
RFC 4388 calls for three such queries:

	Query by IP address

The IP address of interest is contained within the ciaddr field of
the query.

	Query by hardware address

The hardware address of interest is contained with the chaddr field
of the query.

	Query by client identifier

The client identifier of interest is sent in the dhcp-client-identifier
option (61) of the query.

The inbound DHCPLEASEQUERY packet must supply only one of the three values
above. Queries which supply more than one of these values are dropped.

In addition, the query must contain the IP address of the requester in
giaddr. This value will be used not only as the destination for the
query response but also to validate the requester against a known
list of IP addresses which are permitted to query. This list of valid
requester addresses is specified as part of the Leasequery hook library’s
configuration (See the section on configuration below).

In response to a valid query, the server will return one of three message
types:

	DHCPLEASEUNKNOWN

Returned when the IP address of interest is not one the server knows
about (query by IP address); or there are no active leases for the
client of interest (query by hardware address or client id).

	DHCPLEASEUNASSIGNED

Returned when the IP address is one the server knows of but for which
there are no active leases (applies only to query by IP address).

	DHCPLEASEACTIVE

Returned when there is at least one active lease found matching the
criteria.

For both DHCPLEASEUNKNOWN and DHCPLEASEUNASSIGNED responses, the only
information sent back to the requester in response is the query parameter
itself (i.e. one of: IP address, hardware address, or client identifier).

For DHCPLEASEACTIVE the server will provide the following information
for the newest active lease that matches the criteria, in the response:

	ciaddr - set to the lease’s IP address

	chaddr - set to the lease’s hardware address

In addition, one or more of the following options will be included:

DHCPLEASEACTIVE Options

	Option

	Code

	Content

	dhcp-client-identifier

	61

	copied from the lease (if one)

	client-last-transaction-time

	91

	amount of time that has elapsed since the
lease’s client-last-transaction-time (CLTT)
This value will also be used by the server to
adjust life time and timer values.

	dhcp-lease-time

	51

	lease’s life time reduced by CLTT

	dhcp-renewal-time

	58

	as controlled by kea-dhcp4 configuration and
then reduced by CLTT

	dhcp-rebind-time

	59

	as dictacted by kea-dhcp4 configuration and
then reduced by CLTT

	dhcp-agent-options

	82

	if stored on the lease. (See
Storing Extended Lease Information)

	associated-ip

	92

	a list of all other IP addresses for which
the client has active leases. (Does not apply
to query by IP address)

The dhcp-server-identifier option (54) will be returned in all responses in keeping with
RFC 2131 section 4.3.1.

RFC 4388 allows requesters to ask for specific options via the
dhcp-parameter-request-list (PRL, option 55). This is not currently supported but
may be added at a future date.

15.19.2. DHCPv4 Leasequery Configuration

Configuring the Leasequery hook library for use is straight forward. It currently
supports a single parameter, requesters, which is a list of IP addresses from
which DHCPLEASEQUERY packets will be accepted. In other words, it is a list of
known requesters. The following shows an example configuration with two requester
addresses:

:
 "hooks-libraries": [
 {
 "library": "lib/kea/hooks/libdhcp_lease_query.so",
 "parameters": {
 "requesters": ["192.0.1.1", "10.0.0.2"]
 }
 }
],
:

15.20. User Contexts in Hooks

Hooks libraries can have their own configuration parameters, which is
convenient if the parameter applies to the whole library. However,
sometimes it is very useful to extend certain configuration entities
with additional configuration data. This is where the concept
of user contexts comes in. A system administrator can define an arbitrary set of
data and attach it to Kea structures, as long as the data are specified
as a JSON map. In particular, it is possible to define fields that are
integers, strings, boolean, lists, or maps. It is possible to define
nested structures of arbitrary complexity. Kea does not use that data on
its own; it simply stores it and makes it available for the hooks libraries.

Another use case for user contexts may be storing comments and other
information that will be retained by Kea. Regular comments are discarded
when the configuration is loaded, but user contexts are retained. This is
useful if administrators want their comments to survive config-set or config-get
operations, for example.

If user context is supported in a given context, the parser translates
“comment” entries into user context with a “comment” entry. The pretty
print of a configuration does the opposite operation and puts “comment”
entries at the beginning of maps, as that seems to be the common usage.

As of Kea 1.3, the structures that allow user contexts are pools of all
types (addresses and prefixes) and subnets. Kea 1.4 extended user
context support to the global scope, interfaces config, shared networks,
subnets, client classes, option datas and definitions, host
reservations, control socket, dhcp ddns, loggers and server id. These
are supported in both DHCPv4 and DHCPv6, with the exception of server id
which is DHCPv6 only.

16. Statistics

16.1. Statistics Overview

Both Kea DHCP servers support statistics gathering. A working DHCP
server encounters various events that can cause certain statistics to be
collected. For example, a DHCPv4 server may receive a packet
(the pkt4-received statistic increases by one) that after parsing is
identified as a DHCPDISCOVER (pkt4-discover-received). The server
processes it and decides to send a DHCPOFFER representing its answer
(the pkt4-offer-sent and pkt4-sent statistics increase by one). Such events
happen frequently, so it is not uncommon for the statistics to have
values in the high thousands. They can serve as an easy and powerful
tool for observing a server’s and a network’s health. For example, if
the pkt4-received statistic stops growing, it means that the clients’
packets are not reaching the server.

There are four types of statistics:

	integer - this is the most common type. It is implemented as a
64-bit integer (int64_t in C++), so it can hold any value between
-2^63 to 2^63-1.

	floating point - this type is intended to store floating-point
precision. It is implemented as a C++ double type.

	duration - this type is intended for recording time periods. It
uses the `boost::posix_time::time_duration type, which stores hours,
minutes, seconds, and microseconds.

	string - this type is intended for recording statistics in textual
form. It uses the C++ std::string type.

During normal operation, the DHCPv4 and DHCPv6 servers gather
statistics. For a list of DHCPv4 and DHCPv6 statistics, see
Statistics in the DHCPv4 Server and Statistics in the DHCPv6 Server, respectively.

To extract data from the statistics module, the control channel can be
used. See Management API for details. It is possible to
retrieve a single statistic or all statistics, reset statistics (i.e.
set to a neutral value, typically zero), or even completely remove a
single statistic or all statistics. See the section Commands for Manipulating Statistics
for a list of statistics-oriented commands.

Statistics can be used by external tools to monitor Kea. One example of such a tool is Stork.
See Monitoring Kea with Stork for details how to use it to retrieve statistics periodically (and use
other data sources) to get better insight into Kea health and operational status.

16.2. Statistics Lifecycle

In Kea 1.6.0 version and earlier, when the Kea server is started some
of the statistics are initially not initialized. For example, the pkt4-received
statistic is not available until the first DHCP packet is received.
In the later Kea versions, this behavior has been changed and all of the
statistics supported by the servers are initialized upon the servers’ startup
and should be returned in response to the commands such as
statistic-get-all. The runtime statistics concerning DHCP packets
processed is initially set to 0 and is reset upon the server
restart.

Per-subnet statistics are recalculated when reconfiguration takes place.

In general, once a statistic is initialized it is held in the manager until
explicitly removed, by statistic-remove or statistic-remove-all
being called, or when the server is shut down.

Removing a statistic that is updated frequently makes little sense, as
it will be re-added when the server code next records that statistic.
The statistic-remove and statistic-remove-all commands are
intended to remove statistics that are not expected to be observed in
the near future. For example, a misconfigured device in a network may
cause clients to report duplicate addresses, so the server will report
increasing values of pkt4-decline-received. Once the problem is found
and the device is removed, the system administrator may want to remove
the pkt4-decline-received statistic, so it will not be reported anymore. If
a duplicate address is ever detected again, the server will add this
statistic back.

16.3. Commands for Manipulating Statistics

There are several commands defined that can be used for accessing
(-get), resetting to zero or a neutral value (-reset), or removing a
statistic completely (-remove). We can change the statistics time based
limit (-sample-age-set) and size based limit (-sample-count-set) which
control how long or how many samples of the given statistic are retained.

The difference between reset and remove is somewhat subtle.
The reset command sets the value of the statistic to zero or a neutral value,
so after this operation, the statistic will have a value of 0 (integer),
0.0 (float), 0h0m0s0us (duration), or “” (string).
When requested, a statistic with the values mentioned will be returned.
Remove removes a statistic completely, so the statistic will no longer
be reported. Please note that the server code may add it back if there is a reason
to record it.

Note

The following sections describe commands that can be sent to the
server; the examples are not fragments of a configuration file. For
more information on sending commands to Kea, see
Management API.

16.3.1. The statistic-get Command

The statistic-get command retrieves a single statistic. It takes a
single-string parameter called name, which specifies the statistic
name. An example command may look like this:

{
 "command": "statistic-get",
 "arguments": {
 "name": "pkt4-received"
 }
}

The server returns details of the requested statistic, with a result of
0 indicating success and the specified statistic as the value of the
“arguments” parameter. If the requested statistic is not found, the
response will contain an empty map, i.e. only { } as an argument, but
the status code will still indicate success (0).
An example response:

{
 "command": "statistic-get",
 "arguments": {
 "pkt4-received": [[125, "2019-07-30 10:11:19.498739"], [100, "2019-07-30 10:11:19.498662"]]
 },
 "result": 0
}

16.3.2. The statistic-reset Command

The statistic-reset command sets the specified statistic to its
neutral value: 0 for integer, 0.0 for float, 0h0m0s0us for time
duration, and “” for string type. It takes a single-string parameter
called name, which specifies the statistic name. An example command
may look like this:

{
 "command": "statistic-reset",
 "arguments": {
 "name": "pkt4-received"
 }
}

If the specific statistic is found and the reset is successful, the
server responds with a status of 0, indicating success, and an empty
parameters field. If an error is encountered (e.g. the requested
statistic was not found), the server returns a status code of 1 (error)
and the text field contains the error description.

16.3.3. The statistic-remove Command

The statistic-remove command attempts to delete a single statistic. It
takes a single-string parameter called name, which specifies the
statistic name. An example command may look like this:

{
 "command": "statistic-remove",
 "arguments": {
 "name": "pkt4-received"
 }
}

If the specific statistic is found and its removal is successful, the
server responds with a status of 0, indicating success, and an empty
parameters field. If an error is encountered (e.g. the requested
statistic was not found), the server returns a status code of 1 (error)
and the text field contains the error description.

16.3.4. The statistic-get-all Command

The statistic-get-all command retrieves all statistics recorded. An
example command may look like this:

{
 "command": "statistic-get-all",
 "arguments": { }
}

The server responds with details of all recorded statistics, with a
result set to 0 to indicate that it iterated over all statistics (even
when the total number of statistics is zero).
An example response returning all collected statistics:

{
 "command": "statistic-get-all",
 "arguments": {
 "cumulative-assigned-addresses": [[0, "2019-07-30 10:04:28.386740"]],
 "declined-addresses": [[0, "2019-07-30 10:04:28.386733"]],
 "reclaimed-declined-addresses": [[0, "2019-07-30 10:04:28.386735"]],
 "reclaimed-leases": [[0, "2019-07-30 10:04:28.386736"]],
 "subnet[1].assigned-addresses": [[0, "2019-07-30 10:04:28.386740"]],
 "subnet[1].cumulative-assigned-addresses": [[0, "2019-07-30 10:04:28.386740"]],
 "subnet[1].declined-addresses": [[0, "2019-07-30 10:04:28.386743"]],
 "subnet[1].reclaimed-declined-addresses": [[0, "2019-07-30 10:04:28.386745"]],
 "subnet[1].reclaimed-leases": [[0, "2019-07-30 10:04:28.386747"]],
 "subnet[1].total-addresses": [[200, "2019-07-30 10:04:28.386719"]]
 },
 "result": 0
}

16.3.5. The statistic-reset-all Command

The statistic-reset command sets all statistics to their neutral
values: 0 for integer, 0.0 for float, 0h0m0s0us for time duration, and
“” for string type. An example command may look like this:

{
 "command": "statistic-reset-all",
 "arguments": { }
}

If the operation is successful, the server responds with a status of 0,
indicating success, and an empty parameters field. If an error is
encountered, the server returns a status code of 1 (error) and the text
field contains the error description.

16.3.6. The statistic-remove-all Command

The statistic-remove-all command attempts to delete all statistics. An
example command may look like this:

{
 "command": "statistic-remove-all",
 "arguments": { }
}

If the removal of all statistics is successful, the server responds with
a status of 0, indicating success, and an empty parameters field. If an
error is encountered, the server returns a status code of 1 (error) and
the text field contains the error description.

16.3.7. The statistic-sample-age-set Command

The statistic-sample-age-set command sets time based limit
for collecting samples for given statistic. It takes two parameters a string
called name, which specifies the statistic name and integer value called
duration, which specifies the time limit for given statistic in seconds.
An example command may look like this:

{
 "command": "statistic-sample-age-set",
 "arguments": {
 "name": "pkt4-received",
 "duration": 1245
 }

}

The server will respond with message about successfully set limit
for the given statistic, with a result set to 0 indicating success
and an empty parameters field. If an error is encountered (e.g. the
requested statistic was not found), the server returns a status code
of 1 (error) and the text field contains the error description.

16.3.8. The statistic-sample-age-set-all Command

The statistic-sample-age-set-all command sets time based limits
for collecting samples for all statistics. It takes single-integer parameter
called duration, which specifies the time limit for given statistic
in seconds. An example command may look like this:

{
 "command": "statistic-sample-age-set-all",
 "arguments": {
 "duration": 1245
 }

}

The server will respond with message about successfully set limit
for all statistics, with a result set to 0 indicating success
and an empty parameters field. If an error is encountered, the server returns
a status code of 1 (error) and the text field contains the error description.

16.3.9. The statistic-sample-count-set Command

The statistic-sample-count-set command sets size based limit
for collecting samples for given statistic. An example command may look
like this:

{
 "command": "statistic-sample-count-set",
 "arguments": {
 "name": "pkt4-received",
 "max-samples": 100
 }

}

The server will respond with message about successfully set limit
for the given statistic, with a result set to 0 indicating success
and an empty parameters field. If an error is encountered (e.g. the
requested statistic was not found), the server returns a status code
of 1 (error) and the text field contains the error description.

16.3.10. The statistic-sample-count-set-all Command

The statistic-sample-count-set-all command sets size based limits
for collecting samples for all statistics. An example command may look
like this:

{
 "command": "statistic-sample-count-set-all",
 "arguments": {
 "max-samples": 100
 }

}

The server will respond with message about successfully set limit
for all statistics, with a result set to 0 indicating success
and an empty parameters field. If an error is encountered, the server returns
a status code of 1 (error) and the text field contains the error description.

16.4. Time series

Previously, by default, each statistic held only a single data point. When Kea
attempted to record a new value, the existing previous value was overwritten.
That approach has the benefit of taking up little memory and it covers most
cases reasonably well. However, there may be cases where you need to have many
data points for some process. For example, some processes, such as received
packet size, packet processing time or number of database queries needed to
process a packet, are not cumulative and it would be useful to keep many data
points, perhaps to do some form of statistical analysis afterwards.

Since Kea 1.6, by default, each statistic holds 20 data points. Setting such
limit prevent unlimited memory consumption growth.
There are two ways to define the limts: time based (e.g. keep samples from
the last 5 minutes) and size based. It’s possible to change the size based
limit by using one of two commands: statistic-sample-count-set,
to set size limit for single statistic and statistic-sample-count-set-all
for setting size based limits for all statistics. To set time based
limit for single statistic use statistic-sample-age-set, and
statistic-sample-age-set-all to set time based limits for all statistics.
For given statistic only one type of limit can be active. It means that storage
is limited only by time based limit or size based, never by both of them.

17. Management API

A classic approach to daemon configuration assumes that the server’s
configuration is stored in configuration files and, when the
configuration is changed, the daemon is restarted. This approach has the
significant disadvantage of introducing periods of downtime when client
traffic is not handled. Another risk is that if the new configuration is
invalid for any reason, the server may refuse to start, which will
further extend the downtime period until the issue is resolved.

To avoid such problems, the DHCPv4, DHCPv6, and D2 servers in Kea include
support for a mechanism that allows online reconfiguration without
requiring server shutdown. Both servers can be instructed to open
control sockets, which is a communications channel. The server is able
to receive commands on that channel, act on them, and report back
status.

The DHCPv4, DHCPv6, and D2 servers receive commands over the UNIX domain
sockets. For details on how to configure these sockets, see
Management API for the DHCPv4 Server and Management API for the DHCPv6 Server. While
it is possible to control the servers directly using UNIX domain sockets,
that requires that the controlling client be running on the same machine
as the server. SSH is usually used to connect remotely to the controlled
machine.

Network administrators usually prefer using some form of a RESTful API
to control the servers, rather than using UNIX domain sockets directly.
Therefore, Kea includes a component called the Control Agent (or CA), which
exposes a RESTful API to the controlling clients and can forward
commands to the respective Kea services over the UNIX domain sockets.
The CA configuration is described in
Configuration.

The HTTP requests received by the CA contain the control commands
encapsulated within HTTP requests. Simply speaking, the CA is
responsible for stripping the HTTP layer from the received commands and
forwarding the commands in a JSON format over the UNIX domain sockets to
the respective services. Because the CA receives commands for all
services, it requires additional “forwarding” information to be included
in the client’s messages. This forwarding information is carried within
the service parameter of the received command. If the service
parameter is not included, or if the parameter is a blank list, the CA
will assume that the control command is targeted at the CA itself and
will try to handle it on its own.

Control connections over both HTTP and UNIX domain sockets are guarded
with timeouts. The default timeout value is set to 10 seconds and is not
configurable.

This API can be used by external tools to manage and monitor Kea operation.
An example of such a monitoring tool is ISC Stork. For details, see
Monitoring Kea with Stork.

17.1. Data Syntax

Communication over the control channel is conducted using JSON
structures. If configured, Kea will open a socket and listen for
incoming connections. A process connecting to this socket is expected to
send JSON commands structured as follows:

{
 "command": "foo",
 "service": ["dhcp4"]
 "arguments": {
 "param1": "value1",
 "param2": "value2",
 ...
 }
}

The same command sent over the RESTful interface to the CA will have the
following structure:

POST / HTTP/1.1\r\n
Content-Type: application/json\r\n
Content-Length: 147\r\n\r\n
{
 "command": "foo",
 "service": ["dhcp4"]
 "arguments": {
 "param1": "value1",
 "param2": "value2",
 ...
 }
}

command is the name of the command to execute and is mandatory.
arguments is a map of the parameters required to carry out the given
command. The exact content and format of the map are command-specific.

service is a list of the servers at which the control command is
targeted. In the example above, the control command is targeted at the
DHCPv4 server. In most cases, the CA will simply forward this command to
the DHCPv4 server for processing via a UNIX domain socket. Sometimes,
the command including a service value may also be processed by the CA,
if the CA is running a hooks library which handles such a command for
the given server. As an example, the hooks library loaded by the CA may
perform some operations on the database, such as adding host
reservations, modifying leases, etc. An advantage of performing
DHCPv4-specific administrative operations in the CA, rather than
forwarding it to the DHCPv4 server, is the ability to perform these
operations without disrupting the DHCPv4 service, since the DHCPv4
server doesn’t have to stop processing DHCP messages to apply changes to
the database. Nevertheless, these situations are rather rare and, in
most cases, when the service parameter contains a name of the
service the commands are simply forwarded by the CA. The forwarded
command includes the service parameter but this parameter is ignored
by the receiving server. This parameter is only meaningful to the CA.

If the command received by the CA does not include a service
parameter or this list is empty, the CA simply processes this message on
its own. For example, a config-get command which includes no service
parameter returns the Control Agent’s own configuration. The
config-get command with a service value “dhcp4” is forwarded to the DHCPv4
server and returns the DHCPv4 server’s configuration.

The following list shows the mapping of the values carried within the
service parameter to the servers to which the commands are
forwarded:

	dhcp4 - the command is forwarded to the kea-dhcp4 server.

	dhcp6 - the command is forwarded to the kea-dhcp6 server.

	d2 - the command is forwarded to the kea-d2 server.

The server processing the incoming command will send a response of the
form:

{
 "result": 0|1|2|3,
 "text": "textual description",
 "arguments": {
 "argument1": "value1",
 "argument2": "value2",
 ...
 }
}

result indicates the outcome of the command. A value of 0 means
success, while any non-zero value designates an error or a failure to
complete the requested action. Currently 1 indicates a generic error, 2
means that a command is not supported, and 3 means that the requested
operation was completed, but the requested object was not found. For
example, a well-formed command that requests a subnet that exists in a
server’s configuration returns the result 0. If the server encounters an
error condition, it returns 1. If the command asks for the IPv6 subnet,
but was sent to a DHCPv4 server, it returns 2. If the query asks for a
subnet-id and there is no subnet with such an id, the result is 3.

The text field typically appears when the result is non-zero and
contains a description of the error encountered, but it often also
appears for successful outcomes. The exact text is command-specific, but
in general uses plain English to describe the outcome of the command.
arguments is a map of additional data values returned by the server
which are specific to the command issued. The map may be present, but
that depends on the specific command.

Note

When sending commands via the Control Agent, it is possible to specify
multiple services at which the command is targeted. CA forwards this
command to each service individually. Thus, the CA response to the
controlling client contains an array of individual responses.

17.2. Using the Control Channel

The easiest way to start interacting with the control API is to use
common UNIX/Linux tools such as socat and curl.

In order to control the given Kea service via a UNIX domain socket, use
socat in interactive mode as follows:

$ socat UNIX:/path/to/the/kea/socket -

or in batch mode, include the “ignoreeof” option as shown below to
ensure socat waits long enough for the server to respond:

$ echo "{ some command...}" | socat UNIX:/path/to/the/kea/socket -,ignoreeof

where /path/to/the/kea/socket is the path specified in the
Dhcp4/control-socket/socket-name parameter in the Kea configuration
file. Text passed to socat is sent to Kea and the responses received
from Kea are printed to standard output. This approach communicates with
the specific server directly and bypasses the Control Agent.

It is also easy to open a UNIX socket programmatically. An example of a
simple client written in C is available in the Kea Developer’s Guide, in
the Control Channel Overview chapter, in the
Using Control Channel [https://jenkins.isc.org/job/Kea_doc/doxygen/d2/d96/ctrlSocket.html#ctrlSocketClient]
section.

To use Kea’s RESTful API with curl, use the following:

$ curl -X POST -H "Content-Type: application/json" -d '{ "command": "config-get", "service": ["dhcp4"] }' http://ca.example.org:8000/

This assumes that the Control Agent is running on host
ca.example.org and is running the RESTful service on port 8000.

17.3. Commands Supported by Both the DHCPv4 and DHCPv6 Servers

17.3.1. The build-report Command

The build-report command returns on the control channel what the
command line -W argument displays, i.e. the embedded content of the
config.report file. This command does not take any parameters.

{
 "command": "build-report"
}

17.3.2. The config-get Command

The config-get command retrieves the current configuration used by the
server. This command does not take any parameters. The configuration
returned is roughly equal to the configuration that was loaded using the
-c command line option during server start-up or later set using the
config-set command. However, there may be certain differences, as
comments are not retained. If the original configuration used file
inclusion, the returned configuration will include all parameters from
all the included files.

Note that the returned configuration is not redacted, i.e. it will
contain database passwords in plain text if those were specified in the
original configuration. Care should be taken not to expose the command
channel to unprivileged users.

An example command invocation looks like this:

{
 "command": "config-get"
}

17.3.3. The config-reload Command

The config-reload command instructs Kea to load again the
configuration file that was used previously. This operation is useful if
the configuration file has been changed by some external source; for
example, a sysadmin can tweak the configuration file and use this
command to force Kea pick up the changes.

Caution should be taken when mixing this with config-set commands. Kea
remembers the location of the configuration file it was started with,
and this configuration can be significantly changed using the config-set
command. When config-reload is issued after config-set, Kea will attempt
to reload its original configuration from the file, possibly losing all
changes introduced using config-set or other commands.

config-reload does not take any parameters. An example command
invocation looks like this:

{
 "command": "config-reload"
}

17.3.4. The config-test Command

The config-test command instructs the server to check whether the new
configuration supplied in the command’s arguments can be loaded. The
supplied configuration is expected to be the full configuration for the
target server, along with an optional Logger configuration. As for the
-t command, some sanity checks are not performed, so it is possible a
configuration which successfully passes this command will still fail in
the config-set command or at launch time. The structure of the
command is as follows:

{
 "command": "config-test",
 "arguments": {
 "<server>": {
 }
 }
}

where <server> is the configuration element name for a given server such
as “Dhcp4” or “Dhcp6”. For example:

{
 "command": "config-test",
 "arguments": {
 "Dhcp6": {
 :
 }
 }
}

The server’s response will contain a numeric code, “result” (0 for
success, non-zero on failure), and a string, “text”, describing the
outcome:

{"result": 0, "text": "Configuration seems sane..." }

or

{"result": 1, "text": "unsupported parameter: BOGUS (<string>:16:26)" }

17.3.5. The config-write Command

The config-write command instructs the Kea server to write its current
configuration to a file on disk. It takes one optional argument, called
“filename”, that specifies the name of the file to write the
configuration to. If not specified, the name used when starting Kea
(passed as a -c argument) will be used. If a relative path is specified,
Kea will write its files only in the directory it is running.

An example command invocation looks like this:

{
 "command": "config-write",
 "arguments": {
 "filename": "config-modified-2017-03-15.json"
 }
}

17.3.6. The leases-reclaim Command

The leases-reclaim command instructs the server to reclaim all expired
leases immediately. The command has the following JSON syntax:

{
 "command": "leases-reclaim",
 "arguments": {
 "remove": true
 }
}

The remove boolean parameter is mandatory and indicates whether the
reclaimed leases should be removed from the lease database (if true), or
left in the “expired-reclaimed” state (if false). The latter facilitates
lease affinity, i.e. the ability to re-assign an expired lease to the
same client that used this lease before. See Configuring Lease Affinity
for the details. Also, see Lease Reclamation for general
information about the processing of expired leases (lease reclamation).

17.3.7. The libreload Command

The libreload command first unloads and then loads all currently
loaded hooks libraries. This is primarily intended to allow one or more
hooks libraries to be replaced with newer versions without requiring Kea
servers to be reconfigured or restarted. Note that the hooks libraries
are passed the same parameter values (if any) that were passed when they
originally loaded.

{
 "command": "libreload",
 "arguments": { }
}

The server will respond with a result of either 0, indicating success,
or 1, indicating failure.

17.3.8. The list-commands Command

The list-commands command retrieves a list of all commands supported
by the server. It does not take any arguments. An example command may
look like this:

{
 "command": "list-commands",
 "arguments": { }
}

The server responds with a list of all supported commands. The arguments
element is a list of strings, each of which conveys one supported
command.

17.3.9. The config-set Command

The config-set command instructs the server to replace its current
configuration with the new configuration supplied in the command’s
arguments. The supplied configuration is expected to be the full
configuration for the target server, along with an optional Logger
configuration. While optional, the Logger configuration is highly
recommended, as without it the server will revert to its default logging
configuration. The structure of the command is as follows:

{
 "command": "config-set",
 "arguments": {
 "<server>": {
 }
 }
}

where <server> is the configuration element name for a given server such
as “Dhcp4” or “Dhcp6”. For example:

{
 "command": "config-set",
 "arguments": {
 "Dhcp6": {
 :
 }
 }
}

If the new configuration proves to be invalid, the server retains its
current configuration. Please note that the new configuration is
retained in memory only; if the server is restarted or a configuration
reload is triggered via a signal, the server uses the configuration
stored in its configuration file. The server’s response contains a
numeric code, “result” (0 for success, non-zero on failure), and a
string, “text”, describing the outcome:

{"result": 0, "text": "Configuration successful." }

or

{"result": 1, "text": "unsupported parameter: BOGUS (<string>:16:26)" }

17.3.10. The shutdown Command

The shutdown command instructs the server to initiate its shutdown
procedure. It is the equivalent of sending a SIGTERM signal to the
process. This command does not take any arguments. An example command
may look like this:

{
 "command": "shutdown"
 "arguments": {
 "exit-value": 3
 }
}

The server responds with a confirmation that the shutdown procedure has
been initiated. The optional parameter, “exit-value”, specifies the
numeric value with which the server process will exit to the system.
The default value is zero.

17.3.11. The dhcp-disable Command

The dhcp-disable command globally disables the DHCP service. The
server continues to operate, but it drops all received DHCP messages.
This command is useful when the server’s maintenance requires that the
server temporarily stop allocating new leases and renew existing leases.
It is also useful in failover-like configurations during a
synchronization of the lease databases at startup, or recovery after a
failure. The optional parameter “max-period” specifies the time in
seconds after which the DHCP service should be automatically re-enabled,
if the dhcp-enable command is not sent before this time elapses.

{
 "command": "dhcp-disable",
 "arguments": {
 "max-period": 20
 }
}

17.3.12. The dhcp-enable Command

The dhcp-enable command globally enables the DHCP service.

{
 "command": "dhcp-enable"
}

17.3.13. The status-get Command

The status-get command returns server’s runtime information:

	pid: process id.

	uptime: number of seconds since the start of the server.

	reload: number of seconds since the last configuration (re)load.

	ha-servers: HA specific status information about the DHCP servers
configured to use HA hooks library:

	local: for the local server the state, the role (primary,
secondary, …) and scopes (i.e. what the server is actually
processing).

	remote: for the remote server the last known state, served
HA scopes and the role of the server in HA relationship.

The ha-servers information is only returned when the command is
sent to the DHCP servers being in the HA setup. This parameter is
never returned when the status-get command is sent to the
Control Agent or DDNS deamon.

To learn more about the HA status information returned by the
status-get command please refer to the the The status-get Command
section.

17.3.14. The server-tag-get Command:

The server-tag-get command returns the configured server tag of
the DHCPv4 or DHCPv6 server (Configuration Sharing and Server Tags explains the server tag concept)

17.3.15. The config-backend-pull Command:

The config-backend-pull command triggers the polling of Config Backends
(which should be configured for this command to do something)
explained in Enabling Configuration Backend.

17.3.16. The version-get Command

The version-get command returns extended information about the Kea
version. It is the same information available via the -V
command-line argument. This command does not take any parameters.

{
 "command": "version-get"
}

17.4. Commands Supported by the D2 Server

The D2 server supports only a subset of DHCPv4 / DHCPv6 server commands:

	build-report

	config-get

	config-reload

	config-set

	config-test

	config-write

	list-commands

	shutdown

	status-get

	version-get

17.5. Commands Supported by the Control Agent

The following commands listed in Commands Supported by Both the DHCPv4 and DHCPv6 Servers are also supported by the
Control Agent, i.e. when the service parameter is blank, the
commands are handled by the CA and they relate to the CA process itself:

	build-report

	config-get

	config-reload

	config-set

	config-test

	config-write

	list-commands

	shutdown

	status-get

	version-get

18. Logging

18.1. Logging Configuration

During its operation Kea may produce many messages. They differ in
severity (some are more important than others) and source (different
components, like hooks, produce different messages). It is useful to
understand which log messages are critical and which are not, and to
configure logging appropriately. For example, debug-level messages
can be safely ignored in a typical deployment. They are, however, very
useful when debugging a problem.

The logging system in Kea is configured through the loggers entry in the
server section of your configuration file. In previous Kea releases this
entry was in an independent Logging section; this is still supported for
backward compatibility.

18.1.1. Loggers

Within Kea, a message is logged through an entity called a “logger.”
Different components log messages through different loggers, and each
logger can be configured independently of the others. Some components,
in particular the DHCP server processes, may use multiple loggers to log
messages pertaining to different logical functions of the component. For
example, the DHCPv4 server uses one logger for messages about packet
reception and transmission, another logger for messages related to lease
allocation, and so on. Some of the libraries used by the Kea server,
such as libdhcpsrv, use their own loggers.

Users implementing hooks libraries (code attached to the server at
runtime) are responsible for creating the loggers used by those
libraries. Such loggers should have unique names, different from the
logger names used by Kea. In this way the messages produced by the hooks
library can be distinguished from messages issued by the core Kea code.
Unique names also allow the loggers to be configured independently of
loggers used by Kea. Whenever it makes sense, a hooks library can use
multiple loggers to log messages pertaining to different logical parts
of the library.

In the server section of a configuration file the
configuration for zero or more loggers (including loggers used by the
proprietary hooks libraries) can be specified. If there are no loggers specified, the
code will use default values; these cause Kea to log messages of INFO
severity or greater to standard output. There is a small time window
after Kea has been started but before it has read its configuration;
logging in this short period can be controlled using environment
variables. For details, see Logging During Kea Startup.

The three main elements of a logger configuration are: name (the
component that is generating the messages), severity (what to log),
and output_commands (where to log). There is also a debuglevel
element, which is only relevant if debug-level logging has been
selected.

18.1.1.1. The name (string) Logger

Each logger in the system has a name: that of the component binary file
using it to log messages. For instance, to configure logging
for the DHCPv4 server, add an entry for a logger named “kea-dhcp4”.
This configuration will then be used by the loggers in the DHCPv4
server and all the libraries used by it, unless a library defines its
own logger and there is a specific logger configuration that applies to
that logger.

When tracking down an issue with the server’s operation, use of DEBUG
logging is required to obtain the verbose output needed for problem
diagnosis. However, the high verbosity is likely to overwhelm the
logging system in cases where the server is processing high-volume
traffic. To mitigate this problem, Kea can use multiple loggers, for
different functional parts of the server, that can each be configured
independently. If the user is reasonably confident that a problem
originates in a specific function of the server, or that the problem is
related to a specific type of operation, they may enable high verbosity
only for the relevant logger, thereby limiting the debug messages to the
required minimum.

The loggers are associated with a particular library or binary of Kea.
However, each library or binary may (and usually does) include multiple
loggers. For example, the DHCPv4 server binary contains separate loggers
for packet parsing, dropped packets, callouts, etc.

The loggers form a hierarchy. For each program in Kea, there is a “root”
logger, named after the program (e.g. the root logger for kea-dhcp, the
DHCPv4 server) is named kea-dhcp4. All other loggers are children of
this logger and are named accordingly, e.g. the allocation engine in the
DHCPv4 server logs messages using a logger called
kea-dhcp4.alloc-engine.

This relationship is important, as each child logger derives its default
configuration from its parent root logger. In the typical case, the root
logger configuration is the only logging configuration specified in the
configuration file and so applies to all loggers. If an entry is made
for a given logger, any attributes specified override those of the root
logger, whereas any not specified are inherited from it.

To illustrate this, suppose we are using the DHCPv4 server with the
root logger “kea-dhcp4” logging at the INFO level. In order to enable
DEBUG verbosity for DHCPv4 packet drops, we must create a configuration
entry for the logger called “kea-dhcp4.bad-packets” and specify severity
DEBUG for this logger. All other configuration parameters may be omitted
for this logger if the logger should use the default values specified in
the root logger’s configuration.

If there are multiple logger specifications in the configuration that
might match a particular logger, the specification with the more
specific logger name takes precedence. For example, if there are entries
for both “kea-dhcp4” and “kea-dhcp4.dhcpsrv”, the main DHCPv4 server
program — and all libraries it uses other than the dhcpsrv library
(libdhcpsrv) — will log messages according to the configuration in the
first entry (“kea-dhcp4”). Messages generated by the dhcpsrv library
will be logged according to the configuration set by the second entry.

Currently defined loggers are defined in the following table. The
“Software Package” column of this table specifies whether the particular
loggers belong to the core Kea code (open source Kea binaries and
libraries), or hooks libraries (open source or premium).

List of Loggers Supported by Kea Servers and Hooks Libraries Shipped With Kea and Premium Packages

	Logger Name

	Software Package

	Description

	kea-ctrl-agent

	core

	The root logger for
the Control Agent
exposing the RESTful
control API. All
components used by
the Control Agent
inherit the settings
from this logger.

	kea-ctrl-agent.http

	core

	A logger which
outputs log messages
related to receiving,
parsing, and sending
HTTP messages.

	kea-dhcp4

	core

	The root logger for
the DHCPv4 server.
All components used
by the DHCPv4 server
inherit the settings
from this logger.

	kea-dhcp6

	core

	The root logger for
the DHCPv6 server.
All components used
by the DHCPv6 server
inherit the settings
from this logger.

	kea-dhcp4.alloc-engine,
kea-dhcp6.alloc-engine

	core

	Used by the lease
allocation engine,
which is responsible
for managing leases
in the lease
database, i.e.
creating, modifying,
and removing DHCP
leases as a result of
processing messages
from clients.

	kea-dhcp4.bad-packets,
kea-dhcp6.bad-packets

	core

	Used by the DHCP
servers for logging
inbound client
packets that were
dropped or to which
the server responded
with a DHCPNAK. It
allows administrators
to configure a
separate log output
that contains only
packet drop and
reject entries.

	kea-dhcp4.bootp-hooks

	libdhcp_bootp
hook library

	This logger is used to log
messages related to the
operation of the BOOTP hook
library.

	kea-dhcp4.callouts,
kea-dhcp6.callouts

	core

	Used to log messages
pertaining to the
callouts registration
and execution for the
particular hook
point.

	kea-dhcp4.commands,
kea-dhcp6.commands

	core

	Used to log messages
relating to the
handling of commands
received by the DHCP
server over the
command channel.

	kea-dhcp4.database,
kea-dhcp6.database

	core

	Used to log messages
relating to general
operations on the
relational databases
and Cassandra.

	kea-dhcp4.ddns,
kea-dhcp6.ddns

	core

	Used by the DHCP
server to log
messages related to
Client FQDN and
Hostname option
processing. It also
includes log messages
related to the
relevant DNS updates.

	kea-dhcp4.dhcp4

	core

	Used by the DHCPv4
server daemon to log
basic operations.

	kea-dhcp4.dhcpsrv,
kea-dhcp6.dhcpsrv

	core

	The base loggers for
the libkea-dhcpsrv
library.

	kea-dhcp4.eval,
kea-dhcp6.eval

	core

	Used to log messages
relating to the
client classification
expression evaluation
code.

	kea-dhcp4.host-cache-hooks,
kea-dhcp6.host-cache-hooks

	libdhcp_host_cache
premium hook library

	This logger is used
to log messages
related to the
operation of the Host
Cache hooks library.

	kea-dhcp4.flex-id-hooks,
kea-dhcp6.flex-id-hooks

	libdhcp_flex_id
premium hook library

	This logger is used
to log messages
related to the
operation of the
Flexible Identifiers
hooks library.

	kea-dhcp4.ha-hooks,
kea-dhcp6.ha-hooks

	libdhcp_ha hook
library

	This logger is used
to log messages
related to the
operation of the High
Availability hooks
library.

	kea-dhcp4.hooks,
kea-dhcp6.hooks

	core

	Used to log messages
related to the
management of hooks
libraries, e.g.
registration and
deregistration of the
libraries, and to the
initialization of the
callouts execution
for various hook
points within the
DHCP server.

	kea-dhcp4.host-cmds-hooks,
kea-dhcp6.host-cmds-hooks

	libdhcp_host_cmds
premium hook library

	This logger is used
to log messages
related to the
operation of the Host
Commands hooks
library. In general,
these will pertain to
the loading and
unloading of the
library and the
execution of commands
by the library.

	kea-dhcp4.hosts,
kea-dhcp6.hosts

	core

	Used within the
libdhcpsrv, it logs
messages related to
the management of
DHCP host
reservations, i.e.
retrieving
reservations and
adding new
reservations.

	kea-dhcp4.lease-cmds-hooks,
kea-dhcp6.lease-cmds-hooks

	libdhcp_lease_cmds
hook library

	This logger is used
to log messages
related to the
operation of the
Lease Commands hooks
library. In general,
these will pertain to
the loading and
unloading of the
library and the
execution of commands
by the library.

	kea-dhcp4.leases,
kea-dhcp6.leases

	core

	Used by the DHCP
server to log
messages related to
lease allocation. The
messages include
detailed information
about the allocated
or offered leases,
errors during the
lease allocation,
etc.

	kea-dhcp4.legal-log-hooks,
kea-dhcp6.legal-log-hooks

	libdhcp_legal_log
premium hook library

	This logger is used
to log messages
related to the
operation of the
Forensic Logging
hooks library.

	kea-dhcp4.options,
kea-dhcp6.options

	core

	Used by the DHCP
server to log
messages related to
the processing of
options in the DHCP
messages, i.e.
parsing options,
encoding options into
on-wire format, and
packet classification
using options
contained in the
received packets.

	kea-dhcp4.packets,
kea-dhcp6.packets

	core

	This logger is mostly
used to log messages
related to
transmission of the
DHCP packets, i.e.
packet reception and
the sending of a
response. Such
messages include
information about the
source and
destination IP
addresses and
interfaces used to
transmit packets. The
logger is also used
to log messages
related to subnet
selection, as this
selection is usually
based on the IP
addresses, relay
addresses, and/or
interface names,
which can be
retrieved from the
received packet even
before the DHCP
message carried in
the packet is parsed.

	kea-dhcp4.radius-hooks,
kea-dhcp6.radius-hooks

	libdhcp_radius
premium hook library

	This logger is used
to log messages
related to the
operation of the
RADIUS hooks library.

	kea-dhcp4.stat-cmds-hooks,
kea-dhcp6.stat-cmds-hooks

	libdhcp_stat_cmds
hook library

	This logger is used
to log messages
related to the
operation of the
Statistics Commands
hooks library. In
general, these will
pertain to loading
and unloading the
library and the
execution of commands
by the library.

	kea-dhcp4.subnet-cmds-hooks,
kea-dhcp6.subnet-cmds-hooks

	libdhcp_subnet_cmds
hook library

	This logger is used
to log messages
related to the
operation of the
Subnet Commands hooks
library. In general,
these will pertain to
loading and unloading
the library and the
execution of commands
by the library.

	kea-dhcp4.mysql-cb-hooks,
kea-dhcp6.mysql-cb-hooks

	libdhcp_mysql_cb_hooks
hook library

	This logger is used
to log messages
related to the
operation of the
MySQL Configuration
Backend hooks
library.

	kea-dhcp-ddns

	core

	The root logger for
the kea-dhcp-ddns
daemon. All
components used by
this daemon inherit
the settings from
this logger unless
there are
configurations for
more specialized
loggers.

	kea-dhcp-ddns.dctl

	core

	The logger used by
the kea-dhcp-ddns
daemon for logging
basic information
about the process,
received signals, and
triggered
reconfigurations.

	kea-dhcp-ddns.dhcpddns

	core

	The logger used by
the kea-dhcp-ddns
daemon for logging
events related to
DDNS operations.

	kea-dhcp-ddns.dhcp-to-d2

	core

	Used by the
kea-dhcp-ddns daemon
for logging
information about
events dealing with
receiving messages
from the DHCP servers
and adding them to
the queue for
processing.

	kea-dhcp-ddns.d2-to-dns

	core

	Used by the
kea-dhcp-ddns daemon
for logging
information about
events dealing with
sending and receiving
messages to and from
the DNS servers.

	kea-netconf

	core

	The root logger for
the NETCONF agent.
All components used
by NETCONF inherit
the settings from
this logger if there
is no specialized
logger provided.

	kea-dhcp4.lease-query-hooks,
kea-dhcp6.lease-query-hooks

	libdhcp_lease_query
hook library

	This logger is used
to log messages
related to the
operation of the
Leasequery hooks library

Note that user-defined hook libraries should not use any of the loggers
mentioned above, but should instead define new loggers with names that
correspond to the libraries using them. Suppose that a user created
a library called “libdhcp-packet-capture” to dump packets received and
transmitted by the server to a file. An appropriate name for the
logger could be kea-dhcp4.packet-capture-hooks. (Note that the hook
library implementer only specifies the second part of this name, i.e.
“packet-capture”. The first part is a root-logger name and is prepended
by the Kea logging system.) It is also important to note that since this
new logger is a child of a root logger, it inherits the configuration
from the root logger, something that can be overridden by an entry in
the configuration file.

The easiest way to find a logger name is to configure all logging to go
to a single destination and look there for specific logger names. See
Logging Message Format for details.

18.1.1.2. The severity (string) Logger

This specifies the category of messages logged. Each message is logged
with an associated severity, which may be one of the following (in
descending order of severity):

	FATAL - associated with messages generated by a condition that is so
serious that the server cannot continue executing.

	ERROR - associated with messages generated by an error condition. The
server will continue executing, but the results may not be as
expected.

	WARN - indicates an out-of-the-ordinary condition. However, the
server will continue executing normally.

	INFO - an informational message marking some event.

	DEBUG - messages produced for debugging purposes.

When the severity of a logger is set to one of these values, it will
only log messages of that severity and above (e.g. setting the logging
severity to INFO will log INFO, WARN, ERROR, and FATAL messages). The
severity may also be set to NONE, in which case all messages from that
logger are inhibited.

Note

The keactrl tool, described in Managing Kea with keactrl, can be configured
to start the servers in verbose mode. If this is the case, the
settings of the logging severity in the configuration file will have
no effect; the servers will use a logging severity of DEBUG
regardless of the logging settings specified in the configuration
file. To control severity via the configuration file,
please make sure that the kea_verbose value is set to “no” within
the keactrl configuration.

18.1.1.3. The debuglevel (integer) Logger

When a logger’s severity is set to DEBUG, this value specifies what
level of debug messages should be printed. It ranges from 0 (least
verbose) to 99 (most verbose). If severity for the logger is not DEBUG,
this value is ignored.

18.1.1.4. The output_options (list) Logger

Each logger can have zero or more output_options. These specify
where log messages are sent and are explained in detail below.

18.1.1.4.1. The output (string) Option

This value determines the type of output. There are several special
values allowed here: stdout (messages are printed on standard
output), stderr (messages are printed on stderr), syslog
(messages are logged to syslog using the default name), syslog:name
(messages are logged to syslog using a specified name). Any other value is
interpreted as a filename to which messages should be written.

18.1.1.4.2. The flush (true of false) Option

Flush buffers after each log message. Doing this will reduce performance
but will ensure that if the program terminates abnormally, all messages
up to the point of termination are output. The default is “true”.

18.1.1.4.3. The maxsize (integer) Option

This option is only relevant when the destination is a file; this is the maximum size
in bytes that a log file may reach. When the maximum size is reached,
the file is renamed and a new file opened. For example, a “.1” is
appended to the name; if a “.1” file exists, it is renamed “.2”, etc.
This is referred to as rotation.

The default value is 10240000 (10MB). The smallest value that can be
specified without disabling rotation is 204800. Any value less than
this, including 0, disables rotation.

Note

Due to a limitation of the underlying logging library (log4cplus),
rolling over the log files (from “.1” to “.2”, etc) may show odd
results; there can be multiple small files at the timing of rollover.
This can happen when multiple processes try to roll over the
files simultaneously. Version 1.1.0 of log4cplus solved this problem,
so if this version or later of log4cplus is used to build Kea, the
issue should not occur. Even for older versions, it is normally
expected to happen rarely unless the log messages are produced very
frequently by multiple different processes.

18.1.1.4.4. The maxver (integer) Option

This option is only relevant when the destination is a file and rotation is enabled
(i.e. maxsize is large enough). This is the maximum number of rotated
versions that will be kept. Once that number of files has been reached,
the oldest file, “log-name.maxver”, will be discarded each time the log
rotates. In other words, at most there will be the active log file plus
maxver rotated files. The minimum and default value is 1.

18.1.1.4.5. The pattern (string) Option

This option can be used to specify the layout pattern of log messages for
a logger. Kea logging is implemented using the Log4Cplus library and whose
output formatting is based, conceptually, on the printf formatting from C
and is discussed in detail in the the next section
Logging Message Format.

Each output type (stdout, file, or syslog) has a default pattern which
describes the content of its log messages. This parameter can be used to
specifiy your own pattern. The pattern for each logger is governed
individually so each configured logger can have it’s own pattern. Omitting
the pattern parameter or setting it to an empty string, “”, will cause
Kea to use the default pattern for that logger’s output type.

In addition to the log text itself, the default patterns used for stdout
and files contain information such as date and time, logger level, and
process information. The default pattern for syslog is limited primarily
to log level, source, and the log text. This avoids duplicating information
which is usually supplied by syslog.

Warning

You are strongly encouraged to test your pattern(s) on a local,
non-production instance of Kea, running in the foreground and
logging to stdout.

18.1.2. Logging Message Format

As mentioned above, Kea log message content is controlled via a scheme similar
to the C language’s printf formatting. The “pattern” used for each message is
described by a string containing one or more format components as part of a
text string. In addition to the components the string may contain any other
arbitrary text you find useful.

The Log4Cplus documentation provides a concise discussion of the supported
components and formatting behavior and can be seen here:

https://log4cplus.sourceforge.io/docs/html/classlog4cplus_1_1PatternLayout.html

It is probably easiest to understand this by examining the default pattern
for stdout and files (currently they are the same). That pattern is shown
below:

"%D{%Y-%m-%d %H:%M:%S.%q} %-5p [%c/%i.%t] %m\n";

and a typical log produced by this pattern would look somethng like this:

2019-08-05 14:27:45.871 DEBUG [kea-dhcp4.dhcpsrv/8475.12345] DHCPSRV_TIMERMGR_START_TIMER starting timer: reclaim-expired-leases

That breaks down as like so:

	%D{%Y-%m-%d %H:%M:%S.%q}
‘%D’ is the date and time in local time that the log message is generated,
while everything between the curly braces, ‘{}’ are date and time components.
From the example log above this produces:
2019-08-05 14:27:45.871

	%-5p
The severity of message, output as a minimum of five characters,
using right-padding with spaces. In our example log: DEBUG

	%c
The log source. This includes two elements: the Kea process generating the
message, in this case, kea-dhcp4; and the component within the program
from which the message originated, dhcpsrv (e.g. the name of the
library used by DHCP server implementations).

	%i
The process ID. From the example log: 8475

	%t
The thread ID. From the example log: 12345.
Note the format of the thread ID is OS dependent: e.g. on some systems
it is an address so is displayed in hexadecimal.

	%m
The log message itself. Keg log messages all begin with a message
identifier followed by arbitrary log text. Every message in Kea has
a unique identifier, which can be used as an index to the
Kea Messages Manual [https://jenkins.isc.org/job/Kea_doc/messages/kea-messages.html],
where more information can be obtained. In our example log above, the
identifier is DHCPSRV_TIMERMGR_START_TIMER. The log text is typically
a brief description detailing the condition that caused the message to be
logged. In our example, the information logged,
starting timer: reclaim-expired-leases, explains that the timer for
the expired lease reclamation cycle has been started.

Warning

Omitting %m will omit the log message text from your output making it
rather useless. You should consider %m mandatory.

Finally, note that spacing between components, the square brackets around the
log source and PID, and the final carriage return ‘n’ are all literal text
specified as part of the pattern.

Warning

In order to ensure each log entry is a separate line, your patterns
must end with an \n. There may be use cases where it is not desired
so we do not enforce its inclusion. Be aware that if you omit it from
your pattern that to common text tools or displays, the log entries
will run together in one long, endless “line”.

The default for pattern for syslog output is as follows:

"%-5p [%c.%t] %m\n";

You can see that it omits the date and time as well the process ID as this
information is typically output by syslog. Note that Kea uses the pattern
to construct the text it sends to syslog (or any other destination). It has
no influence on the content syslog may add or formatting it may do.

Consult your OS documentation for “syslog” behavior as there are multiple
implementations.

18.1.2.1. Example Logger Configurations

In this example we want to set the server logging to write to the
console using standard output.

"Server": {
 "loggers": [
 {
 "name": "kea-dhcp4",
 "output_options": [
 {
 "output": "stdout"
 }
],
 "severity": "WARN"
 }
]
}

In this second example, we want to store debug log messages in a file
that is at most 2MB and keep up to eight copies of old logfiles. Once the
logfile grows to 2MB, it will be renamed and a new file will be created.

"Server": {
 "loggers": [
 {
 "name": "kea-dhcp6",
 "output_options": [
 {
 "output": "/var/log/kea-debug.log",
 "maxver": 8,
 "maxsize": 204800,
 "flush": true
 "pattern": "%d{%j %H:%M:%S.%q} %c %m\n"
 }
],
 "severity": "DEBUG",
 "debuglevel": 99
 }
]
}

Notice that the above configuration uses a custom pattern which produces output like this:

220 13:50:31.783 kea-dhcp4.dhcp4 DHCP4_STARTED Kea DHCPv4 server version 1.6.0-beta2-git started

18.1.3. Logging During Kea Startup

The logging configuration is specified in the configuration file.
However, when Kea starts, the configuration file is not read until partway into the
initialization process. Prior to that, the logging settings are set to
default values, although it is possible to modify some aspects of the
settings by means of environment variables. Note that in the absence of
any logging configuration in the configuration file, the settings of the
(possibly modified) default configuration will persist while the program
is running.

The following environment variables can be used to control the behavior
of logging during startup:

KEA_LOCKFILE_DIR

Specifies a directory where the logging system should create its lock
file. If not specified, it is prefix/var/run/kea, where “prefix”
defaults to /usr/local. This variable must not end with a slash.
There is one special value: “none”, which instructs Kea not to create
a lock file at all. This may cause issues if several processes log to
the same file.

KEA_LOGGER_DESTINATION

Specifies logging output. There are several special values:

stdout
Log to standard output.

stderr
Log to standard error.

syslog[:fac]
Log via syslog. The optional fac (which is separated from the word
“syslog” by a colon) specifies the facility to be used for the log
messages. Unless specified, messages will be logged using the
facility “local0”.

Any other value is treated as a name of the output file. If not
specified otherwise, Kea will log to standard output.

19. The Kea Shell

19.1. Overview of the Kea Shell

Kea 1.2.0 introduced the Control Agent (CA, see
The Kea Control Agent), which provides a RESTful control interface
over HTTP. That API is typically expected to be used by various IPAMs
and similar management systems. Nevertheless, there may be cases when an
administrator wants to send a command to the CA directly, and the Kea shell
provides a way to do this. It is a simple command-line,
scripting-friendly, text client that is able to connect to the CA, send
it commands with parameters, retrieve the responses, and display them.

As the primary purpose of the Kea shell is as a tool in a scripting
environment, it is not interactive. However, following simple guidelines it can
be run manually.

19.2. Shell Usage

kea-shell is run as follows:

$ kea-shell [--host hostname] [--port number] [--path path] [--timeout seconds] [--service service-name] [command]

where:

	--host hostname specifies the hostname of the CA. If not
specified, “localhost” is used.

	--port number specifies the TCP port on which the CA listens. If
not specified, 8000 is used.

	--path path specifies the path in the URL to connect to. If not
specified, an empty path is used. As the CA listens at the empty
path, this parameter is useful only with a reverse proxy.

	--timeout seconds specifies the timeout (in seconds) for the
connection. If not given, 10 seconds is used.

	--service service-name specifies the target of a command. If not
given, the CA will be used as the target. May be used more than once
to specify multiple targets.

	command specifies the command to be sent. If not specified, the
list-commands command is used.

Other switches are:

	-h - prints a help message.

	-v - prints the software version.

Once started, the shell reads parameters for the command from standard
input, which are expected to be in JSON format. When all have been read,
the shell establishes a connection with the CA using HTTP, sends the
command, and awaits a response. Once that is received, it is displayed
on standard output.

For a list of available commands, see Management API;
additional commands may be provided by hooks libraries. For a list of
all supported commands from the CA, use the list-commands command.

The following shows a simple example of usage:

$ kea-shell --host 192.0.2.1 --port 8001 --service dhcp4 list-commands
^D

After the command line is entered, the program waits for command
parameters to be entered. Since list-commands does not take any
arguments, CTRL-D (represented in the above example by “^D”) is pressed
to indicate end-of-file and terminate the parameter input. The shell
then contacts the CA and prints out the list of available commands
returned for the service named dhcp4.

It is envisaged that the Kea shell will be most frequently used in
scripts; the next example shows a simple scripted execution. It sends
the command “config-write” to the CA (the --service parameter has not
been used), along with the parameters specified in param.json. The
result will be stored in result.json.

$ cat param.json
"filename": "my-config-file.json"
$ cat param.json | kea-shell --host 192.0.2.1 config-write > result.json

When a reverse proxy is used to de-multiplex requests to different
servers, the default empty path in the URL is not enough, so the
--path parameter should be used. For instance, if requests to the
“/kea” path are forwarded to the CA this can be used:

$ kea-shell --host 192.0.2.1 --port 8001 --path kea ...

The Kea shell requires Python to to be installed on the system. It has been
tested with Python 2.7 and various versions of Python 3, up to 3.5.
Since not every Kea deployment uses this feature and there are
deployments that do not have Python, the Kea shell is not enabled by
default. To use it, specify --enable-shell when running “configure”
during the installation of Kea. When building on Debian systems, also
--with-site-packages=... may be useful.

The Kea shell is intended to serve more as a demonstration of the
RESTful interface’s capabilities (and, perhaps, an illustration for
people interested in integrating their management environments with Kea)
than as a serious management client. It is not likely to be
significantly expanded in the future; it is, and will remain, a simple
tool.

20. YANG/NETCONF Support

20.1. Overview

Kea 1.5.0 introduced optional support for a YANG/NETCONF interface with
the new kea-netconf NETCONF agent.

This bare-bones documentation is a work in progress. Its current purpose
is to let engineers joining the project or perhaps advanced early
adopters to get up to speed quickly.

20.2. Installing NETCONF

Note that to get its NETCONF capabilities, Kea uses Sysrepo, which has
many dependencies. Unfortunately, some of them are not available as
packages and need to be compiled manually.

Please note that building libyang requires a minimum gcc version of at
least 4.9, so on some environments - like CentOS 7.5 - the system
compiler cannot be used.

The following sections provide installation instructions for Ubuntu
18.04 and CentOS 7.5. Due to a more modern compiler and many available
packages, the installation procedure is much simpler on Ubuntu.

20.2.1. Installing NETCONF on Ubuntu 18.04

For detailed installation instructions, see the Ubuntu installation notes page [https://gitlab.isc.org/isc-projects/kea/wikis/docs/ubuntu-installation-notes].

20.2.2. Installing NETCONF on CentOS 7.5

For detailed installation instructions, see the CentOS installation notes page [https://gitlab.isc.org/isc-projects/kea/wikis/docs/centos-installation-notes].

CentOS 7.5’s gcc compiler (version 4.8.5) is very old. Some Sysrepo
dependencies require at least version 4.9, which unfortunately means
that a new compiler has to be installed. Also, many of the Sysrepo
dependencies are not avalable in CentOS as packages, so for the time
being they must be installed from sources.

20.3. Quick Sysrepo Overview

This section offers a rather brief overview of a subset of available
functions in Sysrepo. For more complete information, see the Sysrepo
homepage [https://www.sysrepo.org].

In YANG, configurations and state data are described in the YANG syntax
in module files named: "module-name"[@"revision"].yang

The revision part is optional and has YYYY-MM-DD format. An alternate
XML syntax YIN is defined but less user-friendly. Top-level modules are
named in Kea models (a short version of schema models).

To list the currently installed YANG modules:

$ sysrepoctl -l

After installation the result should be similar to this:

Sysrepo schema directory: /home/thomson/devel/sysrepo-0.7.6/build/repository/yang/
Sysrepo data directory: /home/thomson/devel/sysrepo-0.7.6/build/repository/data/
(Do not alter contents of these directories manually)

Module Name | Revision | Conformance | Data Owner | Permissions
--
ietf-netconf- | 2012-02-06 | Installed | root:root | 666
 -notifications | | | |
ietf-netconf | 2011-06-01 | Imported | |
ietf-netconf-acm | 2012-02-22 | Imported | |
nc-notifications | 2008-07-14 | Installed | root:root | 666
notifications | 2008-07-14 | Installed | root:root | 666
turing-machine | 2013-12-27 | Installed | root:root | 666
iana-if-type | 2014-05-08 | Installed | |
ietf-interfaces | 2014-05-08 | Installed | root:root | 666
ietf-ip | 2014-06-16 | Installed | |

There are two major modules that Kea is able to support:
kea-dhcp4-server and kea-dhcp6-server. Note that while there is an
active effort in the DHC working group at IETF to develop a DHCPv6 YANG
model, a similar initiative in the past for DHCPv4 failed. Therefore,
Kea uses its own dedicated models for DHCPv4 and DHCPv6 but partially
supports the IETF model for DHCPv6. Those three models have extra
modules as dependencies. The dependency modules are also provided in
src/share/yang/modules in sources and in share/kea/yang/modules
after installation.

To install modules from sources, do the following:

$ cd src/share/yang/modules
$ sudo sysrepoctl -i -s /home/thomson/devel/sysrepo-0.7.6/build/repository/yang -s . -g ietf-dhcpv6-server*.yang
$ sudo sysrepoctl -i -s /home/thomson/devel/sysrepo-0.7.6/build/repository/yang -s . -g kea-dhcp4-server*.yang
$ sudo sysrepoctl -i -s /home/thomson/devel/sysrepo-0.7.6/build/repository/yang -s . -g kea-dhcp6-server*.yang
...

Note that the first -s parameter specifies the location of the YANG
schema repository; it can be verified with sysrepoctl -l. This is a
parameter that is configured during Sysrepo compilation and is detected
by the Kea configuration under the SYSREPO_REPO name.

The installation should look similar to the following:

$ sudo sysrepoctl -i -s /home/thomson/devel/sysrepo-0.7.6/build/repository/yang -s . -g ietf-dhcpv6-server*.yang
Installing a new module from file 'ietf-dhcpv6-server@2018-11-20.yang'...
Installing the YANG file to '/home/thomson/devel/sysrepo-0.7.6/build/repository/yang/ietf-dhcpv6-server@2018-07-14.yang'...
Resolving dependency: 'ietf-dhcpv6-server' imports 'ietf-dhcpv6-options'...
Installing the YANG file to '/home/thomson/devel/sysrepo-0.7.6/build/repository/yang/ietf-dhcpv6-options@2018-07-14.yang'...
Resolving dependency: 'ietf-dhcpv6-options' imports 'ietf-dhcpv6-types'...
Installing the YANG file to '/home/thomson/devel/sysrepo-0.7.6/build/repository/yang/ietf-dhcpv6-types@2018-07-14.yang'...
Resolving dependency: 'ietf-dhcpv6-server' imports 'ietf-dhcpv6-types'...
Installing the YANG file to '/home/thomson/devel/sysrepo-0.7.6/build/repository/yang/ietf-dhcpv6-types@2018-07-14.yang'...
Resolving dependency: 'ietf-dhcpv6-server' imports 'ietf-interfaces'...
Schema of the module ietf-interfaces is already installed, skipping...
Installing data files for module 'ietf-dhcpv6-server'...
Resolving dependency: 'ietf-dhcpv6-server' imports 'ietf-dhcpv6-options'...
Skipping installation of data files for module 'ietf-dhcpv6-options'...
Resolving dependency: 'ietf-dhcpv6-options' imports 'ietf-dhcpv6-types'...
Skipping installation of data files for module 'ietf-dhcpv6-types'...
Resolving dependency: 'ietf-dhcpv6-server' imports 'ietf-dhcpv6-types'...
Skipping installation of data files for module 'ietf-dhcpv6-types'...
Resolving dependency: 'ietf-dhcpv6-server' imports 'ietf-interfaces'...
Installing data files for module 'ietf-interfaces'...
Notifying sysrepo about the change...
Install operation completed successfully.

It is possible to confirm whether the models are imported correctly by using
sysrepoctl -l:

$ sysrepoctl -l
Sysrepo schema directory: /home/thomson/devel/sysrepo-0.7.6/build/repository/yang/
Sysrepo data directory: /home/thomson/devel/sysrepo-0.7.6/build/repository/data/
(Do not alter contents of these directories manually)

Module Name | Revision | Conformance | Data Owner | Permissions

ietf-netconf-notifications | 2012-02-06 | Installed | root:root | 666
ietf-netconf | 2011-06-01 | Imported | |
ietf-netconf-acm | 2012-02-22 | Imported | |
nc-notifications | 2008-07-14 | Installed | root:root | 666
notifications | 2008-07-14 | Installed | root:root | 666
turing-machine | 2013-12-27 | Installed | root:root | 666
iana-if-type | 2014-05-08 | Installed | |
ietf-interfaces | 2014-05-08 | Installed | root:root | 666
ietf-ip | 2014-06-16 | Installed | |
kea-dhcp4-server | 2018-11-20 | Installed | root:root | 666
kea-dhcp6-server | 2018-11-20 | Installed | root:root | 666
ietf-dhcpv6-server | 2018-09-04 | Installed | root:root | 666
ietf-dhcpv6-options | 2018-09-04 | Imported | |
ietf-dhcpv6-types | 2018-01-30 | Imported | |

To install a new revision of a module it must first be uninstalled, e.g.
by:

sudo sysrepoctl -u -m kea-dhcp4-server

If the module is used (i.e. imported) by other modules, it can be
uninstalled only after those modules have finished using it.
Installation and uninstallation must be done in dependency order and
reverse-dependency order accordingly.

20.4. Supported YANG Models

The only currently supported models are kea-dhcp4-server and
kea-dhcp6-server. There is partial support for
ietf-dhcpv6-server, but the primary focus of testing has been on Kea DHCP
servers. Several other models (kea-dhcp-ddns and kea-ctrl-agent)
are currently not supported.

20.5. Using the NETCONF Agent

The NETCONF agent follows this algorithm:

	For each managed server, get the initial configuration from the
server through the control socket.

	Open a connection with the Sysrepo environment and establish two
sessions with the startup and running datastores.

	Check that used (not essential) and required (essential) modules are
installed in the Sysrepo repository at the right revision. If an
essential module - that is, a module where the configuration schema for a
managed server is defined - is not installed, raise a fatal error.

	For each managed server, get the YANG configuration from the startup
datastore, translate it to JSON, and load it onto the server being
configured.

	For each managed server, subscribe a module change callback using its
model name.

	When a running configuration is changed, try to validate or load the
updated configuration via the callback to the managed server.

20.6. Configuration

The behavior described in Using the NETCONF Agent
is controlled by a few configuration flags, which can be set in the
global scope or in a specific managed-server scope. In the second case,
the value defined in the managed-server scope takes precedence. These
flags are:

	boot-update - controls the initial configuration phase; when
true (the default), the initial configuration retrieved from the
classic Kea server JSON configuration file is loaded first, and then
the startup YANG model is loaded. This setting lets administrators
define a control socket in the local JSON file and then download the
configuration from YANG. When set to false, this phase is skipped.

	subscribe-changes - controls the module change
subscription; when true (the default), a module change callback is
subscribed, but when false the phase is skipped and running
configuration updates are disabled. When set to true, the running
datastore is used to subscribe for changes.

	validate-changes - controls how Kea monitors changes in
the Sysrepo configuration. Sysrepo offers two stages where Kea can
interact: validation and application. At the validation (or
SR_EV_VERIFY event, in the Sysrepo naming convention) stage, Kea
retrieves the newly committed configuration and verifies it. If the
configuration is incorrect for any reason, the Kea servers reject it
and the error is propagated back to the Sysrepo, which then returns
an error. This step only takes place if validate-changes is set to
true. In the application (or SR_EV_APPLY event in the Sysrepo naming
convention) stage, the actual configuration is applied. At this stage
Kea can receive the configuration, but it is too late to signal back
any errors as the configuration has already been committed.

The idea behind the initial configuration phase is to boot Kea servers
with a minimal configuration which includes only a control socket,
making them manageable. For instance, for the DHCPv4 server:

{
 "Dhcp4": {
 "control-socket": {
 "socket-type": "unix",
 "socket-name": "/tmp/kea4-sock"
 }
 }
}

Note the alternative to boot with full configurations does not allow
easy tracking of changes or synchronization between the JSON and YANG
configuration sources; therefore, that setup is not really compatible
with the YANG/NETCONF configuration management paradigm, where
everything should be performed in YANG.

With module change subscriptions enabled, the kea-netconf daemon will
monitor any configuration changes as they appear in the Sysrepo. Such
changes can be done using the sysrepocfg tool or remotely using any
NETCONF client. For details, please see the Sysrepo documentation or
A Step-by-Step NETCONF Agent Operation Example.
Those tools can be used to modify YANG configurations in the running
datastore. Note that committed configurations are only updated in the
running datastore; to keep them between server reboots they must be
copied to the startup datastore.

When module changes are tracked (using subscribe-changes set to
true) and the running configuration has changed (e.g. using
sysrepocfg or any NETCONF client), the callback validates the
modified configuration (if validate-changes was not set to false)
and runs a second time to apply the new configuration. If the validation
fails, the callback is still called again but with an ABORT (vs. APPLY)
event with rollback changes.

The returned code of the callback on an APPLY event is ignored, as it is
too late to refuse a bad configuration.

There are four ways in which a modified YANG configuration could
possibly be incorrect:

	It can be non-compliant with the schema, e.g. an unknown entry, missing a
mandatory entry, a value with a bad type, or not matching a constraint.

	It can fail to be translated from YANG to JSON, e.g. an invalid user
context.

	It can fail Kea server sanity checks, e.g. an out-of-subnet-pool range
or an unsupported database type.

	The syntax may be correct and pass server sanity checks but the
configuration fails to run, e.g. the configuration specifies database
credentials but the database refuses the connection.

The first case is handled by Sysrepo. The second and third cases are
handled by kea-netconf in the validation phase (if not disabled by
setting validate-changes to true). The last case causes the
application phase to fail without a sensible report to Sysrepo.

The managed Kea servers or agents are described in the
managed-servers section. Each sub-section begins by the service
name: dhcp4, dhcp6, d2 (the DHCP-DDNS server does not
support the control channel feature yet), and ca (the control
agent).

Each managed server entry contains optionally:

	boot-update, subscribe-changes, and validate-changes -
control flags.

	model - specifies the YANG model / module name. For each service,
the default is the corresponding Kea YANG model, e.g. for "dhcp4"
it is "kea-dhcp4-server".

	control-socket - specifies the control socket for managing the
service configuration.

A control socket is specified by:

	socket-type - the socket type is either stdout, unix, or http.
stdout is the default;
it is not really a socket, but it allows kea-netconf to run in
debugging mode where everything is printed on stdout, and it can also be
used to redirect commands easily. unix is the standard direct
server control channel, which uses UNIX sockets, and http uses
a control agent, which accepts HTTP connections.

	socket-name - the local socket name for the unix socket type
(default empty string).

	socket-url - the HTTP URL for the http socket type (default
http://127.0.0.1:8000/).

User contexts can store arbitrary data as long as they are in valid JSON
syntax and their top-level element is a map (i.e. the data must be
enclosed in curly brackets). They are accepted at the NETCONF entry,
i.e. below the top-level, managed-service entry, and control-socket
entry scopes.

Hooks libraries can be loaded by the NETCONF agent just as with other
servers or agents; however, currently no hook points are defined. The
hooks-libraries list contains the list of hooks libraries that
should be loaded by kea-netconf, along with their configuration
information specified with parameters.

Please consult Logging for details on how to configure
logging. The NETCONF agent’s root logger’s name is kea-netconf, as
given in the example above.

20.7. A kea-netconf Configuration Example

The following example demonstrates the basic NETCONF configuration. More
examples are available in the doc/examples/netconf directory in the
Kea sources.

This is a simple example of a configuration for the NETCONF agent.
This server provides a YANG interface for all Kea servers and the agent.
{
 "Netconf":
 {
 # Control flags can be defined in the global scope or
 # in a managed server scope. Precedences are:
 # - use the default value (true)
 # - use the global value
 # - use the local value.
 # So this overwrites the default value:
 "boot-update": false,

 # This map specifies how each server is managed. For each server there
 # is a name of the YANG model to be used and the control channel.
 //
 # Currently three control channel types are supported:
 # "stdout" which outputs the configuration on the standard output,
 # "unix" which uses the local control channel supported by the
 # "dhcp4" and "dhcp6" servers ("d2" support is not yet available),
 # and "http" which uses the Control Agent "ca" to manage itself or
 # to forward commands to "dhcp4" or "dhcp6".
 "managed-servers":
 {
 # This is how kea-netconf can communicate with the DHCPv4 server.
 "dhcp4":
 {
 "comment": "DHCP4 server",
 "model": "kea-dhcp4-server",
 "control-socket":
 {
 "socket-type": "unix",
 "socket-name": "/tmp/kea4-ctrl-socket"
 }
 },

 # DHCPv6 parameters.
 "dhcp6":
 {
 "model": "kea-dhcp6-server",
 "control-socket":
 {
 "socket-type": "unix",
 "socket-name": "/tmp/kea6-ctrl-socket"
 }
 },

 # Currently the DHCP-DDNS (nicknamed D2) server does not support
 # a command channel.
 "d2":
 {
 "model": "kea-dhcp-ddns",
 "control-socket":
 {
 "socket-type": "stdout",
 "user-context": { "in-use": false }
 }
 },

 # Of course the Control Agent (CA) supports HTTP.
 "ca":
 {
 "model": "kea-ctrl-agent",
 "control-socket":
 {
 "socket-type": "http",
 "socket-url": "http://127.0.0.1:8000/"
 }
 }
 },

 # kea-netconf is able to load hooks libraries that augment its operation.
 # Currently there are no hook points defined in kea-netconf
 # processing.
 "hooks-libraries": [
 # The hooks libraries list may contain more than one library.
 {
 # The only necessary parameter is the library filename.
 "library": "/opt/local/netconf-commands.so",

 # Some libraries may support parameters. Make sure you
 # type this section carefully, as kea-netconf does not
 # validate it (because the format is library-specific).
 "parameters": {
 "param1": "foo"
 }
 }
],

 # Similar to other Kea components, NETCONF also uses logging.
 "loggers": [
 {
 "name": "kea-netconf",
 "output_options": [
 {
 "output": "/var/log/kea-netconf.log",
 # Several additional parameters are possible in
 # addition to the typical output.
 # Flush determines whether logger flushes output
 # to a file.
 # Maxsize determines maximum filesize before
 # the file is being rotated.
 # Maxver specifies the maximum number of
 # rotated files being kept.
 "flush": true,
 "maxsize": 204800,
 "maxver": 4
 }
],
 "severity": "INFO",
 "debuglevel": 0
 }
]
 }
}

20.8. Starting and Stopping the NETCONF Agent

kea-netconf accepts the following command-line switches:

	-c file - specifies the configuration file.

	-d - specifies whether the agent logging should be switched to
debug/verbose mode. In verbose mode, the logging severity and
debuglevel specified in the configuration file are ignored and
“debug” severity and the maximum debuglevel (99) are assumed. The
flag is convenient for temporarily switching the server into maximum
verbosity, e.g. when debugging.

	-t file - specifies the configuration file to be tested.
Kea-netconf attempts to load it and conducts sanity checks; note that
certain checks are possible only while running the actual server. The
actual status is reported with exit code (0 = configuration looks ok,
1 = error encountered). Kea will print out log messages to standard
output and error to standard error when testing configuration.

	-v - displays the version of kea-netconf and exits.

	-V - displays the extended version information for kea-netconf
and exits. The listing includes the versions of the libraries
dynamically linked to Kea.

	-W - displays the Kea configuration report and exits. The report
is a copy of the config.report file produced by ./configure;
it is embedded in the executable binary.

20.9. A Step-by-Step NETCONF Agent Operation Example

Note

Copies of example configurations presented within this section can be
found in the Kea source code, under
doc/examples/netconf/kea-dhcp6-operations.

20.9.1. Setup of NETCONF Agent Operation Example

The test box has an Ethernet interface named eth1. On some systems it is
possible to rename interfaces, for instance on a Linux with an ens38
interface:

ip link set down dev ens38
ip link set name eth1 dev ens38
ip link set up dev eth1

The interface must have an address in the test prefix:

ip -6 addr add 2001:db8::1/64 dev eth1

The Kea DHCPv6 server must be launched with the configuration specifying
a control socket used to receive control commands. The kea-netconf
process uses this socket to communicate with the DHCPv6 server, i.e. it
pushes translated configurations to that server using control commands.
The following is the example control socket specification for the Kea
DHCPv6 server:

{
 "Dhcp6": {
 "control-socket": {
 "socket-type": "unix",
 "socket-name": "/tmp/kea6-sock"
 }
 }
}

In order to launch the Kea DHCPv6 server using the configuration
contained within the boot.json file, run:

kea-dhcp6 -d -c boot.json

The current configuration of the server can be fetched via control
socket by running:

echo '{ "command": "config-get" }' | socat UNIX:/tmp/kea6-sock '-,ignoreeof'

The following is the example netconf.json configuration for
kea-netconf, to manage the Kea DHCPv6 server:

{
 "Netconf":
 {
 "managed-servers":
 {
 "dhcp6":
 {
 "control-socket":
 {
 "socket-type": "unix",
 "socket-name": "/tmp/kea6-sock"
 }
 }
 },

 "loggers":
 [
 {
 "name": "kea-netconf",
 "output_options":
 [
 {
 "output": "stderr"
 }
],
 "severity": "DEBUG",
 "debuglevel": 99
 }
]
 }
}

Note that in production there should not be a need to log at the DEBUG level.

The Kea NETCONF agent is launched by:

kea-netconf -d -c netconf.json

Now that both kea-netconf and kea-dhcp6 are running, it is
possible to populate updates to the configuration to the DHCPv6 server.
The following is the configuration extracted from startup.xml:

<config xmlns="urn:ietf:params:xml:ns:yang:kea-dhcp6-server">
 <subnet6>
 <id>1</id>
 <pool>
 <start-address>2001:db8::1:0</start-address>
 <end-address>2001:db8::1:ffff</end-address>
 <prefix>2001:db8::1:0/112</prefix>
 </pool>
 <subnet>2001:db8::/64</subnet>
 </subnet6>
 <interfaces-config>
 <interfaces>eth1</interfaces>
 </interfaces-config>
 <control-socket>
 <socket-name>/tmp/kea6-sock</socket-name>
 <socket-type>unix</socket-type>
 </control-socket>
</config>

To populate this new configuration:

sysrepocfg -d startup -f xml -i startup.xml kea-dhcp6-server

kea-netconf pushes the configuration found in the Sysrepo startup
datastore to all Kea servers during its initialization phase, after it
subscribes to module changes in the Sysrepo running datastore. This
action copies the configuration from the startup datastore to the
running datastore and enables the running datastore, making it
available.

Changes to the running datastore are applied after validation to the Kea
servers. Note that they are not by default copied back to the startup
datastore, i.e. changes are not permanent.

20.9.2. Error Handling in NETCONF Operation Example

There are four classes of issues with the configurations applied via
NETCONF:

	The configuration does not comply with the YANG schema.

	The configuration cannot be translated from YANG to the Kea JSON.

	The configuration is rejected by the Kea server.

	The configuration was validated by the Kea server but cannot be
applied.

In the first case, consider the following BAD-schema.xml
configuration file:

<config xmlns="urn:ietf:params:xml:ns:yang:kea-dhcp6-server">
 <subnet4>
 <id>1</id>
 <pool>
 <start-address>2001:db8::1:0</start-address>
 <end-address>2001:db8::1:ffff</end-address>
 <prefix>2001:db8::1:0/112</prefix>
 </pool>
 <subnet>2001:db8::/64</subnet>
 </subnet6>
 <interfaces-config>
 <interfaces>eth1</interfaces>
 </interfaces-config>
 <control-socket>
 <socket-name>/tmp/kea6-sock</socket-name>
 <socket-type>unix</socket-type>
 </control-socket>
</config>

It is directly rejected by sysrepocfg:

sysrepocfg -d running -f xml -i BAD-schema.xml kea-dhcp6-server

In the second case, the configuration is rejected by kea-netconf.
For example, consider this BAD-translator.xml file:

<config xmlns="urn:ietf:params:xml:ns:yang:kea-dhcp6-server">
 <subnet6>
 <id>1</id>
 <pool>
 <start-address>2001:db8::1:0</start-address>
 <end-address>2001:db8::1:ffff</end-address>
 <prefix>2001:db8::1:0/112</prefix>
 </pool>
 <subnet>2001:db8::/64</subnet>
 </subnet6>
 <interfaces-config>
 <interfaces>eth1</interfaces>
 </interfaces-config>
 <control-socket>
 <socket-name>/tmp/kea6-sock</socket-name>
 <socket-type>unix</socket-type>
 </control-socket>
 <user-context>bad</user-context>
</config>

In the third case, the configuration is presented to the Kea DHCPv6
server and fails to validate as in this BAD-config.xml file:

<config xmlns="urn:ietf:params:xml:ns:yang:kea-dhcp6-server">
 <subnet6>
 <id>1</id>
 <pool>
 <start-address>2001:db8:1::0</start-address>
 <end-address>2001:db8:1::ffff</end-address>
 <prefix>2001:db8:1::0/112</prefix>
 </pool>
 <subnet>2001:db8::/64</subnet>
 </subnet6>
 <interfaces-config>
 <interfaces>eth1</interfaces>
 </interfaces-config>
 <control-socket>
 <socket-name>/tmp/kea6-sock</socket-name>
 <socket-type>unix</socket-type>
 </control-socket>
</config>

In the last case, the misconfiguration is detected too late and the
change must be reverted in Sysrepo, e.g. using the startup datastore as
a backup. For this reason, please use the sysrepocfg --permanent
/ -p option (or any similar feature of NETCONF clients) with care.

20.9.3. NETCONF Operation Example with Two Pools

This example adds a second pool to the initial (i.e. startup)
configuration in the twopools.xml file:

<config xmlns="urn:ietf:params:xml:ns:yang:kea-dhcp6-server">
 <subnet6>
 <id>1</id>
 <pool>
 <start-address>2001:db8::1:0</start-address>
 <end-address>2001:db8::1:ffff</end-address>
 <prefix>2001:db8::1:0/112</prefix>
 </pool>
 <pool>
 <start-address>2001:db8::2:0</start-address>
 <end-address>2001:db8::2:ffff</end-address>
 <prefix>2001:db8::2:0/112</prefix>
 </pool>
 <subnet>2001:db8::/64</subnet>
 </subnet6>
 <interfaces-config>
 <interfaces>eth1</interfaces>
 </interfaces-config>
 <control-socket>
 <socket-name>/tmp/kea6-sock</socket-name>
 <socket-type>unix</socket-type>
 </control-socket>
</config>

This configuration is installed by:

sysrepocfg -d running -f xml -i twopools.xml kea-dhcp6-server

20.9.4. NETCONF Operation Example with Two Subnets

This example specifies two subnets in the twosubnets.xml file:

<config xmlns="urn:ietf:params:xml:ns:yang:kea-dhcp6-server">
 <subnet6>
 <id>1</id>
 <pool>
 <start-address>2001:db8:1::</start-address>
 <end-address>2001:db8:1::ffff</end-address>
 <prefix>2001:db8:1::/112</prefix>
 </pool>
 <subnet>2001:db8:1::/64</subnet>
 </subnet6>
 <subnet6>
 <id>2</id>
 <pool>
 <start-address>2001:db8:2::</start-address>
 <end-address>2001:db8:2::ffff</end-address>
 <prefix>2001:db8:2::/112</prefix>
 </pool>
 <subnet>2001:db8:2::/64</subnet>
 </subnet6>
 <interfaces-config>
 <interfaces>eth1</interfaces>
 </interfaces-config>
 <control-socket>
 <socket-name>/tmp/kea6-sock</socket-name>
 <socket-type>unix</socket-type>
 </control-socket>
</config>

This configuration is installed by:

sysrepocfg -d running -f xml -i twosubnets.xml kea-dhcp6-server

20.9.5. NETCONF Operation Example with Logging

This example adds a logger entry to the initial (i.e. startup)
configuration in the logging.xml file:

<config xmlns="urn:ietf:params:xml:ns:yang:kea-dhcp6-server">
 <interfaces-config>
 <interfaces>eth1</interfaces>
 </interfaces-config>
 <subnet6>
 <id>1</id>
 <pool>
 <start-address>2001:db8::1:0</start-address>
 <end-address>2001:db8::1:ffff</end-address>
 <prefix>2001:db8::1:0/112</prefix>
 </pool>
 <subnet>2001:db8::/64</subnet>
 </subnet6>
 <control-socket>
 <socket-name>/tmp/kea6-sock</socket-name>
 <socket-type>unix</socket-type>
 </control-socket>
 <logger>
 <name>kea-dhcp6</name>
 <output-option>
 <output>stderr</output>
 </output-option>
 <debuglevel>99</debuglevel>
 <severity>DEBUG</severity>
 </logger>
</config>

The corresponding Kea configuration in JSON is:

{
 "Dhcp6": {
 "control-socket": {
 "socket-name": "/tmp/kea6-sock",
 "socket-type": "unix"
 },
 "interfaces-config": {
 "interfaces": ["eth1"]
 },
 "subnet6": [
 {
 "id": 1,
 "pools": [
 {
 "pool": "2001:db8::1:0/112"
 }
],
 "subnet": "2001:db8::/64"
 }
],
 "loggers": [
 {
 "name": "kea-dhcp6",
 "output_options": [
 {
 "output": "stderr"
 }
],
 "severity": "DEBUG",
 "debuglevel": 99
 }
]
 }
}

Finally, any of the previous examples can be replayed using
sysrepocfg in edit mode as follows:

sysrepocfg -d running -f xml -e vi kea-dhcp6-server

or, of course, using a NETCONF client like netopeer2-cli from the
Netopeer2 [https://github.com/CESNET/Netopeer2] NETCONF Toolset.

21. Monitoring Kea with Stork

It is usually desired to monitor running Kea services. Kea exposes many sources of informations:
configuration files, API, statistics, logs, open database content and more. It may be sometimes
overwhelming to keep up. ISC started the Stork project to address this problem for both Kea
and BIND 9. Stork can address a variety of scenarios:

	you can use Stork as a dashboard. It provides you with an insight into what exactly is going
on with your servers. In particular, it can provide up to date details regarding pool
utilization in your subnets and shared networks, can monitor state of your HA pair (and
provide extra insight in case of failover and recovery events), lets you list, filter and
search for specific host reservations and more. For this capability, you need to deploy
a single Stork server and one Stork agent on each machine you want to monitor.

	you can use Stork agent to integrate Kea with Prometheus and Grafana. Once you deploy a Stork
agent, it starts acting as Prometheus exporter. If you deploy Prometheus in your network, you
will be able to visualize statistics as time-series using Grafana.

	you can do both of the above. If you have Grafana deployed in your network, you can let Stork
know its location. In this configuration, Stork will let you inspect the current status and
will provide a customized link to Grafana to see how a given property behaved over time.

Stork is available in source code, but also as native Deb and RPM packages, which makes it easy
to install on most popular systems. For more details, please see
Stork ARM [https://stork.readthedocs.io] or Stork project page [https://gitlab.isc.org/isc-projects/stork].
The former has a nice collection of screenshots that is frequently updated. It will let you quickly
formulate a first impression of what is currently available. Stork is being rapidly developed with
monthly release. Please check back frequently.

21.1. Kea statistics in Grafana

The ISC Stork project provides an agent, that can be deployed along side Kea and BIND 9. It will
expose Kea statistics in a format that’s acceptable by Prometheus.
One of the major benefits of Prometheus is that it turns repeated one time observation into time series,
which lets you monitor how certain behaviors change over time. It is easy to use other tools
to visualize data available in Prometheus. The most common approach is to use
Grafana to provide visual dashboards. The Stork project provides dashboard
definitions for Kea and BIND 9 that can be imported into Grafana very easily.

You can learn more about Prometheus and Grafana on their websites: Prometheus homepage [https://prometheus.io/]
and Grafana homepage [https://grafana.com/].

API Reference

Kea currently supports 164 commands in kea-ctrl-agent, kea-dhcp-ddns, kea-dhcp4, kea-dhcp6 daemons and cb_cmds, class_cmds, high_availability, host_cache, host_cmds, lease_cmds, stat_cmds, subnet_cmds hook libraries.

Commands supported by kea-ctrl-agent daemon: build-report, config-get, config-reload, config-set, config-test, config-write, list-commands, shutdown, status-get, version-get.

Commands supported by kea-dhcp-ddns daemon: build-report, config-get, config-reload, config-set, config-test, config-write, list-commands, shutdown, status-get, version-get.

Commands supported by kea-dhcp4 daemon: build-report, cache-clear, cache-get, cache-get-by-id, cache-insert, cache-load, cache-remove, cache-size, cache-write, class-add, class-del, class-get, class-list, class-update, config-backend-pull, config-get, config-reload, config-set, config-test, config-write, dhcp-disable, dhcp-enable, ha-continue, ha-heartbeat, ha-maintenance-cancel, ha-maintenance-notify, ha-maintenance-start, ha-scopes, ha-sync, lease4-add, lease4-del, lease4-get, lease4-get-all, lease4-get-by-client-id, lease4-get-by-hostname, lease4-get-by-hw-address, lease4-get-page, lease4-resend-ddns, lease4-update, lease4-wipe, leases-reclaim, libreload, list-commands, network4-add, network4-del, network4-get, network4-list, network4-subnet-add, network4-subnet-del, remote-global-parameter4-del, remote-global-parameter4-get, remote-global-parameter4-get-all, remote-global-parameter4-set, remote-network4-del, remote-network4-get, remote-network4-list, remote-network4-set, remote-option-def4-del, remote-option-def4-get, remote-option-def4-get-all, remote-option-def4-set, remote-option4-global-del, remote-option4-global-get, remote-option4-global-get-all, remote-option4-global-set, remote-option4-network-del, remote-option4-network-set, remote-option4-pool-del, remote-option4-pool-set, remote-option4-subnet-del, remote-option4-subnet-set, remote-server4-del, remote-server4-get, remote-server4-get-all, remote-server4-set, remote-subnet4-del-by-id, remote-subnet4-del-by-prefix, remote-subnet4-get-by-id, remote-subnet4-get-by-prefix, remote-subnet4-list, remote-subnet4-set, reservation-add, reservation-del, reservation-get, reservation-get-all, reservation-get-by-hostname, reservation-get-page, server-tag-get, shutdown, stat-lease4-get, statistic-get, statistic-get-all, statistic-remove, statistic-remove-all, statistic-reset, statistic-reset-all, statistic-sample-age-set, statistic-sample-age-set-all, statistic-sample-count-set, statistic-sample-count-set-all, status-get, subnet4-add, subnet4-del, subnet4-get, subnet4-list, subnet4-update, version-get.

Commands supported by kea-dhcp6 daemon: build-report, cache-clear, cache-get, cache-get-by-id, cache-insert, cache-load, cache-remove, cache-size, cache-write, class-add, class-del, class-get, class-list, class-update, config-backend-pull, config-get, config-reload, config-set, config-test, config-write, dhcp-disable, dhcp-enable, ha-continue, ha-heartbeat, ha-maintenance-cancel, ha-maintenance-notify, ha-maintenance-start, ha-scopes, ha-sync, lease6-add, lease6-bulk-apply, lease6-del, lease6-get, lease6-get-all, lease6-get-by-duid, lease6-get-by-hostname, lease6-get-page, lease6-resend-ddns, lease6-update, lease6-wipe, leases-reclaim, libreload, list-commands, network6-add, network6-del, network6-get, network6-list, network6-subnet-add, network6-subnet-del, remote-global-parameter6-del, remote-global-parameter6-get, remote-global-parameter6-get-all, remote-global-parameter6-set, remote-network6-del, remote-network6-get, remote-network6-list, remote-network6-set, remote-option-def6-del, remote-option-def6-get, remote-option-def6-get-all, remote-option-def6-set, remote-option6-global-del, remote-option6-global-get, remote-option6-global-get-all, remote-option6-global-set, remote-option6-network-del, remote-option6-network-set, remote-option6-pd-pool-del, remote-option6-pd-pool-set, remote-option6-pool-del, remote-option6-pool-set, remote-option6-subnet-del, remote-option6-subnet-set, remote-server6-del, remote-server6-get, remote-server6-get-all, remote-server6-set, remote-subnet6-del-by-id, remote-subnet6-del-by-prefix, remote-subnet6-get-by-id, remote-subnet6-get-by-prefix, remote-subnet6-list, remote-subnet6-set, reservation-add, reservation-del, reservation-get, reservation-get-all, reservation-get-by-hostname, reservation-get-page, server-tag-get, shutdown, stat-lease6-get, statistic-get, statistic-get-all, statistic-remove, statistic-remove-all, statistic-reset, statistic-reset-all, statistic-sample-age-set, statistic-sample-age-set-all, statistic-sample-count-set, statistic-sample-count-set-all, status-get, subnet6-add, subnet6-del, subnet6-get, subnet6-list, subnet6-update, version-get.

Commands supported by cb_cmds hook library: remote-global-parameter4-del, remote-global-parameter4-get, remote-global-parameter4-get-all, remote-global-parameter4-set, remote-global-parameter6-del, remote-global-parameter6-get, remote-global-parameter6-get-all, remote-global-parameter6-set, remote-network4-del, remote-network4-get, remote-network4-list, remote-network4-set, remote-network6-del, remote-network6-get, remote-network6-list, remote-network6-set, remote-option-def4-del, remote-option-def4-get, remote-option-def4-get-all, remote-option-def4-set, remote-option-def6-del, remote-option-def6-get, remote-option-def6-get-all, remote-option-def6-set, remote-option4-global-del, remote-option4-global-get, remote-option4-global-get-all, remote-option4-global-set, remote-option4-network-del, remote-option4-network-set, remote-option4-pool-del, remote-option4-pool-set, remote-option4-subnet-del, remote-option4-subnet-set, remote-option6-global-del, remote-option6-global-get, remote-option6-global-get-all, remote-option6-global-set, remote-option6-network-del, remote-option6-network-set, remote-option6-pd-pool-del, remote-option6-pd-pool-set, remote-option6-pool-del, remote-option6-pool-set, remote-option6-subnet-del, remote-option6-subnet-set, remote-server4-del, remote-server4-get, remote-server4-get-all, remote-server4-set, remote-server6-del, remote-server6-get, remote-server6-get-all, remote-server6-set, remote-subnet4-del-by-id, remote-subnet4-del-by-prefix, remote-subnet4-get-by-id, remote-subnet4-get-by-prefix, remote-subnet4-list, remote-subnet4-set, remote-subnet6-del-by-id, remote-subnet6-del-by-prefix, remote-subnet6-get-by-id, remote-subnet6-get-by-prefix, remote-subnet6-list, remote-subnet6-set.

Commands supported by class_cmds hook library: class-add, class-del, class-get, class-list, class-update.

Commands supported by high_availability hook library: ha-continue, ha-heartbeat, ha-maintenance-cancel, ha-maintenance-notify, ha-maintenance-start, ha-scopes, ha-sync.

Commands supported by host_cache hook library: cache-clear, cache-get, cache-get-by-id, cache-insert, cache-load, cache-remove, cache-size, cache-write.

Commands supported by host_cmds hook library: reservation-add, reservation-del, reservation-get, reservation-get-all, reservation-get-by-hostname, reservation-get-page.

Commands supported by lease_cmds hook library: lease4-add, lease4-del, lease4-get, lease4-get-all, lease4-get-by-client-id, lease4-get-by-hostname, lease4-get-by-hw-address, lease4-get-page, lease4-resend-ddns, lease4-update, lease4-wipe, lease6-add, lease6-bulk-apply, lease6-del, lease6-get, lease6-get-all, lease6-get-by-duid, lease6-get-by-hostname, lease6-get-page, lease6-resend-ddns, lease6-update, lease6-wipe.

Commands supported by stat_cmds hook library: stat-lease4-get, stat-lease6-get.

Commands supported by subnet_cmds hook library: network4-add, network4-del, network4-get, network4-list, network4-subnet-add, network4-subnet-del, network6-add, network6-del, network6-get, network6-list, network6-subnet-add, network6-subnet-del, subnet4-add, subnet4-del, subnet4-get, subnet4-list, subnet4-update, subnet6-add, subnet6-del, subnet6-get, subnet6-list, subnet6-update.

build-report

This command returns the list of compilation options that this particular binary was built with.

Supported by: kea-ctrl-agent, kea-dhcp-ddns, kea-dhcp4, kea-dhcp6

Availability: 1.2.0 (built-in)

Description and examples: see build-report command

Command syntax:

{
 "command": "build-report"
}

Response syntax:

{
 "result": 0,
 "text": <string with build details>
}

cache-clear

This command removes all cached host reservations.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.4.0 (host_cache hook library)

Description and examples: see cache-clear command

Command syntax:

{
 "command": "cache-clear"
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

cache-get

This command returns the full content of the host cache.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.4.0 (host_cache hook library)

Description and examples: see cache-get command

Command syntax:

{
 "command": "cache-get"
}

Response syntax:

{
 "result": 0,
 "text": "123 entries returned.",
 "arguments": <list of host reservations>
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

cache-get-by-id

This command returns entries matching the given identifier from the host cache.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.6.0 (host_cache hook library)

Description and examples: see cache-get-by-id command

Command syntax:

{
 "command": "cache-get-by-id",
 "arguments": {
 "hw-address": "01:02:03:04:05:06"
 }
}

Response syntax:

{
 "result": 0,
 "text": "2 entries returned.",
 "arguments": <list of host reservations>
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

cache-insert

This command inserts a host into the cache.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.4.0 (host_cache hook library)

Description and examples: see cache-insert command

Command syntax:

{
 "command": "cache-insert",
 "arguments": {
 "hw-address": "01:02:03:04:05:06",
 "subnet-id4": 4,
 "subnet-id6": 0,
 "ip-address": "192.0.2.100",
 "hostname": "somehost.example.org",
 "client-classes4": [],
 "client-classes6": [],
 "option-data4": [],
 "option-data6": [],
 "next-server": "192.0.0.2",
 "server-hostname": "server-hostname.example.org",
 "boot-file-name": "bootfile.efi",
 "host-id": 0
 }
},
{
 "command": "cache-insert",
 "arguments": {
 "hw-address": "01:02:03:04:05:06",
 "subnet-id4": 0,
 "subnet-id6": 6,
 "ip-addresses": ["2001:db8::cafe:babe"],
 "prefixes": ["2001:db8:dead:beef::/64"],
 "hostname": "",
 "client-classes4": [],
 "client-classes6": [],
 "option-data4": [],
 "option-data6": [],
 "next-server": "0.0.0.0",
 "server-hostname": "",
 "boot-file-name": "",
 "host-id": 0
 }
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

cache-load

This command allows the contents of a file on disk to be loaded into an in-memory cache.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.4.0 (host_cache hook library)

Description and examples: see cache-load command

Command syntax:

{
 "command": "cache-load",
 "arguments": "/tmp/kea-host-cache.json"
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

cache-remove

This command removes entries from the host cache. It takes parameters similar to the reservation-get command.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.4.0 (host_cache hook library)

Description and examples: see cache-remove command

Command syntax:

{
 "command": "cache-remove",
 "arguments": {
 "ip-address": "192.0.2.1",
 "subnet-id": 123
 }
}

Another example that removes the IPv6 host identifier by DUID and specific subnet-id is:
{
 "command": "cache-remove",
 "arguments": {
 "duid": "00:01:ab:cd:f0:a1:c2:d3:e4",
 "subnet-id": 123
 }
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

cache-size

This command returns the number of entries in the host cache.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.6.0 (host_cache hook library)

Description and examples: see cache-size command

Command syntax:

{
 "command": "cache-size"
}

Response syntax:

{
 "result": 0,
 "text": "123 entries.",
 "arguments": { "size": 123 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

cache-write

This command instructs Kea to write its host cache content to disk.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.4.0 (host_cache hook library)

Description and examples: see cache-write command

Command syntax:

{
 "command": "cache-write",
 "arguments": "/path/to/the/file.json"
}

The command takes one mandatory argument that specifies the filename path of a file to be written.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

class-add

This command adds a new class to the existing server configuration.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.5.0 (class_cmds hook library)

Description and examples: see class-add command

Command syntax:

{
 "command": "class-add",
 "arguments": {
 "client-classes": [{
 "name": <name of the class>,
 "test": <test expression to be evaluated on incoming packets>,
 "option-data": [<option values here>],
 "option-def": [<option definitions here>],
 "next-server": <ipv4 address>,
 "server-hostname": <string>,
 "boot-file-name": <name of the boot file>
 }]
 }
}

The next-server, server-hostname, and boot-file-name are DHCPv4-specific. Only one client class can be added with a single command.

Response syntax:

{
 "result": 0,
 "text": "Class '<class-name>' added."
}

The command is successful (result 0), unless the class name is a duplicate or another error occurs (result 1).

class-del

This command removes a client class from the server configuration.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.5.0 (class_cmds hook library)

Description and examples: see class-del command

Command syntax:

{
 "command": "class-del",
 "arguments": {
 "name": <name of the class>
 }
}

Response syntax:

{
 "result": 0,
 "text": "Class '<class-name>' deleted."
}

The command returns a result of 3 (empty) if the client class does not exist. If the client class exists, the returned result is 0 if the deletion was successful; the result is 1 if the deletion is unsuccessful.

class-get

This command returns detailed information about an existing client class.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.5.0 (class_cmds hook library)

Description and examples: see class-get command

Command syntax:

{
 "command": "class-get",
 "arguments": {
 "name": <name of the class>
 }
}

Response syntax:

{
 "result": 0,
 "text": "Class '<class-name>' definition returned",
 "arguments": {
 "client-classes": [
 {
 "name": <name of the class>,
 "only-if-required": <only if required boolean value>,
 "test": <test expression to be evaluated on incoming packets>,
 "option-data": [<option values here>],
 "option-def": [<option definitions here>],
 "next-server": <ipv4 address>,
 "server-hostname": <string>,
 "boot-file-name": <name of the boot file>
 }
]
 }
}

The returned information depends on the DHCP server type, i.e. some parameters are specific to the DHCPv4 server. Also, some parameters may not be returned if they are not set for the client class. If a class with the specified name does not exist, a result of 3 (empty) is returned. If the client class is found, the result of 0 is returned. If there is an error while processing the command, the result of 1 is returned.

class-list

This command retrieves a list of all client classes from the server configuration.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.5.0 (class_cmds hook library)

Description and examples: see class-list command

Command syntax:

{
 "command": "class-list"
}

This command includes no arguments.

Response syntax:

{
 "result": 0,
 "text": "'<number of>' classes found",
 "arguments": {
 "client-classes": [
 {
 "name": <first class name>
 },
 {
 "name": <second class name>
 }
]
 }
}

The returned list of classes merely contains their names.
In order to retrieve full information about one of these
classes, use The class-get Command.
The returned result is 3 (empty) if no classes are found.
If the command is processed successfully and the list of
client classes is not empty, the result of 0 is returned.
If there is an error while processing the command, the
result of 1 is returned.

class-update

This command updates an existing client class in the server configuration.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.5.0 (class_cmds hook library)

Description and examples: see class-update command

Command syntax:

{
 "command": "class-update",
 "arguments": {
 "client-classes": [{
 "name": <name of the class>,
 "test": <test expression to be evaluated on incoming packets>,
 "option-data": [<option values here>],
 "option-def": [<option definitions here>],
 "next-server": <ipv4 address>,
 "server-hostname": <string>,
 "boot-file-name": <name of the boot file>
 }]
 }
}

The next-server, server-hostname, and boot-file-name are DHCPv4-specific. Only one client class can be updated with a single command.

Response syntax:

{
 "result": 0,
 "text": "Class '<class-name>' updated."
}

The command returns the result of 3 (empty) if the client class does not exist. If the client class exists, the returned result is 0 if the update was successful, or 1 if the update is unsuccessful.

config-backend-pull

This command forces an immediate update of the server using Config Backends.
This command does not take any parameters.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.7.1 (built-in)

Description and examples: see config-backend-pull command

Command syntax:

{
 "command": "config-backend-pull"
}

Response syntax:

{
 "result": 0,
 "text": "On demand configuration update successful."
}

When no Config Backends are configured this command returns empty (3);
If an error occurs error (1) is returned with the error details;
otherwise success (0) is returned.

config-get

This command retrieves the current configuration used by the server. The configuration is essentially the same as the contents of the configuration file, but includes additional changes made by other commands and due to parameters’ inheritance.

Supported by: kea-ctrl-agent, kea-dhcp-ddns, kea-dhcp4, kea-dhcp6

Availability: 1.2.0 (built-in)

Description and examples: see config-get command

Command syntax:

{
 "command": "config-get"
}

This command takes no parameters.

Response syntax:

{
 "result": <integer>,
 "arguments": {
 <Dhcp4, Dhcp6, or Control-agent object>: <JSON configuration here>
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

config-reload

This command instructs Kea to reload the configuration file that was used previously.

Supported by: kea-ctrl-agent, kea-dhcp-ddns, kea-dhcp4, kea-dhcp6

Availability: 1.2.0 (built-in)

Description and examples: see config-reload command

Command syntax:

{
 "command": "config-reload"
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

config-set

This command instructs the server to replace its current configuration with the new configuration supplied in the command’s arguments.

Supported by: kea-ctrl-agent, kea-dhcp-ddns, kea-dhcp4, kea-dhcp6

Availability: 1.2.0 (built-in)

Description and examples: see config-set command

Command syntax:

{
 "command": "config-set",
 "arguments": {
 "'<server>'": {
 }
 }
}

In the example below, ‘<server>’ is the configuration element name for a given server such as “Dhcp4” or “Dhcp6”.

Response syntax:

{"result": 0, "text": "Configuration successful." }

or

{"result": 1, "text": "unsupported parameter: BOGUS (<string>:16:26)" }

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

config-test

This command instructs the server to check whether the new configuration supplied in the command’s arguments can be loaded.

Supported by: kea-ctrl-agent, kea-dhcp-ddns, kea-dhcp4, kea-dhcp6

Availability: 1.2.0 (built-in)

Description and examples: see config-test command

Command syntax:

{
 "command": "config-test",
 "arguments": {
 "'<server>'": {
 }
 }
}

In the example below, <server> is the configuration element name for a given server such as “Dhcp4” or “Dhcp6”.

Response syntax:

{ "result": 0, "text": "Configuration seems sane..." }

or

{ "result": 1, "text": "unsupported parameter: BOGUS (<string>:16:26)" }

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

config-write

This command instructs the Kea server to write its
current configuration to a file on disk.

Supported by: kea-ctrl-agent, kea-dhcp-ddns, kea-dhcp4, kea-dhcp6

Availability: 1.2.0 (built-in)

Description and examples: see config-write command

Command syntax:

{
 "command": "config-write",
 "arguments": {
 "filename": "config-modified-2017-03-15.json"
 }
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

dhcp-disable

This command globally disables the DHCP service.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.4.0 (built-in)

Description and examples: see dhcp-disable command

Command syntax:

{
 "command": "dhcp-disable",
 "arguments": {
 "max-period": 20
 }
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

dhcp-enable

This command globally enables the DHCP service.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.4.0 (built-in)

Description and examples: see dhcp-enable command

Command syntax:

{
 "command": "dhcp-enable"
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

ha-continue

This command resumes the operation of a paused HA state machine.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.4.0 (high_availability hook library)

Description and examples: see ha-continue command

Command syntax:

{
 "command": "ha-continue"
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

ha-heartbeat

This command is sent internally by a Kea partner when operating in High Availability (HA) mode or by the system administrator to verify the state of the servers with regards to the High Availability. It retrieves the server’s HA state and clock value.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.4.0 (high_availability hook library)

Description and examples: see ha-heartbeat command

Command syntax:

{
 "command": "ha-heartbeat"
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

The response to this command is different from the typical command response. The response includes the server state (see Server States) plus the current clock value.

ha-maintenance-cancel

This command is sent to instruct a server in the partner-in-maintenance
state to transition back to the previous state, effectively canceling the
maintenance.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.7.4 (high_availability hook library)

Description and examples: see ha-maintenance-cancel command

Command syntax:

{
 "command": "ha-maintenance-cancel"
}

This command takes no arguments.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

ha-maintenance-notify

This command is sent by the server receiving the ha-maintenance-start
to its partner to cause the partner to transition to the in-maintenance
state or to revert it from the in-maintenance state as a result of
receiving the ha-maintenance-cancel command.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.7.4 (high_availability hook library)

Description and examples: see ha-maintenance-notify command

Command syntax:

{
 "command": "ha-maintenance-notify",
 "arguments": {
 "cancel": <boolean>
 }
}

This command includes a boolean argument which, if false, indicates
that the server should transition to the in-maintenance state.
If the argument is set to true it instructs the server to revert from
the in-maintenance state to its previous state.
This command is not meant to be used by the administrator. It is
merely used for internal communication between the HA partners.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

The response may include a special error code of 1001
to indicate that the partner refused to enter the maintenance state.

ha-maintenance-start

This command is sent to instruct one of the servers to transition
to the partner-in-maintenance state in which it will be responding to
all DHCP queries. The server receiving this command sends the
ha-maintenance-notify to its partner to cause the partner to
transition to the in-maintenance state.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.7.4 (high_availability hook library)

Description and examples: see ha-maintenance-start command

Command syntax:

{
 "command": "ha-maintenance-start"
}

This command takes no arguments.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

ha-scopes

This command modifies the scope that the server is responsible for serving when operating in High Availability (HA) mode.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.4.0 (high_availability hook library)

Description and examples: see ha-scopes command

Command syntax:

{
 "command": "ha-scopes",
 "service": [<service, typically 'dhcp4' or 'dhcp6'>],
 "arguments": {
 "scopes": ["HA_server1", "HA_server2"]
 }
}

In the example below, the arguments configure the server to handle traffic from both the HA_server1 and HA_server2 scopes.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

ha-sync

This command instructs the server running in HA mode to synchronize its local lease database with the selected peer.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.4.0 (high_availability hook library)

Description and examples: see ha-sync command

Command syntax:

{
 "command": "ha-sync",
 "service": [<service affected: 'dhcp4' or 'dhcp6'>],
 "arguments": {
 "server-name": <name of the partner server>,
 "max-period": <integer, in seconds>
 }
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

lease4-add

This command administratively adds a new IPv4 lease.

Supported by: kea-dhcp4

Availability: 1.3.0 (lease_cmds hook library)

Description and examples: see lease4-add command

Command syntax:

{
 "command": "lease4-add",
 "arguments": {
 "ip-address": "192.0.2.202",
 "hw-address": "1a:1b:1c:1d:1e:1f"
 }
}

Note that Kea 1.4 requires an additional argument, subnet-ID, which is optional as of Kea 1.5. A number of other, more-detailed, optional arguments are also supported.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

lease4-del

This command deletes a lease from the lease database.

Supported by: kea-dhcp4

Availability: 1.3.0 (lease_cmds hook library)

Description and examples: see lease4-del command

Command syntax:

{
 "command": "lease4-del",
 "arguments": {
 "ip-address": "192.0.2.202"
 }
}

The lease to be deleted can be specified either by IP address or by identifier-type and identifier value. The currently supported identifiers are “hw-address” and “client-id”.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

lease4-get

This command queries the lease database and retrieves existing leases.

Supported by: kea-dhcp4

Availability: 1.3.0 (lease_cmds hook library)

Description and examples: see lease4-get command

Command syntax:

{
 "command": "lease4-get",
 "arguments": {
 "ip-address": "192.0.2.1"
 }
}

Response syntax:

{
 "arguments": {
 "client-id": "42:42:42:42:42:42:42:42",
 "cltt": 12345678,
 "fqdn-fwd": false,
 "fqdn-rev": true,
 "hostname": "myhost.example.com.",
 "hw-address": "08:08:08:08:08:08",
 "ip-address": "192.0.2.1",
 "state": 0,
 "subnet-id": 44,
 "valid-lft": 3600
 },
 "result": 0,
 "text": "IPv4 lease found."
}

lease4-get returns a result that indicates the outcome of the operation and lease details, if found. It has one of the following values: 0 (success), 1 (error), or 2 (empty).

lease4-get-all

This command retrieves all IPv4 leases or all leases for the specified set of subnets.

Supported by: kea-dhcp4

Availability: 1.4.0 (lease_cmds hook library)

Description and examples: see lease4-get-all command

Command syntax:

{
 "command": "lease4-get-all",
 "arguments": "subnets"
}

The lease4-get-all command may result in very large responses.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

lease4-get-by-client-id

This command retrieves all IPv4 leases with the specified client id.

Supported by: kea-dhcp4

Availability: 1.7.1 (lease_cmds hook library)

Description and examples: see lease4-get-by-client-id command

Command syntax:

{
 "command": "lease4-get-by-client-id",
 "arguments": {
 "client-id": "42:42:42:42:42:42:42:42"
 }
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

lease4-get-by-hostname

This command retrieves all IPv4 leases with the specified hostname.

Supported by: kea-dhcp4

Availability: 1.7.1 (lease_cmds hook library)

Description and examples: see lease4-get-by-hostname command

Command syntax:

{
 "command": "lease4-get-by-hostname",
 "arguments": {
 "hostname": "myhost.example.com."
 }
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

lease4-get-by-hw-address

This command retrieves all IPv4 leases with the specified hardware address.

Supported by: kea-dhcp4

Availability: 1.7.1 (lease_cmds hook library)

Description and examples: see lease4-get-by-hw-address command

Command syntax:

{
 "command": "lease4-get-by-hw-address",
 "arguments": {
 "hw-address": "08:08:08:08:08:08"
 }
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

lease4-get-page

This command retrieves all IPv4 leases by page.

Supported by: kea-dhcp4

Availability: 1.5.0 (lease_cmds hook library)

Description and examples: see lease4-get-page command

Command syntax:

{
 "command": "lease4-get-page",
 "arguments": {
 "limit": <integer>,
 "from": <IPv4 address or start>
 }
}

The from address and the page size limit are mandatory.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

lease4-resend-ddns

This command resends a request to kea-dhcp-ddns to update DNS for an existing lease.

Supported by: kea-dhcp4

Availability: 1.7.6 (lease_cmds hook library)

Description and examples: see lease4-resend-ddns command

Command syntax:

{
 "command": "lease4-resend-ddns",
 "arguments": {
 "ip-address": "192.0.2.1"
 }
}

Response syntax:

{
 "arguments": {
 },
 "result": 0,
 "text": "NCR generated for: 192.0.2.1, hostname: example.com."
}

lease4-resend-ddns returns a result that indicates the outcome of the operation and lease details, if found. It has one of the following values: 0 (success), 1 (error), or 2 (empty).

lease4-update

This command updates existing leases.

Supported by: kea-dhcp4

Availability: 1.3.0 (lease_cmds hook library)

Description and examples: see lease4-update command

Command syntax:

{
 "command": "lease4-update",
 "arguments": {
 "ip-address": "192.0.2.1",
 "hostname": "newhostname.example.org",
 "hw-address": "1a:1b:1c:1d:1e:1f",
 "subnet-id": 44,
 "force-create": true
 }
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

lease4-wipe

This command removes all leases associated with a given subnet.

Supported by: kea-dhcp4

Availability: 1.3.0 (lease_cmds hook library)

Description and examples: see lease4-wipe command

Command syntax:

{
 "command": "lease4-wipe",
 "arguments": {
 "subnet-id": 44
 }
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

lease6-add

This command administratively creates a new lease.

Supported by: kea-dhcp6

Availability: 1.3.0 (lease_cmds hook library)

Description and examples: see lease6-add command

Command syntax:

{
 "command": "lease6-add",
 "arguments": {
 "subnet-id": 66,
 "ip-address": "2001:db8::3",
 "duid": "1a:1b:1c:1d:1e:1f:20:21:22:23:24",
 "iaid": 1234
 }
}

lease6-add can be also used to add leases for IPv6 prefixes.

Response syntax:

{ "result": 0, "text": "Lease added." }
or
{ "result": 1, "text": "missing parameter 'ip-address' (<string>:3:19)" }

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

lease6-bulk-apply

This command creates, updates, or deletes multiple IPv6 leases in a single transaction. It communicates lease changes between HA peers, but may be used in all cases where it is desirable to apply multiple lease updates in a single transaction.

Supported by: kea-dhcp6

Availability: 1.6.0 (lease_cmds hook library)

Description and examples: see lease6-bulk-apply command

Command syntax:

{
 "command": "lease6-bulk-apply",
 "arguments": {
 "deleted-leases": [
 {
 "ip-address": "2001:db8:abcd::",
 "type": "IA_PD",
 ...
 },
 {
 "ip-address": "2001:db8:abcd::234",
 "type": "IA_NA",
 ...
 }
],
 "leases": [
 {
 "subnet-id": 66,
 "ip-address": "2001:db8:cafe::",
 "type": "IA_PD",
 ...
 },
 {
 "subnet-id": 66,
 "ip-address": "2001:db8:abcd::333",
 "type": "IA_NA",
 ...
 }
]
 }
}

If any of the leases is malformed, all changes are rolled back. If the leases are well-formed but the operation fails for one or more leases, these leases are listed in the response; however, the changes are preserved for all leases for which the operation was successful. The “deleted-leases” and “leases” are optional parameters, but one of them must be specified.

Response syntax:

{
 "result": 0,
 "text": "IPv6 leases bulk apply completed.",
 "arguments": {
 "failed-deleted-leases": [
 {
 "ip-address": "2001:db8:abcd::",
 "type": "IA_PD",
 "result": <control result>,
 "error-message": <error message>
 }
],
 "failed-leases": [
 {
 "ip-address": "2001:db8:cafe::",
 "type": "IA_PD",
 "result": <control result>,
 "error-message": <error message>
 }
]
 }
}

The “failed-deleted-leases” holds the list of leases which failed to delete; this includes leases which were not found in the database. The “failed-leases” includes the list of leases which failed to create or update. For each lease for which there was an error during processing, insertion into the database, etc., the result is set to 1. For each lease which was not deleted because the server did not find it in the database, the result of 3 is returned.

lease6-del

This command deletes a lease from the lease database.

Supported by: kea-dhcp6

Availability: 1.3.0 (lease_cmds hook library)

Description and examples: see lease6-del command

Command syntax:

{
 "command": "lease6-del",
 "arguments": {
 "ip-address": "192.0.2.202"
 }
}

lease6-del returns a result that indicates the outcome of the operation. It has one of the following values: 0 (success), 1 (error), or 3 (empty).

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

lease6-get

This command queries the lease database and retrieves existing leases.

Supported by: kea-dhcp6

Availability: 1.3.0 (lease_cmds hook library)

Description and examples: see lease6-get command

Command syntax:

{
 "command": "lease6-get",
 "arguments": {
 "ip-address": "2001:db8:1234:ab::",
 "type": "IA_PD"
 }
}

lease6-get returns a result that indicates the outcome of the operation and lease details, if found. It has one of the following values: 0 (success), 1 (error), or 2 (empty).

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

lease6-get-all

This command retrieves all IPv6 leases or all leases for the specified set of subnets.

Supported by: kea-dhcp6

Availability: 1.3.0 (lease_cmds hook library)

Description and examples: see lease6-get-all command

Command syntax:

{
 "command": "lease6-get-all",
 "arguments": {
 "subnets": [1, 2, 3, 4]
 }
}

Response syntax:

{
 "arguments": {
 "leases": [
 {
 "cltt": 12345678,
 "duid": "42:42:42:42:42:42:42:42",
 "fqdn-fwd": false,
 "fqdn-rev": true,
 "hostname": "myhost.example.com.",
 "hw-address": "08:08:08:08:08:08",
 "iaid": 1,
 "ip-address": "2001:db8:2::1",
 "preferred-lft": 500,
 "state": 0,
 "subnet-id": 44,
 "type": "IA_NA",
 "valid-lft": 3600
 },
 {
 "cltt": 12345678,
 "duid": "21:21:21:21:21:21:21:21",
 "fqdn-fwd": false,
 "fqdn-rev": true,
 "hostname": "",
 "iaid": 1,
 "ip-address": "2001:db8:0:0:2::",
 "preferred-lft": 500,
 "prefix-len": 80,
 "state": 0,
 "subnet-id": 44,
 "type": "IA_PD",
 "valid-lft": 3600
 }
]
 },
 "result": 0,
 "text": "2 IPv6 lease(s) found."
}

The lease6-get-all command may result in very large responses.

lease6-get-by-duid

This command retrieves all IPv6 leases with the specified hardware address.

Supported by: kea-dhcp6

Availability: 1.7.1 (lease_cmds hook library)

Description and examples: see lease6-get-by-duid command

Command syntax:

{
 "command": "lease6-get-by-duid",
 "arguments": {
 "duid": "1a:1b:1c:1d:1e:1f:20:21:22:23:24"
 }
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

lease6-get-by-hostname

This command retrieves all IPv6 leases with the specified hostname.

Supported by: kea-dhcp6

Availability: 1.7.1 (lease_cmds hook library)

Description and examples: see lease6-get-by-hostname command

Command syntax:

{
 "command": "lease6-get-by-hostname",
 "arguments": {
 "hostname": "myhost.example.com."
 }
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

lease6-get-page

This command retrieves all IPv6 leases by page.

Supported by: kea-dhcp6

Availability: 1.5.0 (lease_cmds hook library)

Description and examples: see lease6-get-page command

Command syntax:

{
 "command": "lease6-get-page",
 "arguments": {
 "limit": <integer>,
 "from": <IPv6 address or start>
 }
}

The from address and the page size limit are mandatory.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

lease6-resend-ddns

This command resends a request to kea-dhcp-ddns to update DNS for an existing lease.

Supported by: kea-dhcp6

Availability: 1.7.6 (lease_cmds hook library)

Description and examples: see lease6-resend-ddns command

Command syntax:

{
 "command": "lease6-resend-ddns",
 "arguments": {
 "ip-address": "2001:db8::1"
 }
}

Response syntax:

{
 "arguments": {
 },
 "result": 0,
 "text": "NCR generated for: 2001:db8::1, hostname: example.com."
}

lease6-resend-ddns returns a result that indicates the outcome of the operation and lease details, if found. It has one of the following values: 0 (success), 1 (error), or 2 (empty).

lease6-update

This command updates existing leases.

Supported by: kea-dhcp6

Availability: 1.3.0 (lease_cmds hook library)

Description and examples: see lease6-update command

Command syntax:

{
 "command": "lease6-update",
 "arguments": {
 "ip-address": "2001:db8::1",
 "duid": "88:88:88:88:88:88:88:88",
 "iaid": 7654321,
 "hostname": "newhostname.example.org",
 "subnet-id": 66,
 "force-create": false
 }
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

lease6-wipe

This command removes all leases associated with a given subnet.

Supported by: kea-dhcp6

Availability: 1.3.0 (lease_cmds hook library)

Description and examples: see lease6-wipe command

Command syntax:

{
 "command": "lease6-wipe",
 "arguments": {
 "subnet-id": 66
 }
}

Note: not all backends support this command.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

leases-reclaim

This command instructs the server to reclaim all expired leases immediately.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.0.0 (built-in)

Description and examples: see leases-reclaim command

Command syntax:

{
 "command": "leases-reclaim",
 "arguments": {
 "remove": true
 }
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

libreload

This command first unloads and then reloads all currently loaded hooks libraries.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.2.0 (built-in)

Description and examples: see libreload command

Command syntax:

{
 "command": "libreload",
 "arguments": { }
}

The server responds with 0, indicating success, or 1, indicating a failure.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

list-commands

This command retrieves a list of all commands supported by the server.

Supported by: kea-ctrl-agent, kea-dhcp-ddns, kea-dhcp4, kea-dhcp6

Availability: 1.0.0 (built-in)

Description and examples: see list-commands command

Command syntax:

{
 "command": "list-commands",
 "arguments": { }
}

The server responds with a list of all supported commands.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

network4-add

This command adds a new shared network.

Supported by: kea-dhcp4

Availability: 1.3.0 (subnet_cmds hook library)

Description and examples: see network4-add command

Command syntax:

{
 "command": "network4-add",
 "arguments": {
 "shared-networks": [{
 "name": "floor13",
 "subnet4": [
 {
 "id": 100,
 "pools": [{ "pool": "192.0.2.2-192.0.2.99" }],
 "subnet": "192.0.2.0/24",
 "option-data": [
 {
 "name": "routers",
 "data": "192.0.2.1"
 }
]
 },
 {
 "id": 101,
 "pools": [{ "pool": "192.0.3.2-192.0.3.99" }],
 "subnet": "192.0.3.0/24",
 "option-data": [
 {
 "name": "routers",
 "data": "192.0.3.1"
 }
]
 }]
 }]
 }
}

Response syntax:

{
 "arguments": {
 "shared-networks": [{ "name": "floor13" }]
 },
 "result": 0,
 "text": "A new IPv4 shared network 'floor13' added"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

network4-del

This command deletes existing shared networks.

Supported by: kea-dhcp4

Availability: 1.3.0 (subnet_cmds hook library)

Description and examples: see network4-del command

Command syntax:

{
 "command": "network4-del",
 "arguments": {
 "name": "floor13"
 }
}

Response syntax:

{
 "arguments": {
 "shared-networks": [
 {
 "name": "floor13"
 }
]
 },
 "result": 0,
 "text": "IPv4 shared network 'floor13' deleted"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

network4-get

This command retrieves detailed information about shared networks, including subnets that are currently part of a given network.

Supported by: kea-dhcp4

Availability: 1.3.0 (subnet_cmds hook library)

Description and examples: see network4-get command

Command syntax:

{
 "command": "network4-get",
 "arguments": {
 "name": "floor13"
 }
}

Response syntax:

{
 "result": 0,
 "text": "Info about IPv4 shared network 'floor13' returned",
 "arguments": {
 "shared-networks": [
 {
 "match-client-id": true,
 "name": "floor13",
 "option-data": [],
 "rebind-timer": 90,
 "relay": {
 "ip-address": "0.0.0.0"
 },
 "renew-timer": 60,
 "reservation-mode": "all",
 "subnet4": [
 {
 "subnet": "192.0.2.0/24",
 "id": 5,
 // many other subnet-specific details here
 },
 {
 "subnet": "192.0.3.0/31",
 "id": 6,
 // many other subnet-specific details here
 }
],
 "valid-lifetime": 120
 }
]
 }
}

Note that the actual response contains many additional fields that are omitted here for clarity.

network4-list

This command retrieves the full list of currently configured shared networks.

Supported by: kea-dhcp4

Availability: 1.3.0 (subnet_cmds hook library)

Description and examples: see network4-list command

Command syntax:

{
 "command": "network4-list"
}

Response syntax:

{
 "arguments": {
 "shared-networks": [
 { "name": "floor1" },
 { "name": "office" }
]
 },
 "result": 0,
 "text": "2 IPv4 network(s) found"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

network4-subnet-add

This command adds existing subnets to existing shared networks.

Supported by: kea-dhcp4

Availability: 1.3.0 (subnet_cmds hook library)

Description and examples: see network4-subnet-add command

Command syntax:

{
 "command": "network4-subnet-add",
 "arguments": {
 "name": "floor13",
 "id": 5
 }
}

Response syntax:

{
 "result": 0,
 "text": "IPv4 subnet 10.0.0.0/8 (id 5) is now part of shared network 'floor1'"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

network4-subnet-del

This command removes a subnet that is part of an existing shared network and demotes it to a plain, stand-alone subnet.

Supported by: kea-dhcp4

Availability: 1.3.0 (subnet_cmds hook library)

Description and examples: see network4-subnet-del command

Command syntax:

{
 "command": "network4-subnet-del",
 "arguments": {
 "name": "floor13",
 "id": 5
 }
 }

Response syntax:

{
 "result": 0,
 "text": "IPv4 subnet 10.0.0.0/8 (id 5) is now removed from shared network 'floor13'"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

network6-add

This command adds a new shared network.

Supported by: kea-dhcp6

Availability: 1.3.0 (subnet_cmds hook library)

Description and examples: see network6-add command

Command syntax:

{
 "command": "network4-add",
 "arguments": {
 "shared-networks": [{
 "name": "floor13",
 "subnet4": [
 {
 "id": 100,
 "pools": [{ "pool": "192.0.2.2-192.0.2.99" }],
 "subnet": "192.0.2.0/24",
 "option-data": [
 {
 "name": "routers",
 "data": "192.0.2.1"
 }
]
 },
 {
 "id": 101,
 "pools": [{ "pool": "192.0.3.2-192.0.3.99" }],
 "subnet": "192.0.3.0/24",
 "option-data": [
 {
 "name": "routers",
 "data": "192.0.3.1"
 }
]
 }]
 }]
 }
}

The network6-add command uses the same syntax as network4-add for both the query and the response. However, there are some parameters that are IPv4-only (e.g. match-client-id) and some that are IPv6-only (e.g. interface-id).

Response syntax:

{
 "arguments": {
 "shared-networks": [{ "name": "floor13" }]
 },
 "result": 0,
 "text": "A new IPv4 shared network 'floor13' added"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

network6-del

This command deletes existing shared networks.

Supported by: kea-dhcp6

Availability: 1.3.0 (subnet_cmds hook library)

Description and examples: see network6-del command

Command syntax:

{
 "command": "network4-del",
 "arguments": {
 "name": "floor13"
 }
}

The network6-del command uses exactly the same syntax as network4-del for
both the query and the response.

Response syntax:

{
 "command": "network4-del",
 "arguments": {
 "name": "floor13",
 "subnets-action": "delete"
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

network6-get

The network6-get command retrieves detailed information about shared networks, including subnets that are currently part of a given network.

Supported by: kea-dhcp6

Availability: 1.3.0 (subnet_cmds hook library)

Description and examples: see network6-get command

Command syntax:

{
 "command": "network4-get",
 "arguments": {
 "name": "floor13"
 }
}

Response syntax:

{
 "result": 0,
 "text": "Info about IPv4 shared network 'floor13' returned",
 "arguments": {
 "shared-networks": [
 {
 "match-client-id": true,
 "name": "floor13",
 "option-data": [],
 "rebind-timer": 90,
 "relay": {
 "ip-address": "0.0.0.0"
 },
 "renew-timer": 60,
 "reservation-mode": "all",
 "subnet4": [
 {
 "subnet": "192.0.2.0/24",
 "id": 5,
 // many other subnet specific details here
 },
 {
 "subnet": "192.0.3.0/31",
 "id": 6,
 // many other subnet specific details here
 }
],
 "valid-lifetime": 120
 }
]
 }
}

Note that the actual response contains many additional fields that are omitted here for clarity.

network6-list

This command retrieves the full list of currently configured shared networks.

Supported by: kea-dhcp6

Availability: 1.3.0 (subnet_cmds hook library)

Description and examples: see network6-list command

Command syntax:

{
 "command": "network4-list"
}

The network6-list command uses exactly the same syntax as network4-list for both the query and the response.

Response syntax:

{
 "arguments": {
 "shared-networks": [
 { "name": "floor1" },
 { "name": "office" }
]
 },
 "result": 0,
 "text": "2 IPv4 network(s) found"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

network6-subnet-add

This command adds existing subnets to existing shared networks.

Supported by: kea-dhcp6

Availability: 1.3.0 (subnet_cmds hook library)

Description and examples: see network6-subnet-add command

Command syntax:

{
 "command": "network4-subnet-add",
 "arguments": {
 "name": "floor13",
 "id": 5
 }
}

The network6-subnet-add command uses exactly the same syntax as network4-subnet-add for both the query and the response.

Response syntax:

{
 "result": 0,
 "text": "IPv4 subnet 10.0.0.0/8 (id 5) is now part of shared network 'floor1'"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

network6-subnet-del

This command removes a subnet that is part of an existing shared network and demotes it to a plain, stand-alone subnet.

Supported by: kea-dhcp6

Availability: 1.3.0 (subnet_cmds hook library)

Description and examples: see network6-subnet-del command

Command syntax:

{
 "command": "network4-subnet-del",
 "arguments": {
 "name": "floor13",
 "id": 5
 }
 }

The network6-subnet-del command uses exactly the same syntax as network4-subnet-del for both the query and the response.

Response syntax:

{
 "result": 0,
 "text": "IPv4 subnet 10.0.0.0/8 (id 5) is now removed from shared network 'floor13'"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-global-parameter4-del

This command deletes a global DHCPv4 parameter from the configuration database. The server uses the value specified in the configuration file, or a default value if the parameter is not specified, after deleting the parameter from the database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-global-parameter4-del command

Command syntax:

{
 "command": "remote-global-parameter4-del",
 "arguments": {
 "parameters": [<parameter name as string>],
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

This command carries the list including exactly one name of the parameter to be deleted. The server-tags list is mandatory and it must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error.

Response syntax:

{
 "result": 0,
 "text": "DHCPv4 global parameter(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-global-parameter4-get

This command fetches the selected global parameter for the server from the specified database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-global-parameter4-get command

Command syntax:

{
 "command": "remote-global-parameter4-get",
 "arguments": {
 "parameters": [<parameter name as string>],
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

This command carries a list including exactly one name of the parameter to be fetched. The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error. The server tag “all” is allowed; it fetches the global parameter value shared by all servers.

Response syntax:

{
 "result": 0,
 "text": "DHCPv4 global parameter found.",
 "arguments": {
 "parameters": {
 <parameter name>: <parameter value>,
 "metadata": {
 "server-tags": [<server tag>]
 }
 },
 "count": 1
 }
}

The returned response contains a map with a global parameter name/value pair. The value may be a JSON string, integer, real, or boolean. The metadata is included and provides database-specific information associated with the returned object. If the “all” server tag is specified, the command attempts to fetch the global parameter value associated with all servers. If the explicit server tag is specified, the command fetches the value associated with the given server. If the server-specific value does not exist, the remote-global-parameter4-get command fetches the value associated with all servers.

remote-global-parameter4-get-all

This command fetches all global parameters for the server from the specified database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-global-parameter4-get-all command

Command syntax:

{
 "command": "remote-global-parameter4-get-all",
 "arguments": {
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error. The special server tag “all” is allowed; it fetches the global parameters shared by all servers.

Response syntax:

{
 "result": 0,
 "text": "DHCPv4 global parameters found.",
 "arguments": {
 "parameters": [
 {
 <first parameter name>: <first parameter value>,
 "metadata": {
 "server-tags": [<server tag>]
 }
 },
 {
 <second parameter name>: <second parameter value>,
 "metadata": {
 "server-tags": [<server tag>]
 }
 }
],
 "count": 2
 }
}

The returned response contains a list of maps. Each map contains a global parameter name/value pair. The value may be a JSON string, integer, real, or boolean. The metadata is appended to each parameter and provides database-specific information associated with the returned objects. If the server tag “all” is included in the command, the response contains the global parameters shared among all servers. It excludes server-specific global parameters. If an explicit server tag is included in the command, the response contains all global parameters directly associated with the given server, and the global parameters associated with all servers when server-specific values are not present.

remote-global-parameter4-set

This command creates or updates one or more global parameters in the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-global-parameter4-set command

Command syntax:

{
 "command": "remote-global-parameter4-set",
 "arguments": {
 "parameters": {
 <first parameter name>: <first parameter value>,
 <second parameter name>: <second parameter value>
 },
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

This command carries multiple global parameters with their values. Care should be taken when specifying more than one parameter; in some cases, only a subset of the parameters may be successfully stored in the database and other parameters may fail to be stored. In such cases the remote-global-parameter4-get-all command may be useful to verify the contents of the database after the update. The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error. The server tag “all” is allowed; it associates the specified parameters with all servers.

Response syntax:

{
 "result": 0,
 "text": "DHCPv4 global parameter(s) successfully set.",
 "arguments": {
 "parameters": {
 <first parameter name>: <first parameter value>,
 <second parameter name>: <second parameter value>
 },
 "count": 2
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-global-parameter6-del

This command deletes a global DHCPv6 parameter from the configuration database. The server uses the value specified in the configuration file, or a default value if the parameter is not specified in the configuration file, after deleting the parameter from the database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-global-parameter6-del command

Command syntax:

{
 "command": "remote-global-parameter6-del",
 "arguments": {
 "parameters": [<parameter name as string>],
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

This command carries the list including exactly one name of the parameter to be deleted. The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error.

Response syntax:

{
 "result": 0,
 "text": "DHCPv6 global parameter(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-global-parameter6-get

This command fetches the selected global parameter for the server from the specified database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-global-parameter6-get command

Command syntax:

{
 "command": "remote-global-parameter6-get",
 "arguments": {
 "parameters": [<parameter name as string>],
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

This command carries a list including exactly one name of the parameter to be fetched. The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error. The server tag “all” is allowed; it fetches the global parameter value shared by all servers.

Response syntax:

{
 "result": 0,
 "text": "DHCPv6 global parameter found.",
 "arguments": {
 "parameters": {
 <parameter name>: <parameter value>,
 "metadata": {
 "server-tags": [<server tag>]
 }
 },
 "count": 1
 }
}

The returned response contains a map with a global parameter name/value pair. The value may be a JSON string, integer, real, or boolean. The metadata is included and provides database-specific information associated with the returned object. If the “all” server tag is specified, the command attempts to fetch the global parameter value associated with all servers. If the explicit server tag is specified, the command fetches the value associated with the given server. If the server-specific value does not exist, the remote-global-parameter6-get fetches the value associated with all servers.

remote-global-parameter6-get-all

This command fetches all global parameters for the server from the specified database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-global-parameter6-get-all command

Command syntax:

{
 "command": "remote-global-parameter6-get-all",
 "arguments": {
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error. The special server tag “all” is allowed; it fetches the global parameters shared by all servers.

Response syntax:

{
 "result": 0,
 "text": "DHCPv6 global parameters found.",
 "arguments": {
 "parameters": [
 {
 <first parameter name>: <first parameter value>,
 "metadata": {
 "server-tags": [<server tag>]
 }
 },
 {
 <second parameter name>: <second parameter value>,
 "metadata": {
 "server-tags": [<server tag>]
 }
 }
],
 "count": 2
 }
}

The returned response contains a list of maps. Each map contains a global parameter name/value pair. The value may be a JSON string, integer, real, or boolean. The metadata is appended to each parameter and provides database-specific information associated with the returned objects. If the server tag “all” is included in the command, the response contains the global parameters shared among all servers. It excludes server-specific global parameters. If an explicit server tag is included in the command, the response contains all global parameters directly associated with the given server, and the global parameters associated with all servers when server-specific values are not present.

remote-global-parameter6-set

This command creates or updates one or more global parameters in the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-global-parameter6-set command

Command syntax:

{
 "command": "remote-global-parameter6-set",
 "arguments": {
 "parameters": {
 <first parameter name>: <first parameter value>,
 <second parameter name>: <second parameter value>
 },
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

This command carries multiple global parameters with their values. Care should be taken when specifying more than one parameter; in some cases, only a subset of the parameters may be successfully stored in the database and other parameters may fail to be stored. In such cases the remote-global-parameter6-get-all command may be useful to verify the contents of the database after the update. The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error. The server tag “all” is allowed; it associates the specified parameters with all servers.

Response syntax:

{
 "result": 0,
 "text": "DHCPv6 global parameter(s) successfully set.",
 "arguments": {
 "parameters": {
 <first parameter name>: <first parameter value>,
 <second parameter name>: <second parameter value>
 },
 "count": 2
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-network4-del

This command deletes an IPv4 shared network from the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-network4-del command

Command syntax:

{
 "command": "remote-network4-del",
 "arguments": {
 "shared-networks": [
 {
 "name": <shared network name>
 }
],
 "subnets-action": <'keep' | 'delete'>,
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes a list with exactly one name of the shared network to be deleted. The subnets-action parameter denotes whether the subnets in this shared network should be deleted. The server-tags parameter must not be specified for this command.

Response syntax:

{
 "result": 0,
 "text": "1 IPv4 shared network(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-network4-get

This command fetches the selected IPv4 shared network for the server from the specified database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-network4-get command

Command syntax:

{
 "command": "remote-network4-get",
 "arguments": {
 "shared-networks": [
 {
 "name": <shared network name>
 }
],
 "subnets-include": <'full' | 'no'>,
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes a list with exactly one name of the shared network to be returned. The subnets-include optional parameter allows for specifying whether the subnets belonging to the shared network should also be returned. The server-tags parameter must not be specified for this command.

Response syntax:

{
 "result": 0,
 "text": "IPv4 shared network found.",
 "arguments": {
 "shared-networks": [
 {
 "name": <shared network name>,
 "metadata": {
 "server-tags": [<first server tag>, <second server tag>, ...]
 },
 <the rest of the shared network information, potentially including subnets>
 }
],
 "count": 1
 }
}

If the subnets are returned with the shared network, they are carried in the subnet4 list within the shared network definition. The metadata is included in the returned shared network definition and provides the database-specific information associated with the returned object.

remote-network4-list

This command fetches a list of all IPv4 shared networks from the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-network4-list command

Command syntax:

{
 "command": "remote-network4-list",
 "arguments": {
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<first server tag>, <second server tag>, ...]
 }
}

The server-tags list is required for this command, and must not be empty. It may either contain one or multiple server tags as strings, or a single null value.

Response syntax:

{
 "result": 0,
 "text": "2 IPv4 shared network(s) found.",
 "arguments": {
 "shared-networks": [
 {
 "name": <first shared network name>,
 "metadata": {
 "server-tags": [<first server tag>, <second server tag>, ...]
 }
 },
 {
 "name": <second shared network name>,
 "metadata": {
 "server-tags": [<first server tag>, ...]
 }
 }
],
 "count": 2
 }
}

The returned response contains the list of maps. Each map contains the shared network name and the metadata, which provides database-specific information associated with the shared network. The returned list does not contain full definitions of the shared networks; use remote-network4-get to fetch the full information about the selected shared networks. If the command includes explicit server tags as strings (including the special server tag “all”), the list contains all shared networks which are associated with any of the specified tags. A network is returned even if it is associated with multiple servers and only one of the specified tags matches. If the command includes the null value in the server-tags list, the response contains all shared networks which are assigned to no servers (unassigned).

remote-network4-set

This command creates or replaces an IPv4 shared network in the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-network4-set command

Command syntax:

{
 "command": "remote-network4-set",
 "arguments": {
 "shared-networks": [
 {
 <shared network specification excluding subnets list>
 }
],
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<first server tag>, <second server tag>, ...]
 }
}

The provided list must contain exactly one shared network specification, and must not contain subnets (the “subnet4” parameter). The subnets are added to the shared network using the remote-subnet4-set command. The server-tags list is mandatory and must contain one or more server tags as strings to explicitly associate the shared network with one or more user-defined servers. It may include the special server tag “all” to associate the network with all servers.

Response syntax:

{
 "result": 0,
 "text": "IPv4 shared network successfully set."
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-network6-del

This command deletes an IPv6 shared network from the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-network6-del command

Command syntax:

{
 "command": "remote-network6-del",
 "arguments": {
 "shared-networks": [
 {
 "name": <shared network name>
 }
],
 "subnets-action": <'keep' | 'delete'>,
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes a list with exactly one name of the shared network to be deleted. The subnets-action parameter indicates whether the subnets in this shared network should be deleted. The server-tags parameter must not be specified for this command.

Response syntax:

{
 "result": 0,
 "text": "1 IPv6 shared network(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-network6-get

This command fetches the selected IPv6 shared network for the server from the specified database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-network6-get command

Command syntax:

{
 "command": "remote-network6-get",
 "arguments": {
 "shared-networks": [
 {
 "name": <shared network name>
 }
],
 "subnets-include": <'full' | 'no'>,
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes a list with exactly one name of the shared network to be returned. The subnets-include optional parameter allows for specifying whether the subnets belonging to the shared network should also be returned. The server-tags parameter must not be specified for this command.

Response syntax:

{
 "result": 0,
 "text": "IPv6 shared network found.",
 "arguments": {
 "shared-networks": [
 {
 "name": <shared network name>,
 "metadata": {
 "server-tags": [<first server tag>, <second server tag>, ...]
 },
 <the rest of the shared network information, potentially including subnets>
 }
],
 "count": 1
 }
}

If the subnets are returned with the shared network, they are carried in the subnet6 list within the shared network definition. The metadata is included in the returned shared network definition and provides the database-specific information associated with the returned object.

remote-network6-list

This command fetches a list of all IPv6 shared networks from the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-network6-list command

Command syntax:

{
 "command": "remote-network6-list",
 "arguments": {
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<first server tag>, <second server tag>, ...]
 }
}

The server-tags list is required for this command, and must not be empty. It may either contain one or multiple server tags as strings, or a single null value.

Response syntax:

{
 "result": 0,
 "text": "2 IPv6 shared network(s) found.",
 "arguments": {
 "shared-networks": [
 {
 "name": <first shared network name>,
 "metadata": {
 "server-tags": [<first server tag>, <second server tag>, ...]
 }
 },
 {
 "name": <second shared network name>,
 "metadata": {
 "server-tags": [<first server tag>, ...]
 }
 }
],
 "count": 2
 }
}

The returned response contains the list of maps. Each map contains the shared network name and the metadata, which provides database-specific information associated with the shared network. The returned list does not contain full definitions of the shared networks; use remote-network6-get to fetch the full information about the selected shared networks. If the command includes explicit server tags as strings (including the special server tag “all”), the list contains all shared networks which are associated with any of the specified tags. A network is returned even if it is associated with multiple servers and only one of the specified tags matches. If the command includes the null value in the server-tags list, the response contains all shared networks which are assigned to no servers (unassigned).

remote-network6-set

This command creates or replaces an IPv6 shared network in the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-network6-set command

Command syntax:

{
 "command": "remote-network6-set",
 "arguments": {
 "shared-networks": [
 {
 <shared network specification excluding subnets list>
 }
],
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<first server tag>, <second server tag>, ...]
 }
}

The provided list must contain exactly one shared network specification, and must not contain subnets (the “subnet6” parameter). The subnets are added to the shared network using the remote-subnet6-set command. The server-tags list is mandatory and must contain one or more server tags as strings to explicitly associate the shared network with one or more user-defined servers. It may include the special server tag “all” to associate the network with all servers.

Response syntax:

{
 "result": 0,
 "text": "IPv6 shared network successfully set."
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option-def4-del

This command deletes a DHCPv4 option definition from the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option-def4-del command

Command syntax:

{
 "command": "remote-option-def4-del",
 "arguments": {
 "option-defs": [{
 "code": <option code>,
 "space": <option space>
 }],
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

This command includes a list with exactly one option definition specification, comprising an option name and code. The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error.

Response syntax:

{
 "result": 0,
 "text": "1 DHCPv4 option definition(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option-def4-get

This command fetches a DHCPv4 option definition from the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option-def4-get command

Command syntax:

{
 "command": "remote-option-def4-get",
 "arguments": {
 "option-defs": [
 {
 "code": <option code>,
 "space": <option space>
 }
],
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

The desired option definition is identified by the pair of option code/space values. The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error. The server tag “all” is allowed, to fetch the option definition instance shared by all servers.

Response syntax:

{
 "result": 0,
 "text": "DHCPv4 option definition found.",
 "arguments": {
 "option-defs": [
 {
 <option definition>,
 "metadata": {
 "server-tags": [<server tag>]
 }
 }
],
 "count": 1
 }
}

The metadata is included and provides database-specific information associated with the returned object. If the “all” server tag is specified, the command attempts to fetch the option definition associated with all servers. If the explicit server tag is specified, the command fetches the option definition associated with the given server. If the server-specific option definition does not exist, the remote-option-def4-get command fetches the option definition associated with all servers.

remote-option-def4-get-all

This command fetches all DHCPv4 option definitions from the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option-def4-get-all command

Command syntax:

{
 "command": "remote-option-def4-get-all",
 "arguments": {
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error. The special server tag “all” is allowed, to fetch the option definitions shared by all servers.

Response syntax:

{
 "result": 0,
 "text": "2 DHCPv4 option definition(s) found.",
 "arguments": {
 "option-defs": [
 {
 <first option definition>,
 "metadata": {
 "server-tags": [<server tag>]
 }
 },
 {
 <second option definition>,
 "metadata": {
 "server-tags": [<server tag>]
 }
 }
],
 "count": 2
 }
}

The returned response contains a list of maps. Each map contains an option definition specification and the metadata, including database-specific information associated with the returned objects. If the server tag “all” is included in the command, the response contains the option definitions shared among all servers. It excludes server-specific option definitions. If an explicit server tag is included in the command, the response contains all option definitions directly associated with the given server, and the option definitions associated with all servers when server-specific option definitions are not present.

remote-option-def4-set

This command creates or replaces a DHCPv4 option definition in the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option-def4-set command

Command syntax:

{
 "command": "remote-option-def4-set",
 "arguments": {
 "option-defs": [
 {
 <option definition specification>
 }
],
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

The provided list must contain exactly one option definition specification. The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error. The server tag “all” is allowed; it associates the specified option definition with all servers.

Response syntax:

{
 "result": 0,
 "text": "DHCPv4 option definition set."
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option-def6-del

This command deletes a DHCPv6 option definition from the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option-def6-del command

Command syntax:

{
 "command": "remote-option-def6-del",
 "arguments": {
 "option-defs": [{
 "code": <option code>,
 "space": <option space>
 }],
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

This command includes a list with exactly one option definition specification, comprising an option name and code. The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error.

Response syntax:

{
 "result": 0,
 "text": "1 DHCPv6 option definition(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option-def6-get

This command fetches a DHCPv6 option definition from the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option-def6-get command

Command syntax:

{
 "command": "remote-option-def6-get",
 "arguments": {
 "option-defs": [
 {
 "code": <option code>,
 "space": <option space>
 }
],
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

The desired option definition is identified by the pair of option code/space values. The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error. The server tag “all” is allowed, to fetch the option definition instance shared by all servers.

Response syntax:

{
 "result": 0,
 "text": "DHCPv6 option definition found.",
 "arguments": {
 "option-defs": [
 {
 <option definition>,
 "metadata": {
 "server-tags": [<server tag>]
 }
 }
],
 "count": 1
 }
}

The metadata is included and provides database-specific information associated with the returned object. If the “all” server tag is specified, the command fetches the option definition associated with all servers. If the explicit server tag is specified, the command fetches the option definition associated with the given server. If the server-specific option definition does not exist, the remote-option-def6-get command fetches the option definition associated with all servers.

remote-option-def6-get-all

This command fetches all DHCPv6 option definitions from the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option-def6-get-all command

Command syntax:

{
 "command": "remote-option-def6-get-all",
 "arguments": {
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error. The special server tag “all” is allowed, to fetch the option definitions shared by all servers.

Response syntax:

{
 "result": 0,
 "text": "2 DHCPv6 option definition(s) found.",
 "arguments": {
 "option-defs": [
 {
 <first option definition>,
 "metadata": {
 "server-tags": [<server tag>]
 }
 },
 {
 <second option definition>,
 "metadata": {
 "server-tags": [<server tag>]
 }
 }
],
 "count": 2
 }
}

The returned response contains a list of maps. Each map contains an option definition specification and the metadata, including database-specific information associated with the returned objects. If the server tag “all” is included in the command, the response contains the option definitions shared among all servers. It excludes server-specific option definitions. If an explicit server tag is included in the command, the response contains all option definitions directly associated with the given server, and the option definitions associated with all servers when server-specific option definitions are not present.

remote-option-def6-set

This command creates or replaces a DHCPv6 option definition in the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option-def6-set command

Command syntax:

{
 "command": "remote-option-def6-set",
 "arguments": {
 "option-defs": [
 {
 <option definition specification>
 }
],
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

The provided list must contain exactly one option definition specification. The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error. The server tag “all” is allowed; it associates the specified option definition with all servers.

Response syntax:

{
 "result": 0,
 "text": "DHCPv6 option definition set."
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option4-global-del

This command deletes a DHCPv4 global option from the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option4-global-del command

Command syntax:

{
 "command": "remote-option4-global-del",
 "arguments": {
 "options": [
 {
 "code": <option code>,
 "space": <option space>
 }
],
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

This command includes a list with exactly one option specification, comprising an option name and code. Specifying an empty list, a value of null, or multiple server tags will result in an error.

Response syntax:

{
 "result": 0,
 "text": "1 DHCPv4 option(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option4-global-get

This command fetches a global DHCPv4 option for the server from the specified database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option4-global-get command

Command syntax:

{
 "command": "remote-option4-global-get",
 "arguments": {
 "options": [
 {
 "code": <option code>,
 "space": <option space>
 }
],
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

The option is identified by the pair of option code/space values. The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error. The server tag “all” is allowed, to fetch the global option instance shared by all servers.

Response syntax:

{
 "result": 0,
 "text": "DHCPv4 option is found.",
 "arguments": {
 "options": [
 {
 <option information>,
 "metadata": {
 "server-tags": [<server tag>]
 }
 }
]
 }
}

The metadata is included and provides database specific information associated with the returned object. If the “all” server tag is specified, the command fetches the global option associated with all servers. If the explicit server tag is specified, the command fetches the global option associated with the given server. If the server specific option does not exist, it fetches the option associated with all servers.

remote-option4-global-get-all

This command fetches all DHCPv4 global options for the server from the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option4-global-get-all command

Command syntax:

{
 "command": "remote-option4-global-get-all",
 "arguments": {
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error. The special server tag “all” is allowed, to fetch the global options shared by all servers.

Response syntax:

{
 "result": 0,
 "text": "2 DHCPv4 option(s) found.",
 "arguments": {
 "options": [
 {
 <first option specification>,
 "metadata": {
 "server-tags": [<server tag>]
 }
 },
 {
 <second option specification>,
 "metadata": {
 "server-tags": [<server tag>]
 }
 }
],
 "count": 2
 }
}

The returned response contains a list of maps. Each map contains a global option specification and the metadata, including database-specific information associated with the returned object. If the server tag “all” is included in the command, the response contains the global options shared among all servers. It excludes server-specific global options. If an explicit server tag is included in the command, the response contains all global options directly associated with the given server, and the options associated with all servers when server-specific options are not present.

remote-option4-global-set

This command creates or replaces a DHCPv4 global option in the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option4-global-set command

Command syntax:

{
 "command": "remote-option4-global-set",
 "arguments": {
 "options": [
 {
 <global option specification>
 }
],
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

The provided list must contain exactly one option specification. The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error. The server tag “all” is allowed; it associates the specified option with all servers.

Response syntax:

{
 "result": 0,
 "text": "DHCPv4 option set.",
 "arguments": {
 "options": [
 {
 "code": <option code>,
 "space": <option space>
 }
]
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option4-network-del

This command deletes a DHCPv4 option from a shared network from the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option4-network-del command

Command syntax:

{
 "command": "remote-option4-network-del",
 "arguments": {
 "shared-networks": [
 {
 "name": <shared network name>
 }
],
 "options": [
 {
 "code": <option code>,
 "space": <option space>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes two lists with exactly one name of the shared network and exactly one option specification, comprising an option name and code. Specifying an empty list, a value of null, or a server tag will result in an error.

Response syntax:

{
 "result": 0,
 "text": "1 DHCPv4 option(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option4-network-set

This command creates or replaces a DHCPv4 option in a shared network in the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option4-network-set command

Command syntax:

{
 "command": "remote-option4-network-set",
 "arguments": {
 "shared-networks": [
 {
 "name": <shared network name>
 }
],
 "options": [
 {
 <shared network option specification>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

The provided lists must contain exactly one name of the shared network and one option specification. Specifying an empty list, a value of null, or a server tag will result in an error.

Response syntax:

{
 "result": 0,
 "text": "DHCPv4 option successfully set.",
 "arguments": {
 "options": [
 {
 "code": <option code>,
 "space": <option space>
 }
]
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option4-pool-del

This command deletes a DHCPv4 option from an address pool from the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option4-pool-del command

Command syntax:

{
 "command": "remote-option4-pool-del",
 "arguments": {
 "pools": [
 {
 "pool": <pool range or prefix>
 }
],
 "options": [
 {
 "code": <option code>,
 "space": <option space>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes two lists with exactly one address pool specification and exactly one option specification comprising an option space name and code. Specifying an empty list, a value of null, or a server tag will result in an error.

Response syntax:

{
 "result": 0,
 "text": "1 DHCPv4 option(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option4-pool-set

This command creates or replaces a DHCPv4 option in an address pool in the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option4-pool-set command

Command syntax:

{
 "command": "remote-option4-pool-set",
 "arguments": {
 "pools": [
 {
 "pool": <pool range or prefix>
 }
],
 "options": [
 {
 <address pool option specification>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes two lists with exactly address pool specification and exactly one option specification. Specifying an empty list, a value of null, or a server tag will result in an error.

Response syntax:

{
 "result": 0,
 "text": "DHCPv4 option successfully set.",
 "arguments": {
 "options": [
 {
 "code": <option code>,
 "space": <option space>
 }
]
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option4-subnet-del

This command deletes a DHCPv4 option from a subnet from the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option4-subnet-del command

Command syntax:

{
 "command": "remote-option4-subnet-del",
 "arguments": {
 "subnets": [
 {
 "id": <subnet identifier>
 }
],
 "options": [
 {
 "code": <option code>,
 "space": <option space>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes two lists with exactly one ID of the subnet and exactly one option specification, comprising an option name and code. Specifying an empty list, a value of null, or a server tag will result in an error.

Response syntax:

{
 "result": 0,
 "text": "1 DHCPv4 option(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option4-subnet-set

This command creates or replaces a DHCPv4 option in a subnet in the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option4-subnet-set command

Command syntax:

{
 "command": "remote-option4-subnet-set",
 "arguments": {
 "subnets": [
 {
 "id": <subnet identifier>
 }
],
 "options": [
 {
 <subnet option specification>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

The provided lists must contain exactly one ID of the subnet and one option specification. Specifying an empty list, a value of null, or a server tag will result in an error.

Response syntax:

{
 "result": 0,
 "text": "DHCPv4 option successfully set.",
 "arguments": {
 "options": [
 {
 "code": <option code>,
 "space": <option space>
 }
]
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option6-global-del

This command deletes a DHCPv6 global option from the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option6-global-del command

Command syntax:

{
 "command": "remote-option6-global-del",
 "arguments": {
 "options": [
 {
 "code": <option code>,
 "space": <option space>
 }
],
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

This command includes a list with exactly one option specification, comprising an option name and code. Specifying an empty list, a value of null, or multiple server tags will result in an error.

Response syntax:

{
 "result": 0,
 "text": "1 DHCPv6 option(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option6-global-get

This command fetches a global DHCPv6 option for the server from the specified database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option6-global-get command

Command syntax:

{
 "command": "remote-option6-global-get",
 "arguments": {
 "options": [
 {
 "code": <option code>,
 "space": <option space>
 }
],
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

The option is identified by the pair of option code/space values. The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error. The server tag “all” is allowed, to fetch the global option instance shared by all servers.

Response syntax:

{
 "result": 0,
 "text": "DHCPv6 option is found.",
 "arguments": {
 "options": [
 {
 <option information>,
 "metadata": {
 "server-tags": [<server tag>]
 }
 }
]
 }
}

The metadata is included and provides database-specific information associated with the returned object. If the “all” server tag is specified, the command attempts to fetch the global option associated with all servers. If the explicit server tag is specified, the command will fetch the global option associated with the given server. If the server-specific option does not exist, it fetches the option associated with all servers.

remote-option6-global-get-all

This command fetches all DHCPv6 global options for the server from the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option6-global-get-all command

Command syntax:

{
 "command": "remote-option6-global-get-all",
 "arguments": {
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error. The special server tag “all” is allowed, to fetch the global options shared by all servers.

Response syntax:

{
 "result": 0,
 "text": "2 DHCPv6 option(s) found.",
 "arguments": {
 "options": [
 {
 <first option specification>,
 "metadata": {
 "server-tags": [<server tag>]
 }
 },
 {
 <second option specification>,
 "metadata": {
 "server-tags": [<server tag>]
 }
 }
],
 "count": 2
 }
}

The returned response contains a list of maps. Each map contains a global option specification and the metadata, including database-specific information associated with the returned object. If the server tag “all” is included in the command, the response contains the global options shared between all servers. It excludes server-specific global options. If an explicit server tag is included in the command, the response contains all global options directly associated with the given server, and the options associated with all servers when server-specific options are not present.

remote-option6-global-set

This command creates or replaces a DHCPv6 global option in the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option6-global-set command

Command syntax:

{
 "command": "remote-option6-global-set",
 "arguments": {
 "options": [
 {
 <global option specification>
 }
],
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<single server tag as string>]
 }
}

The provided list must contain exactly one option specification. The server-tags list is mandatory and must contain exactly one server tag. Specifying an empty list, a value of null, or multiple server tags will result in an error. The server tag “all” is allowed; it associates the specified option with all servers.

Response syntax:

{
 "result": 0,
 "text": "DHCPv6 option set.",
 "arguments": {
 "options": [
 {
 "code": <option code>,
 "space": <option space>
 }
]
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option6-network-del

This command deletes a DHCPv6 option from a shared network from the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option6-network-del command

Command syntax:

{
 "command": "remote-option6-network-del",
 "arguments": {
 "shared-networks": [
 {
 "name": <shared network name>
 }
],
 "options": [
 {
 "code": <option code>,
 "space": <option space>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes two lists with exactly one name of the shared network and exactly one option specification, comprising an option name and code. Specifying an empty list, a value of null, or a server tag will result in an error.

Response syntax:

{
 "result": 0,
 "text": "1 DHCPv6 option(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option6-network-set

This command creates or replaces a DHCPv6 option in a shared network in the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option6-network-set command

Command syntax:

{
 "command": "remote-option6-network-set",
 "arguments": {
 "shared-networks": [
 {
 "name": <shared network name>
 }
],
 "options": [
 {
 <shared network option specification>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

The provided lists must contain exactly one name of the shared network and one option specification. Specifying an empty list, a value of null, or a server tag will result in an error.

Response syntax:

{
 "result": 0,
 "text": "DHCPv6 option successfully set.",
 "arguments": {
 "options": [
 {
 "code": <option code>,
 "space": <option space>
 }
]
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option6-pd-pool-del

This command deletes a DHCPv6 option from a prefix delegation pool from the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option6-pd-pool-del command

Command syntax:

{
 "command": "remote-option6-pd-pool-del",
 "arguments": {
 "pd-pools": [
 {
 "prefix": <pool prefix (address part)>
 "prefix-len": <pool prefix (length part)>
 }
],
 "options": [
 {
 "code": <option code>,
 "space": <option space>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes two lists with exactly one prefix delegation pool specification and exactly one option specification, comprising an option name and code. Specifying an empty list, a value of null, or a server tag will result in an error.

Response syntax:

{
 "result": 0,
 "text": "1 DHCPv6 option(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option6-pd-pool-set

This command creates or replaces a DHCPv6 option in a prefix delegation pool in the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option6-pd-pool-set command

Command syntax:

{
 "command": "remote-option6-pd-pool-set",
 "arguments": {
 "pd-pools": [
 {
 "prefix": <pool prefix (address part)>
 "prefix-len": <pool prefix (length part)>
 }
],
 "options": [
 {
 <prefix delegation pool option specification>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes two lists with exactly one prefix delegation pool specification and exactly one option specification. Specifying an empty list, a value of null, or a server tag will result in an error.

Response syntax:

{
 "result": 0,
 "text": "DHCPv6 option successfully set.",
 "arguments": {
 "options": [
 {
 "code": <option code>,
 "space": <option space>
 }
]
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option6-pool-del

This command deletes a DHCPv6 option from an address pool from the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option6-pool-del command

Command syntax:

{
 "command": "remote-option6-pool-del",
 "arguments": {
 "pools": [
 {
 "pool": <pool range or prefix>
 }
],
 "options": [
 {
 "code": <option code>,
 "space": <option space>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes two lists with exactly one address pool specification and exactly one option specification, comprising an option name and code. Specifying an empty list, a value of null, or a server tag will result in an error.

Response syntax:

{
 "result": 0,
 "text": "1 DHCPv6 option(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option6-pool-set

This command creates or replaces a DHCPv6 option in an address pool in the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option6-pool-set command

Command syntax:

{
 "command": "remote-option6-pool-set",
 "arguments": {
 "pools": [
 {
 "pool": <pool range or prefix>
 }
],
 "options": [
 {
 <address pool option specification>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes two lists with exactly address pool specification and exactly one option specification. Specifying an empty list, a value of null, or a server tag will result in an error.

Response syntax:

{
 "result": 0,
 "text": "DHCPv6 option successfully set.",
 "arguments": {
 "options": [
 {
 "code": <option code>,
 "space": <option space>
 }
]
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option6-subnet-del

This command deletes a DHCPv6 option from a subnet from the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option6-subnet-del command

Command syntax:

{
 "command": "remote-option6-subnet-del",
 "arguments": {
 "subnets": [
 {
 "id": <subnet identifier>
 }
],
 "options": [
 {
 "code": <option code>,
 "space": <option space>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes two lists with exactly one ID of the subnet and exactly one option specification, comprising an option name and code. Specifying an empty list, a value of null, or a server tag will result in an error.

Response syntax:

{
 "result": 0,
 "text": "1 DHCPv6 option(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-option6-subnet-set

This command creates or replaces a DHCPv6 option in a subnet in the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-option6-subnet-set command

Command syntax:

{
 "command": "remote-option6-subnet-set",
 "arguments": {
 "subnets": [
 {
 "id": <subnet identifier>
 }
],
 "options": [
 {
 <subnet option specification>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

The provided lists must contain exactly one ID of the subnet and one option specification. Specifying an empty list, a value of null, or a server tag will result in an error.

Response syntax:

{
 "result": 0,
 "text": "DHCPv6 option successfully set.",
 "arguments": {
 "options": [
 {
 "code": <option code>,
 "space": <option space>
 }
]
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-server4-del

This command deletes information about a DHCPv4 server from the configuration database. Any configuration explicitly associated with the deleted server is automatically disassociated. In addition, configuration elements not shareable with other servers (e.g. global DHCP parameters) are deleted. Shareable configuration elements (e.g. subnets, shared networks) are not deleted as they may be used by other servers.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-server4-del command

Command syntax:

{
 "command": "remote-server4-del",
 "arguments": {
 "servers": [
 {
 "server-tag": <server name>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command carries the list including exactly one map with the tag of the server to be deleted.

Response syntax:

{
 "result": 0,
 "text": "1 DHCPv4 server(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-server4-get

This command fetches information about the DHCPv4 server, such as the server tag and description.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-server4-get command

Command syntax:

{
 "command": "remote-server4-get",
 "arguments": {
 "servers": [
 {
 "server-tag": <server tag>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command carries the list including exactly one map with the tag of the server to be fetched.

Response syntax:

{
 "result": 0,
 "text": "DHCP server 'server tag' found.",
 "arguments": {
 "servers": [
 {
 "server-tag": <server tag>,
 "description": <server description>
 }
],
 "count": 1
 }
}

The server tag is the unique identifier of the server, used to associate the configuration elements in the database with the particular server instance. The returned server description is specified by the user when setting the server information.

remote-server4-get-all

This command fetches information about all DHCPv4 servers specified by the user.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-server4-get-all command

Command syntax:

{
 "command": "remote-server4-get-all",
 "arguments": {
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command contains no arguments besides the optional remote.

Response syntax:

{
 "result": 0,
 "text": "DHCPv4 servers found.",
 "arguments": {
 "servers": [
 {
 "server-tag": <first server tag>,
 "description": <first server description>
 },
 {
 "server-tag": <second server tag>,
 "description": <second server description>
 }
],
 "count": 2
 }
}

The returned response contain a list of maps. Each map contains a server tag uniquely identifying a server, and the user-defined description of the server. The Kea Configuration Backend uses the keyword all to associate parts of the configuration with all servers. Internally, it creates the logical server all for this purpose. However, this logical server is not returned as a result of the remote-server4-get-all command; only the user-defined servers are returned.

remote-server4-set

This command creates or replaces information about the DHCPv4 server in the database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-server4-set command

Command syntax:

{
 "command": "remote-server4-set",
 "arguments": {
 "servers": [
 {
 "server-tag": <server tag>,
 "description": <server description>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

The provided list must contain exactly one server specification. The server-tag must be unique across all servers within the configuration database. The description is the arbitrary text describing the server, its location within the network, etc.

Response syntax:

{
 "result": 0,
 "text": "DHCPv4 server successfully set.",
 "arguments": {
 "servers": [
 {
 "server-tag": <server tag>,
 "description": <server description>
 }
]
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-server6-del

This command deletes information about a DHCPv6 server from the configuration database. Any configuration explicitly associated with the deleted server is automatically disassociated. In addition, configuration elements not shareable with other servers (e.g. global DHCP parameters) are deleted. Shareable configuration elements (e.g. subnets, shared networks) are not deleted as they may be used by other servers.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-server6-del command

Command syntax:

{
 "command": "remote-server6-del",
 "arguments": {
 "servers": [
 {
 "server-tag": <server name>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command carries the list including exactly one map with the tag of the server to be deleted.

Response syntax:

{
 "result": 0,
 "text": "1 DHCPv6 server(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-server6-get

This command fetches information about the DHCPv6 server, such as the server tag and description.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-server6-get command

Command syntax:

{
 "command": "remote-server6-get",
 "arguments": {
 "servers": [
 {
 "server-tag": <server tag>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command carries the list including exactly one map with the tag of the server to be fetched.

Response syntax:

{
 "result": 0,
 "text": "DHCP server 'server tag' found.",
 "arguments": {
 "servers": [
 {
 "server-tag": <server tag>,
 "description": <server description>
 }
],
 "count": 1
 }
}

The server tag is the unique identifier of the server, used to associate the configuration elements in the database with the particular server instance. The returned server description is specified by the user when setting the server information.

remote-server6-get-all

This command fetches information about all DHCPv6 servers specified by the user.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-server6-get-all command

Command syntax:

{
 "command": "remote-server6-get-all",
 "arguments": {
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command contains no arguments besides the optional remote.

Response syntax:

{
 "result": 0,
 "text": "DHCPv6 servers found.",
 "arguments": {
 "servers": [
 {
 "server-tag": <first server tag>,
 "description": <first server description>
 },
 {
 "server-tag": <second server tag>,
 "description": <second server description>
 }
],
 "count": 2
 }
}

The returned response contain a list of maps. Each map contains a server tag uniquely identifying a server, and the user-defined description of the server. The Kea Configuration Backend uses the keyword all to associate parts of the configuration with all servers. Internally, it creates the logical server all for this purpose. However, this logical server is not returned as a result of the remote-server6-get-all command; only the user-defined servers are returned.

remote-server6-set

This command creates or replaces information about the DHCPv6 server in the database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-server6-set command

Command syntax:

{
 "command": "remote-server6-set",
 "arguments": {
 "servers": [
 {
 "server-tag": <server tag>,
 "description": <server description>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

The provided list must contain exactly one server specification. The server-tag must be unique across all servers within the configuration database. The description is the arbitrary text describing the server, its location within the network, etc.

Response syntax:

{
 "result": 0,
 "text": "DHCPv6 server successfully set.",
 "arguments": {
 "servers": [
 {
 "server-tag": <server tag>,
 "description": <server description>
 }
]
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-subnet4-del-by-id

This command deletes an IPv4 subnet by ID from the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-subnet4-del-by-id command

Command syntax:

{
 "command": "remote-subnet4-del-by-id",
 "arguments": {
 "subnets": [
 {
 "id": <subnet identifier>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes a list with exactly one ID of the subnet to be deleted. The server-tags parameter must not be specified for this command.

Response syntax:

{
 "result": 0,
 "text": "1 IPv4 subnet(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-subnet4-del-by-prefix

This command deletes an IPv4 subnet by prefix from the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-subnet4-del-by-prefix command

Command syntax:

{
 "command": "remote-subnet4-del-by-prefix",
 "arguments": {
 "subnets": [
 {
 "subnet": <subnet prefix>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes a list with exactly one prefix of the subnet to be deleted. The server-tags parameter must not be specified for this command.

Response syntax:

{
 "result": 0,
 "text": "1 IPv4 subnet(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-subnet4-get-by-id

This command fetches the selected IPv4 subnet by ID from the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-subnet4-get-by-id command

Command syntax:

{
 "command": "remote-subnet4-get-by-id",
 "arguments": {
 "subnets": [{
 "id": <subnet identifier>
 }],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes a list with exactly one ID of the subnet to be returned. The server-tags parameter must not be specified for this command.

Response syntax:

{
 "result": 0,
 "text": "IPv4 subnet found.",
 "arguments": {
 "subnets": [{
 "id": <subnet identifier>,
 "subnet": <subnet prefix>,
 "shared-network-name": <shared network name> | null,
 "metadata": {
 "server-tags": [<first server tag>, <second server tag>, ...]
 },
 <the rest of the subnet specification here>
 }],
 "count": 1
 }
}

If the shared network name is null, it means that the returned subnet does not belong to any shared network (a global subnet). The metadata is included in the returned subnet definition and provides database-specific information associated with the returned object.

remote-subnet4-get-by-prefix

This command fetches the selected IPv4 subnet by prefix from the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-subnet4-get-by-prefix command

Command syntax:

{
 "command": "remote-subnet4-get-by-prefix",
 "arguments": {
 "subnets": [{
 "subnet": <subnet prefix>
 }],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes a list with exactly one prefix of the subnet to be returned. The server-tags parameter must not be specified for this command.

Response syntax:

{
 "result": 0,
 "text": "IPv4 subnet found.",
 "arguments": {
 "subnets": [
 {
 "id": <subnet identifier>,
 "subnet": <subnet prefix>,
 "shared-network-name": <shared network name> | null,
 "metadata": {
 "server-tags": [<first server tag>, <second server tag>, ...]
 },
 <the rest of the subnet specification here>
 }
],
 "count": 1
 }
}

If the shared network name is null, it means that the returned subnet does not belong to any shared network (global subnet). The metadata is included in the returned subnet definition and provides database-specific information associated with the returned object.

remote-subnet4-list

This command fetches a list of all IPv4 subnets from the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-subnet4-list command

Command syntax:

{
 "command": "remote-subnet4-list",
 "arguments": {
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<first server tag>, <second server tag>, ...]
 }
}

The server-tags list is required for this command, and must not be empty. It may either contain one or multiple server tags as strings, or a single null value.

Response syntax:

{
 "result": 0,
 "text": "2 IPv4 subnets found.",
 "arguments": {
 "subnets": [
 {
 "id": <first subnet identifier>,
 "subnet": <first subnet prefix>,
 "shared-network-name": <shared network name> | null,
 "metadata": {
 "server-tags": [<first server tag>, <second server tag>, ...]
 }
 },
 {
 "id": <second subnet identifier>,
 "subnet": <second subnet prefix>,
 "shared-network-name": <shared network name> | null,
 "metadata": {
 "server-tags": [<first server tag>, ...]
 }
 }
],
 "count": 2
 }
}

The returned response contains a list of maps. Each map contains a subnet identifier, prefix, and shared network name to which the subnet belongs. If the subnet does not belong to a shared network, the name is null. The metadata includes database-specific information associated with the subnets. The returned list does not contain full subnet definitions; use remote-subnet4-get to fetch the full information about the selected subnets. If the command includes explicit server tags as strings (including the special server tag “all”), the list contains all subnets which are associated with any of the specified tags. A subnet is returned even if it is associated with multiple servers and only one of the specified tags matches. If the command includes the null value in the server-tags list, the response contains all subnets which are assigned to no servers (unassigned).

remote-subnet4-set

This command creates or replaces an IPv4 subnet in the configuration database.

Supported by: kea-dhcp4

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-subnet4-set command

Command syntax:

{
 "command": "remote-subnet4-set",
 "arguments": {
 "subnets": [
 {
 "id": <subnet identifier>,
 "subnet": <subnet prefix>,
 "shared-network-name": <shared network name> | null,
 <the rest of the subnet specification here>
 }
],
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<first server tag>, <second server tag>, ...]
 }
}

The provided list must contain exactly one subnet specification. The shared-network-name parameter is required for these commands; it associates the subnet with the shared network by its name. If the subnet must not belong to any shared network (a global subnet), the null value must be specified for the shared network name. The server-tags list is mandatory and must contain one or more server tags as strings to explicitly associate the subnet with one or more user-defined servers. The remote-subnet4-set command may include the special server tag “all” to associate the subnet with all servers.

Response syntax:

{
 "result": 0,
 "text": "IPv4 subnet successfully set.",
 "arguments": {
 "id": <subnet identifier>,
 "subnet": <subnet prefix>
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-subnet6-del-by-id

This command deletes an IPv6 subnet by ID from the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-subnet6-del-by-id command

Command syntax:

{
 "command": "remote-subnet6-del-by-id",
 "arguments": {
 "subnets": [
 {
 "id": <subnet identifier>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes a list with exactly one ID of the subnet to be deleted. The server-tags parameter must not be specified for this command.

Response syntax:

{
 "result": 0,
 "text": "1 IPv6 subnet(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-subnet6-del-by-prefix

This command deletes an IPv6 subnet by prefix from the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-subnet6-del-by-prefix command

Command syntax:

{
 "command": "remote-subnet6-del-by-prefix",
 "arguments": {
 "subnets": [
 {
 "subnet": <subnet prefix>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes a list with exactly one prefix of the subnet to be deleted. The server-tags parameter must not be specified for this command.

Response syntax:

{
 "result": 0,
 "text": "1 IPv6 subnet(s) deleted.",
 "arguments": {
 "count": 1
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

remote-subnet6-get-by-id

This command fetches the selected IPv6 subnet by ID from the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-subnet6-get-by-id command

Command syntax:

{
 "command": "remote-subnet6-get-by-id",
 "arguments": {
 "subnets": [
 {
 "id": <subnet identifier>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes a list with exactly one ID of the subnet to be returned. The server-tags parameter must not be specified for this command.

Response syntax:

{
 "result": 0,
 "text": "IPv6 subnet found.",
 "arguments": {
 "subnets": [
 {
 "id": <subnet identifier>,
 "subnet": <subnet prefix>,
 "shared-network-name": <shared network name> | null,
 "metadata": {
 "server-tags": [<first server tag>, <second server tag>, ...]
 },
 <the rest of the subnet specification here>
 }
],
 "count": 1
 }
}

If the shared network name is null, it means that the returned subnet does not belong to any shared network (a global subnet). The metadata is included in the returned subnet definition and provides database-specific information associated with the returned object.

remote-subnet6-get-by-prefix

This command fetches the selected IPv6 subnet by prefix from the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-subnet6-get-by-prefix command

Command syntax:

{
 "command": "remote-subnet6-get-by-prefix",
 "arguments": {
 "subnets": [
 {
 "subnet": <subnet prefix>
 }
],
 "remote": {
 <specification of the database to connect to>
 }
 }
}

This command includes a list with exactly one prefix of the subnet to be returned. The server-tags parameter must not be specified for this command.

Response syntax:

{
 "result": 0,
 "text": "IPv6 subnet found.",
 "arguments": {
 "subnets": [{
 "id": <subnet identifier>,
 "subnet": <subnet prefix>,
 "shared-network-name": <shared network name> | null,
 "metadata": {
 "server-tags": [<first server tag>, <second server tag>, ...]
 },
 <the rest of the subnet specification here>
 }],
 "count": 1
 }
}

If the shared network name is null, it means that the returned subnet does not belong to any shared network (global subnet). The metadata is included in the returned subnet definition and provides database-specific information associated with the returned object.

remote-subnet6-list

This command fetches a list of all IPv6 subnets from the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-subnet6-list command

Command syntax:

{
 "command": "remote-subnet6-list",
 "arguments": {
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<first server tag>, <second server tag>, ...]
 }
}

The server-tags list is required for this command, and must not be empty. It may either contain one or multiple server tags as strings, or a single null value.

Response syntax:

{
 "result": 0,
 "text": "2 IPv6 subnets found.",
 "arguments": {
 "subnets": [
 {
 "id": <first subnet identifier>,
 "subnet": <first subnet prefix>,
 "shared-network-name": <shared network name> | null,
 "metadata": {
 "server-tags": [<first server tag>, <second server tag>, ...]
 }
 },
 {
 "id": <second subnet identifier>,
 "subnet": <second subnet prefix>,
 "shared-network-name": <shared network name> | null,
 "metadata": {
 "server-tags": [<first server tag>, ...]
 }
 }
],
 "count": 2
 }
}

The returned response contains a list of maps. Each map contains a subnet identifier, prefix, and shared network name to which the subnet belongs. If the subnet does not belong to a shared network, the name is null. The metadata includes database-specific information associated with the subnets. The returned list does not contain full subnet definitions; use remote-subnet6-get to fetch the full information about the selected subnets. If the command includes explicit server tags as strings (including the special server tag “all”), the list contains all subnets which are associated with any of the specified tags. A subnet is returned even if it is associated with multiple servers and only one of the specified tags matches. If the command includes the null value in the server-tags list, the response contains all subnets which are assigned to no servers (unassigned).

remote-subnet6-set

This command creates or replaces an IPv6 subnet in the configuration database.

Supported by: kea-dhcp6

Availability: 1.6.0 (cb_cmds hook library)

Description and examples: see remote-subnet6-set command

Command syntax:

{
 "command": "remote-subnet6-set",
 "arguments": {
 "subnets": [
 {
 "id": <subnet identifier>,
 "subnet": <subnet prefix>,
 "shared-network-name": <shared network name> | null,
 <the rest of the subnet specification here>
 }
],
 "remote": {
 <specification of the database to connect to>
 },
 "server-tags": [<first server tag>, <second server tag>, ...]
 }
}

The provided list must contain exactly one subnet specification. The shared-network-name parameter is required for these commands; it associates the subnet with the shared network by its name. If the subnet must not belong to any shared network (a global subnet), the null value must be specified for the shared network name. The server-tags list is mandatory and must contain one or more server tags as strings to explicitly associate the subnet with one or more user-defined servers. The remote-subnet6-set command may include the special server tag “all” to associate the subnet with all servers.

Response syntax:

{
 "result": 0,
 "text": "IPv6 subnet successfully set.",
 "arguments": {
 "id": <subnet identifier>,
 "subnet": <subnet prefix>
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

reservation-add

This command adds a new host reservation. The reservation may include IPv4 addresses, IPv6 addresses, IPv6 prefixes, various identifiers, a class the client will be assigned to, DHCPv4 and DHCPv6 options, and more.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.2.0 (host_cmds hook library)

Description and examples: see reservation-add command

Command syntax:

{
 "command": "reservation-add",
 "arguments": {
 "reservation": {
 "boot-file-name": <string>,
 "comment": <string>,
 "client-id": <string>,
 "circuit-id": <string>,
 "duid": <string>,
 "flex-id": <string>,
 "ip-address": <string (IPv4 address)>,
 "ip-addresses": [<comma-separated strings>],
 "hw-address": <string>,
 "hostname": <string>,
 "next-server": <string (IPv4 address)>,
 "option-data-list": [<comma-separated structures defining options>],
 "prefixes": [<comma-separated IPv6 prefixes>],
 "reservation-client-classes": [<comma-separated strings>],
 "server-hostname": <string>,
 "subnet-id": <integer>,
 "user-context": <any valid JSON>
 }
 }
}

Note that ip-address, client-id, next-server, server-hostname, and boot-file-name are IPv4-specific. duid, ip-addresses, and prefixes are IPv6-specific.

Response syntax:

{
 "result": <integer>,
 "text": <string>
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

reservation-del

This command deletes an existing host reservation.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.2.0 (host_cmds hook library)

Description and examples: see reservation-del command

Command syntax:

{
 "command": "reservation-del",
 "arguments": {
 "subnet-id": <integer>,
 "ip-address": <string>,
 "identifier-type": <one of 'hw-address', 'duid', 'circuit-id', 'client-id' and 'flex-id'>,
 "identifier": <string>
 }
}

The host reservation can be identified by either the (subnet-id, ip-address) pair or a triplet of (subnet-id, identifier-type, identifier).

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

reservation-get

This command retrieves an existing host reservation.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.2.0 (host_cmds hook library)

Description and examples: see reservation-get command

Command syntax:

{
 "command": "reservation-get",
 "arguments": {
 "subnet-id": <integer>,
 "identifier-type": <one of 'hw-address', 'duid', 'circuit-id', 'client-id' and 'flex-id'>,
 "identifier": <string>
 }
}

The host reservation can be identified by either the (subnet-id, ip-address) pair or a triplet of (subnet-id, identifier-type, identifier).

Response syntax:

{
 "result": <integer>,
 "text": <string>,
 "arguments": {
 "boot-file-name": <string>,
 "comment": <string>,
 "client-id": <string>,
 "circuit-id": <string>,
 "duid": <string>,
 "flex-id": <string>,
 "ip-address": <string (IPv4 address)>,
 "ip-addresses": [<comma-separated strings>],
 "hw-address": <string>,
 "hostname": <string>,
 "next-server": <string (IPv4 address)>,
 "option-data-list": [<comma-separated structures defining options>],
 "prefixes": [<comma-separated IPv6 prefixes>],
 "reservation-client-classes": [<comma-separated strings>],
 "server-hostname": <string>,
 "subnet-id": <integer>,
 "user-context": <any valid JSON>
 }
}

The arguments object appears only if a host is found. Many fields in the arguments object appear only if a specific field is set.

reservation-get-all

This command retrieves all host reservations for a specified subnet.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.6.0 (host_cmds hook library)

Description and examples: see reservation-get-all command

Command syntax:

{
 "command": "reservation-get-all",
 "arguments": {
 "subnet-id": <integer>
 }
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

The reservation-get-all command may result in very large responses.

reservation-get-by-hostname

This command retrieves all host reservations for a specified hostname and optionally a specified subnet.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.7.1 (host_cmds hook library)

Description and examples: see reservation-get-by-hostname command

Command syntax:

{
 "command": "reservation-get-by-hostname",
 "arguments": {
 "hostname": <hostname>,
 "subnet-id": <integer>
 }
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

The reservation-get-by-hostname command may result in large responses.

reservation-get-page

This command retrieves host reservations for a specified subnet by page.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.6.0 (host_cmds hook library)

Description and examples: see reservation-get-page command

Command syntax:

{
 "command": "reservation-get-page",
 "arguments": {
 "subnet-id": <integer>,
 "limit": <integer>,
 "source-index": <integer>,
 "from": <integer>
 }
}

The subnet-id and the page size limit are mandatory. The source-index and from host id are optional and default to 0. Values to use to load the next page are returned in responses in a next map.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

server-tag-get

This command returns the server tag used by the server.
Server tag is essential configuration parameter in the Config Backend configuration.
This parameter is configured in the local config file.
This command does not take any parameters.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.6.0 (built-in)

Description and examples: see server-tag-get command

Command syntax:

{
 "command": "server-tag-get"
}

Response syntax:

{
 "result": 0,
 "arguments": {
 "server-tag": "office1"
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

shutdown

This command instructs the server to initiate its shutdown procedure.

Supported by: kea-ctrl-agent, kea-dhcp-ddns, kea-dhcp4, kea-dhcp6

Availability: 1.0.0 (built-in)

Description and examples: see shutdown command

Command syntax:

{
 "command": "shutdown"
 "arguments": {
 "exit-value": 123
 }
}

The server responds with a confirmation that the shutdown procedure has been initiated.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

stat-lease4-get

This command fetches lease statistics for a range of known IPv4 subnets.

Supported by: kea-dhcp4

Availability: 1.4.0 (stat_cmds hook library)

Description and examples: see stat-lease4-get command

Command syntax:

{
 "command": "stat-lease4-get"
}

Response syntax:

{
 "result": 0,
 "text": "stat-lease4-get: 2 rows found",
 "arguments": {
 "result-set": {
 "columns": ["subnet-id",
 "total-addresses",
 "cumulative-assigned-addresses",
 "assigned-addresses",
 "declined-addresses"],
 "rows": [
 [10, 256, 200, 111, 0],
 [20, 4098, 5000, 2034, 4]
],
 "timestamp": "2018-05-04 15:03:37.000000"
 }
 }
 }

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

stat-lease6-get

This command fetches lease statistics for a range of known IPv6 subnets.

Supported by: kea-dhcp6

Availability: 1.4.0 (stat_cmds hook library)

Description and examples: see stat-lease6-get command

Command syntax:

{
 "command": "stat-lease6-get",
 "arguments": {
 "subnet-id" : 10
 }
}

Response syntax:

{
 "result": 0,
 "text": "stat-lease6-get: 2 rows found",
 "arguments": {
 "result-set": {
 "columns": ["subnet-id", "total-nas", "cumulative-assigned-nas", "assigned-nas", "declined-nas", "total-pds", "cumulative-assigned-pds", "assigned-pds"],
 "rows": [
 [10, 4096, 3000, 2400, 3, 0, 0],
 [20, 0, 0, 0, 1048, 500, 233],
 [30, 256, 300, 60, 0, 1048, 15, 15]
],
 "timestamp": "2018-05-04 15:03:37.000000"
 }
 }
 }

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

statistic-get

This command retrieves a single statistic. It takes a single string parameter called name that specifies the statistic name.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.0.0 (built-in)

Description and examples: see statistic-get command

Command syntax:

{
 "command": "statistic-get",
 "arguments": {
 "name": "pkt4-received"
 }
}

The server responds with the details of the requested statistic, with a result of 0 indicating success, and the specified statistic as the value of the “arguments” parameter.

Response syntax:

{
 "result": 0,
 "arguments": {
 "pkt4-received": [["first_value", "2019-07-30 10:11:19.498739"], ["second_value", "2019-07-30 10:11:19.498662"]]
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

statistic-get-all

This command retrieves all recorded statistics.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.0.0 (built-in)

Description and examples: see statistic-get-all command

Command syntax:

{
 "command": "statistic-get-all",
 "arguments": { }
}

The server responds with the details of all recorded statistics, with a result of 0 indicating that it iterated over all statistics (even when the total number of statistics is zero).

Response syntax:

{
 "result": 0,
 "arguments": {
 "cumulative-assigned-addresses": [[0, "2019-07-30 10:04:28.386740"]],
 "declined-addresses": [[0, "2019-07-30 10:04:28.386733"]],
 "reclaimed-declined-addresses": [[0, "2019-07-30 10:04:28.386735"]],
 "reclaimed-leases": [[0, "2019-07-30 10:04:28.386736"]],
 "subnet[1].assigned-addresses": [[0, "2019-07-30 10:04:28.386740"]],
 "subnet[1].cumulative-assigned-addresses": [[0, "2019-07-30 10:04:28.386740"]],
 "subnet[1].declined-addresses": [[0, "2019-07-30 10:04:28.386743"]],
 "subnet[1].reclaimed-declined-addresses": [[0, "2019-07-30 10:04:28.386745"]],
 "subnet[1].reclaimed-leases": [[0, "2019-07-30 10:04:28.386747"]],
 "subnet[1].total-addresses": [[200, "2019-07-30 10:04:28.386719"]]
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

statistic-remove

This command deletes a single statistic. It takes a single string parameter called name that specifies the statistic name.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.0.0 (built-in)

Description and examples: see statistic-remove command

Command syntax:

{
 "command": "statistic-remove",
 "arguments": {
 "name": "pkt4-received"
 }
}

If the specific statistic is found and its removal is successful, the server responds with a status of 0, indicating success, and an empty parameters field. If an error is encountered (e.g. the requested statistic was not found), the server returns a status code of 1 (error) and the text field contains the error description.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

statistic-remove-all

This command deletes all statistics.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.0.0 (built-in)

Description and examples: see statistic-remove-all command

Command syntax:

{
 "command": "statistic-remove-all",
 "arguments": { }
}

If the removal of all statistics is successful, the server responds with a status of 0, indicating success, and an empty parameters field. If an error is encountered, the server returns a status code of 1 (error) and the text field contains the error description.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

statistic-reset

This command sets the specified statistic to its neutral value: 0 for integer, 0.0 for float, 0h0m0s0us for time duration, and “” for string type. It takes a single string parameter called name that specifies the statistic name.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.0.0 (built-in)

Description and examples: see statistic-reset command

Command syntax:

{
 "command": "statistic-reset",
 "arguments": {
 "name": "pkt4-received"
 }
}

If the specific statistic is found and the reset is successful, the server responds with a status of 0, indicating success, and an empty parameters field. If an error is encountered (e.g. the requested statistic was not found), the server returns a status code of 1 (error) and the text field contains the error description.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

statistic-reset-all

This command sets all statistics to their neutral values: 0 for integer, 0.0 for float, 0h0m0s0us for time duration, and “” for string type.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.0.0 (built-in)

Description and examples: see statistic-reset-all command

Command syntax:

{
 "command": "statistic-reset-all",
 "arguments": { }
}

If the operation is successful, the server responds with a status of 0, indicating success, and an empty parameters field. If an error is encountered, the server returns a status code of 1 (error) and the text field contains the error description.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

statistic-sample-age-set

This command sets a time-based limit for a single statistic. It takes two parameters: a string called name and an integer value called duration.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.6.0 (built-in)

Description and examples: see statistic-sample-age-set command

Command syntax:

{
 "command": "statistic-sample-age-set",
 "arguments": {
 "name": "pkt4-received",
 "duration": 1245
 }
}

The server responds with a message about a successfully set limit for the given statistic, with a result of 0 indicating success, and an empty parameters field. If an error is encountered (e.g. the requested statistic was not found), the server returns a status code of 1 (error) and the text field contains the error description.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

statistic-sample-age-set-all

This command sets a time-based limit for all statistics. It takes a single integer parameter called duration.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.6.0 (built-in)

Description and examples: see statistic-sample-age-set-all command

Command syntax:

{
 "command": "statistic-sample-age-set-all",
 "arguments": {
 "duration": 1245
 }
}

The server responds with a message about successfully set limits for all statistics, with a result of 0 indicating success, and an empty parameters field. If an error is encountered, the server returns a status code of 1 (error) and the text field contains the error description.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

statistic-sample-count-set

This command sets a size-based limit for a single statistic. It takes two parameters: a string called name and an integer value called max-samples.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.6.0 (built-in)

Description and examples: see statistic-sample-count-set command

Command syntax:

{
 "command": "statistic-sample-count-set",
 "arguments": {
 "name": "pkt4-received",
 "max-samples": 100
 }
}

The server responds with a message about a successfully set limit for the given statistic, with a result of 0 indicating success, and an empty parameters field. If an error is encountered (e.g. the requested statistic was not found), the server returns a status code of 1 (error) and the text field contains the error description.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

statistic-sample-count-set-all

This command sets a size-based limit for all statistics. It takes a single integer parameter called max-samples.

Supported by: kea-dhcp4, kea-dhcp6

Availability: 1.6.0 (built-in)

Description and examples: see statistic-sample-count-set-all command

Command syntax:

{
 "command": "statistic-sample-count-set-all",
 "arguments": {
 "max-samples": 100
 }
}

The server responds with a message about successfully set limits for all statistics, with a result of 0 indicating success, and an empty parameters field. If an error is encountered, the server returns a status code of 1 (error) and the text field contains the error description.

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

status-get

This command returns server’s runtime information.
It takes no arguments.

Supported by: kea-ctrl-agent, kea-dhcp-ddns, kea-dhcp4, kea-dhcp6

Availability: 1.7.3 (built-in)

Description and examples: see status-get command

Command syntax:

{
 "command": "status-get"
}

Response syntax:

{
 "result": <integer>,
 "arguments": {
 "pid": <integer>,
 "uptime": <uptime in seconds>,
 "reload": <time since reload in seconds>,
 "high-availability": [
 {
 "ha-mode": <HA mode configured for this relationship>
 "ha-servers": {
 "local": {
 "role": <role of this server as in the configuration file>,
 "scopes": <list of scope names served by this server>,
 "state": <HA state name of the server receiving the command>,
 },
 "remote": {
 "age": <the age of the remote status in seconds>,
 "in-touch": <indicates if this server communicated with remote>,
 "last-scopes": <list of scopes served by partner>,
 "last-state": <HA state name of the partner>,
 "role": <partner role>
 }
 }
 }
]
 }
}

If the libdhcp_ha (High Availability) hooks library is loaded by the DHCP server receiving this command the response also includes the HA specific status information of the server receiving the command and its partner’s status.

subnet4-add

This command creates and adds a new subnet to the existing server configuration. This operation has no impact on other subnets.

Supported by: kea-dhcp4

Availability: 1.3.0 (subnet_cmds hook library)

Description and examples: see subnet4-add command

Command syntax:

{
 "command": "subnet4-add",
 "arguments": {
 "subnets": [{
 "id": 123,
 "subnet": "10.20.30.0/24",
 ...
 }]
 }
}

Response syntax:

{
 "result": 0,
 "text": "IPv4 subnet added",
 "arguments": {
 "subnets": [
 {
 "id": 123,
 "subnet": "10.20.30.0/24"
 }
]
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

subnet4-del

This command removes a subnet from the server’s configuration. This command has no effect on other configured subnets, but removing a subnet has certain implications which the server’s administrator should be aware of.

Supported by: kea-dhcp4

Availability: 1.3.0 (subnet_cmds hook library)

Description and examples: see subnet4-del command

Command syntax:

{
 "command": "subnet4-del",
 "arguments": {
 "id": 123
 }
}

Response syntax:

{
 "result": 0,
 "text": "IPv4 subnet 192.0.2.0/24 (id 123) deleted",
 "arguments": {
 "subnets": [
 {
 "id": 123,
 "subnet": "192.0.2.0/24"
 }
]
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

subnet4-get

This command retrieves detailed information about the specified subnet. This command usually follows subnet4-list, which discovers available subnets with their respective subnet identifiers and prefixes.

Supported by: kea-dhcp4

Availability: 1.3.0 (subnet_cmds hook library)

Description and examples: see subnet4-get command

Command syntax:

{
 "command": "subnet4-get",
 "arguments": {
 "id": 10
 }
}

Response syntax:

{
 "result": 0,
 "text": "Info about IPv4 subnet 10.0.0.0/8 (id 10) returned",
 "arguments": {
 "subnets": [
 {
 "subnet": "10.0.0.0/8",
 "id": 1,
 "option-data": [
 ...
],
 ...
 }
]
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

subnet4-list

This command lists all currently configured subnets. The subnets are returned in a brief format, i.e. a subnet identifier and subnet prefix are included for each subnet.

Supported by: kea-dhcp4

Availability: 1.3.0 (subnet_cmds hook library)

Description and examples: see subnet4-list command

Command syntax:

{
 "command": "subnet4-list"
}

Response syntax:

{
 "result": 0,
 "text": "2 IPv4 subnets found",
 "arguments": {
 "subnets": [
 {
 "id": 10,
 "subnet": "10.0.0.0/8"
 },
 {
 "id": 100,
 "subnet": "192.0.2.0/24"
 }
]
 }
}

If no IPv4 subnets are found, an error code is returned along with the error description.

subnet4-update

This command updates a subnet in the existing server configuration. This operation has no impact on other subnets.

Supported by: kea-dhcp4

Availability: 1.6.0 (subnet_cmds hook library)

Description and examples: see subnet4-update command

Command syntax:

{
 "command": "subnet4-update",
 "arguments": {
 "subnets": [{
 "id": 123,
 "subnet": "10.20.30.0/24",
 ...
 }]
 }
}

Response syntax:

{
 "result": 0,
 "text": "IPv4 subnet updated",
 "arguments": {
 "subnets": [
 {
 "id": 123,
 "subnet": "10.20.30.0/24"
 }
]
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

subnet6-add

This command creates and adds a new subnet to the existing server configuration. This operation has no impact on other subnets.

Supported by: kea-dhcp6

Availability: 1.3.0 (subnet_cmds hook library)

Description and examples: see subnet6-add command

Command syntax:

{
 "command": "subnet6-add",
 "arguments": {
 "subnet6": [{
 "id": 234,
 "subnet": "2001:db8:1::/64",
 ...
 }]
 }
}

Response syntax:

{
 "result": 0,
 "text": "IPv6 subnet added",
 "arguments": {
 "subnet6": [
 {
 "id": 234,
 "subnet": "2001:db8:1::/64"
 }
]
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

subnet6-del

This command removes a subnet from the server’s configuration. This command has no effect on other configured subnets, but removing a subnet has certain implications which the server’s administrator should be aware of.

Supported by: kea-dhcp6

Availability: 1.3.0 (subnet_cmds hook library)

Description and examples: see subnet6-del command

Command syntax:

{
 "command": "subnet6-del",
 "arguments": {
 "id": 234
 }
}

Response syntax:

{
 "result": 0,
 "text": "IPv6 subnet 2001:db8:1::/64 (id 234) deleted",
 "subnets": [
 {
 "id": 234,
 "subnet": "2001:db8:1::/64"
 }
]
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

subnet6-get

This command retrieves detailed information about the specified subnet. This command usually follows subnet6-list, which discovers available subnets with their respective subnet identifiers and prefixes.

Supported by: kea-dhcp6

Availability: 1.3.0 (subnet_cmds hook library)

Description and examples: see subnet6-get command

Command syntax:

{
 "command": "subnet6-get",
 "arguments": {
 "id": 11
 }
}

Response syntax:

{
 "result": 0,
 "text": "Info about IPv6 subnet 2001:db8:1::/64 (id 11) returned",
 "arguments": {
 "subnets": [
 {
 "subnet": "2001:db8:1::/64",
 "id": 1,
 "option-data": [
 ...
],
 ...
 }
]
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

subnet6-list

This command lists all currently configured subnets. The subnets are returned in a brief format, i.e. a subnet identifier and subnet prefix are included for each subnet.

Supported by: kea-dhcp6

Availability: 1.3.0 (subnet_cmds hook library)

Description and examples: see subnet6-list command

Command syntax:

{
 "command": "subnet6-list"
}

Response syntax:

{
 "result": 0,
 "text": "2 IPv6 subnets found",
 "arguments": {
 "subnets": [
 {
 "id": 11,
 "subnet": "2001:db8:1::/64"
 },
 {
 "id": 233,
 "subnet": "3000::/16"
 }
]
 }
}

If no IPv6 subnets are found, an error code is returned along with the error description.

subnet6-update

This command updates a subnet in the existing server configuration. This operation has no impact on other subnets.

Supported by: kea-dhcp6

Availability: 1.6.0 (subnet_cmds hook library)

Description and examples: see subnet6-update command

Command syntax:

{
 "command": "subnet6-update",
 "arguments": {
 "subnet6": [{
 "id": 234,
 "subnet": "2001:db8:1::/64",
 ...
 }]
 }
}

Response syntax:

{
 "result": 0,
 "text": "IPv6 subnet updated",
 "arguments": {
 "subnet6": [
 {
 "id": 234,
 "subnet": "2001:db8:1::/64"
 }
]
 }
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

version-get

This command returns extended information about the Kea version that is running. The returned string is the same as if Kea were run with the -V command-line option.

Supported by: kea-ctrl-agent, kea-dhcp-ddns, kea-dhcp4, kea-dhcp6

Availability: 1.2.0 (built-in)

Description and examples: see version-get command

Command syntax:

{
 "command": "version-get"
}

Response syntax:

{
 "result": <integer>,
 "text": "<string>"
}

Result is an integer representation of the status. Currently supported statuses are:

	0 - success

	1 - error

	2 - unsupported

	3 - empty (command was completed successfully, but no data was affected or returned)

Manual Pages

	kea-dhcp4 - DHCPv4 server in Kea

	kea-dhcp6 - DHCPv6 server in Kea

	kea-ctrl-agent - Control Agent process in Kea

	keactrl - Shell script for managing Kea

	kea-admin - Shell script for managing Kea databases

	kea-dhcp-ddns - DHCP-DDNS process in Kea

	kea-lfc - Lease File Cleanup process in Kea

	kea-shell - Text client for Control Agent process

	kea-netconf - NETCONF agent for Kea environment

	perfdhcp - DHCP benchmarking tool

kea-dhcp4 - DHCPv4 server in Kea

Synopsis

kea-dhcp4 [-v] [-V] [-W] [-d] [-c config-file] [-t config-file] [-p server-port-number] [-P client-port-number]

Description

The kea-dhcp4 daemon provides the DHCPv4 server implementation.

Arguments

The arguments are as follows:

	-v

	Displays the version.

	-V

	Displays the extended version.

	-W

	Displays the configuration report.

	-d

	Enables the debug mode with extra verbosity.

	-c config-file

	Specifies the configuration file with the configuration for the DHCPv4 server. It
may also contain configuration entries for other Kea services.

	-t config-file

	Checks the configuration file and reports the first error, if any. Note
that not all parameters are completely checked; in particular,
service and control channel sockets are not opened, and hook
libraries are not loaded.

	-p server-port-number

	Specifies the server port number (1-65535) on which the server listens. This is
useful for testing purposes only.

	-P client-port-number

	Specifies the client port number (1-65535) to which the server responds. This is
useful for testing purposes only.

Documentation

Kea comes with an extensive Kea Administrator Reference Manual that covers
all aspects of running the Kea software - compilation, installation,
configuration, configuration examples, and much more. Kea also features a
Kea Messages Manual, which lists all possible messages Kea can print
with a brief description for each of them. Both documents are
available in various formats (.txt, .html, .pdf) with the Kea
distribution. The Kea documentation is available at
https://kb.isc.org/docs/kea-administrator-reference-manual .

Kea source code is documented in the Kea Developer’s Guide. Its online
version is available at https://jenkins.isc.org/job/Kea_doc/doxygen/.

The Kea project website is available at https://kea.isc.org.

Mailing Lists and Support

There are two public mailing lists available for the Kea project. kea-users
(kea-users at lists.isc.org) is intended for Kea users, while kea-dev
(kea-dev at lists.isc.org) is intended for Kea developers, prospective
contributors, and other advanced users. Both lists are available at
https://lists.isc.org. The community provides best-effort support
on both of those lists.

ISC provides professional support for Kea services. See
https://www.isc.org/kea/ for details.

History

The b10-dhcp4 daemon was first coded in November 2011 by Tomek
Mrugalski.

In mid-2014, Kea was decoupled from the BIND 10 framework and became a
standalone DHCP server. The DHCPv4 server binary was renamed to
kea-dhcp4. Kea 1.0.0 was released in December 2015.

See Also

kea-dhcp6(8), kea-dhcp-ddns(8),
kea-ctrl-agent(8), kea-admin(8), keactrl(8),
perfdhcp(8), kea-netconf(8), kea-lfc(8),
Kea Administrator Reference Manual.

kea-dhcp6 - DHCPv6 server in Kea

Synopsis

kea-dhcp6 [-v] [-V] [-W] [-d] [-c config-file] [-t config-file] [-p server-port-number]

Description

The kea-dhcp6 daemon provides the DHCPv6 server implementation.

Arguments

The arguments are as follows:

	-v

	Displays the version.

	-V

	Displays the extended version.

	-W

	Displays the configuration report.

	-d

	Enables the debug mode with extra verbosity.

	-c config-file

	Specifies the configuration file with the configuration for the DHCPv6 server. It
may also contain configuration entries for other Kea services.

	-t config-file

	Checks the configuration file and reports the first error, if any. Note
that not all parameters are completely checked; in particular,
service and control channel sockets are not opened, and hook
libraries are not loaded.

	-p server-port-number

	Specifies the server port number (1-65535) on which the server listens. This is
useful for testing purposes only.

Documentation

Kea comes with an extensive Kea Administrator Reference Manual that covers
all aspects of running the Kea software - compilation, installation,
configuration, configuration examples, and much more. Kea also features a
Kea Messages Manual, which lists all possible messages Kea can print
with a brief description for each of them. Both documents are
available in various formats (.txt, .html, .pdf) with the Kea
distribution. The Kea documentation is available at
https://kb.isc.org/docs/kea-administrator-reference-manual .

Kea source code is documented in the Kea Developer’s Guide. Its online
version is available at https://jenkins.isc.org/job/Kea_doc/doxygen/.

The Kea project website is available at https://kea.isc.org.

Mailing Lists and Support

There are two public mailing lists available for the Kea project. kea-users
(kea-users at lists.isc.org) is intended for Kea users, while kea-dev
(kea-dev at lists.isc.org) is intended for Kea developers, prospective
contributors, and other advanced users. Both lists are available at
https://lists.isc.org. The community provides best-effort support
on both of those lists.

ISC provides professional support for Kea services. See
https://www.isc.org/kea/ for details.

History

The b10-dhcp6 daemon was first coded in June 2011 by Tomek
Mrugalski.

Kea became a standalone server and the BIND 10 framework was removed. The
DHCPv6 server binary was renamed to kea-dhcp6 in July 2014.

See Also

kea-dhcp4(8), kea-dhcp-ddns(8),
kea-ctrl-agent(8), kea-admin(8), keactrl(8),
perfdhcp(8), kea-netconf(8), kea-lfc(8),
Kea Administrator Reference Manual.

kea-ctrl-agent - Control Agent process in Kea

Synopsis

kea-ctrl-agent [-v] [-V] [-W] [-d] [-c config-file] [-t config-file]

Description

The kea-ctrl-agent provides a REST service for controlling Kea
services. The received HTTP requests are decapsulated and forwarded to
the respective Kea services in JSON format. Received JSON responses are
encapsulated within HTTP responses and returned to the controlling
entity. Some commands may be handled by the Control Agent directly, and
not forwarded to any Kea service.

Arguments

The arguments are as follows:

	-v

	Displays the version.

	-V

	Displays the extended version.

	-W

	Displays the configuration report.

	-d

	Sets the logging level to debug with extra verbosity. This is primarily for
development purposes in stand-alone mode.

	-c config-file

	Specifies the file with the configuration for the Control Agent
server. It may also contain configuration entries for other Kea
services.

	-t config-file

	Checks the syntax of the configuration file and reports the first error,
if any. Note that not all parameters are completely checked; in
particular, service and client sockets are not opened, and hook
libraries are not loaded.

Documentation

Kea comes with an extensive Kea Administrator Reference Manual that covers
all aspects of running the Kea software - compilation, installation,
configuration, configuration examples, and much more. Kea also features a
Kea Messages Manual, which lists all possible messages Kea can print
with a brief description for each of them. Both documents are
available in various formats (.txt, .html, .pdf) with the Kea
distribution. The Kea documentation is available at
https://kb.isc.org/docs/kea-administrator-reference-manual .

Kea source code is documented in the Kea Developer’s Guide. Its online
version is available at https://jenkins.isc.org/job/Kea_doc/doxygen/.

The Kea project website is available at https://kea.isc.org.

Mailing Lists and Support

There are two public mailing lists available for the Kea project. kea-users
(kea-users at lists.isc.org) is intended for Kea users, while kea-dev
(kea-dev at lists.isc.org) is intended for Kea developers, prospective
contributors, and other advanced users. Both lists are available at
https://lists.isc.org. The community provides best-effort support
on both of those lists.

ISC provides professional support for Kea services. See
https://www.isc.org/kea/ for details.

History

The kea-ctrl-agent was first coded in December 2016 by Marcin
Siodelski.

See Also

kea-dhcp4(8), kea-dhcp6(8),
kea-dhcp-ddns(8), kea-admin(8), keactrl(8),
perfdhcp(8), kea-lfc(8), Kea Administrator Reference Manual.

keactrl - Shell script for managing Kea

Synopsis

keactrl [command] [-c keactrl-config-file] [-s server[,server,…]] [-v]

Description

keactrl is a shell script which controls the startup, shutdown, and
reconfiguration of the Kea servers (kea-dhcp4, kea-dhcp6,
kea-dhcp-ddns, kea-ctrl-agent, and kea-netconf). It also
provides the means for checking the current status of the servers and
determining the configuration files in use.

Configuration File

Depending on the user’s requirements, not all of the available servers need be run.
The keactrl configuration file specifies which servers are enabled and which
are disabled. By default the configuration file is
[kea-install-dir]/etc/kea/keactrl.conf.

See the Kea Administrator Reference Manual for documentation of the
parameters in the keactrl configuration file.

Options

	command

	Specifies the command to be issued to the servers. It can be one of the following:

	start

	Starts the servers.

	stop

	Stops the servers.

	reload

	Instructs the servers to re-read the Kea configuration file. This
command is not supported by the Netconf agent.

	status

	Prints the status of the servers.

	-c|--ctrl-config keactrl-config-file

	Specifies the keactrl configuration file. Without this switch,
keactrl attempts to use the file
[kea-install-dir]/etc/kea/keactrl.conf.

	-s|--server server[,server,...]

	Specifies a subset of the enabled servers to which the command should
be issued. The list of servers should be separated by commas with no
intervening spaces. Acceptable values are:

	dhcp4

	DHCPv4 server (kea-dhcp4).

	dhcp6

	DHCPv6 server (kea-dhcp6).

	dhcp_ddns

	DHCP DDNS server (kea-dhcp-ddns).

	ctrl_agent

	Control Agent (kea-ctrl-agent).

	netconf

	Netconf agent (kea-netconf).

	all

	All servers, including Netconf if it was configured to be
built. This is the default.

	-v|--version

	Prints the keactrl version and quits.

Documentation

Kea comes with an extensive Kea Administrator Reference Manual that covers
all aspects of running the Kea software - compilation, installation,
configuration, configuration examples, and much more. Kea also features a
Kea Messages Manual, which lists all possible messages Kea can print
with a brief description for each of them. Both documents are
available in various formats (.txt, .html, .pdf) with the Kea
distribution. The Kea documentation is available at
https://kb.isc.org/docs/kea-administrator-reference-manual .

Kea source code is documented in the Kea Developer’s Guide. Its online
version is available at https://jenkins.isc.org/job/Kea_doc/doxygen/.

The Kea project website is available at https://kea.isc.org.

Mailing Lists and Support

There are two public mailing lists available for the Kea project. kea-users
(kea-users at lists.isc.org) is intended for Kea users, while kea-dev
(kea-dev at lists.isc.org) is intended for Kea developers, prospective
contributors, and other advanced users. Both lists are available at
https://lists.isc.org. The community provides best-effort support
on both of those lists.

ISC provides professional support for Kea services. See
https://www.isc.org/kea/ for details.

See Also

kea-dhcp4(8), kea-dhcp6(8), kea-dhcp-ddns(8),
kea-ctrl-agent(8), kea-admin(8), kea-netconf(8),
perfdhcp(8), kea-lfc(8), Kea Administrator Reference Manual.

kea-admin - Shell script for managing Kea databases

Synopsis

kea-admin [command] [backend] [-u database username] [-p database password] [-n database name] [-d scripts directory] [-4 | -6] [-o output file] [-v]

Description

kea-admin is a shell script which offers database maintenance. In
particular, it features database initialization, database version
checking, and database schema upgrade.

Arguments

	command

	Specifies the command to be issued to the servers. It can be one of the following:

	db-init

	Initializes a new database schema. This is useful during a new Kea
installation. The database is initialized to the latest version
supported by the version of the software being installed.

	db-version

	Reports the database backend version number. This is not necessarily
equal to the Kea version number as each backend has its own
versioning scheme.

	db-upgrade

	Conducts a database schema upgrade. This is useful when upgrading Kea.

	db-dump

	Dumps the contents of the lease database (for MySQL, PostgreSQL,
or CQL backends) to a CSV (comma-separated values) text file.
The first line of the file contains the column names. This is meant
to be used as a diagnostic tool, so it provides a portable,
human-readable form of the lease data.

	backend

	Specifies the backend type. Currently allowed backends are: memfile,
mysql, and pgsql.

	-u|--user username

	Specifies the username when connecting to a database. If not specified,
the default value of keatest is used.

	-p|--password password

	Specifies the password when connecting to a database. If not
specified, the default value of keatest is used.

	-n|--name database-name

	Specifies the name of the database to connect to. If not specified, the
default value of keatest is used.

	-d|--directory script-directory

	Specifies the override scripts directory. That script is used during
upgrades, database initialization, and possibly other operations. If
not specified, the default value of (prefix)/share/kea/scripts/ is
used.

	-o|--output output_file

	Specifies the file to which the lease data will be dumped. Required for lease-dump.

	-v|--version

	Prints the kea-admin version and quits.

	-4

	Directs kea-admin to lease-dump the DHCPv4 leases. Incompatible with
the -6 option.

	-6

	Directs kea-admin to lease-dump the DHCPv6 leases. Incompatible with
the -4 option.

Documentation

Kea comes with an extensive Kea Administrator Reference Manual that covers
all aspects of running the Kea software - compilation, installation,
configuration, configuration examples, and much more. Kea also features a
Kea Messages Manual, which lists all possible messages Kea can print
with a brief description for each of them. Both documents are
available in various formats (.txt, .html, .pdf) with the Kea
distribution. The Kea documentation is available at
https://kb.isc.org/docs/kea-administrator-reference-manual .

Kea source code is documented in the Kea Developer’s Guide. Its online
version is available at https://jenkins.isc.org/job/Kea_doc/doxygen/.

The Kea project website is available at https://kea.isc.org.

Mailing Lists and Support

There are two public mailing lists available for the Kea project. kea-users
(kea-users at lists.isc.org) is intended for Kea users, while kea-dev
(kea-dev at lists.isc.org) is intended for Kea developers, prospective
contributors, and other advanced users. Both lists are available at
https://lists.isc.org. The community provides best-effort support
on both of those lists.

ISC provides professional support for Kea services. See
https://www.isc.org/kea/ for details.

See Also

kea-dhcp4(8), kea-dhcp6(8),
kea-dhcp-ddns(8), kea-ctrl-agent(8), keactrl(8),
perfdhcp(8), kea-netconf(8), Kea Administrator Reference Manual.

kea-dhcp-ddns - DHCP-DDNS process in Kea

Synopsis

kea-dhcp-ddns [-v] [-V] [-W] [-d] [-c config-file] [-t config-file]

Description

The kea-dhcp-ddns service process requests an update of DNS mapping
based on DHCP lease change events. It runs as a separate process that
expects to receive Name Change Requests from Kea DHCP servers.

Arguments

The arguments are as follows:

	-v

	Displays the version.

	-V

	Displays the extended version.

	-W

	Displays the configuration report.

	-d

	Sets the logging level to debug with extra verbosity. This is primarily for
development purposes in stand-alone mode.

	-c config-file

	Specifies the configuration file with the configuration for the DHCP-DDNS server. It
may also contain configuration entries for other Kea services.

	-t config-file

	Checks the syntax of the configuration file and reports the first error
if any. Note that not all parameters are completely checked, in
particular, service socket is not opened.

Documentation

Kea comes with an extensive Kea Administrator Reference Manual that covers
all aspects of running the Kea software - compilation, installation,
configuration, configuration examples, and much more. Kea also features a
Kea Messages Manual, which lists all possible messages Kea can print
with a brief description for each of them. Both documents are
available in various formats (.txt, .html, .pdf) with the Kea
distribution. The Kea documentation is available at
https://kb.isc.org/docs/kea-administrator-reference-manual .

Kea source code is documented in the Kea Developer’s Guide. Its online
version is available at https://jenkins.isc.org/job/Kea_doc/doxygen/.

The Kea project website is available at https://kea.isc.org.

Mailing Lists and Support

There are two public mailing lists available for the Kea project. kea-users
(kea-users at lists.isc.org) is intended for Kea users, while kea-dev
(kea-dev at lists.isc.org) is intended for Kea developers, prospective
contributors, and other advanced users. Both lists are available at
https://lists.isc.org. The community provides best-effort support
on both of those lists.

ISC provides professional support for Kea services. See
https://www.isc.org/kea/ for details.

History

The b10-dhcp-ddns process was first coded in May 2013 by Thomas
Markwalder.

Kea became a standalone server and the BIND 10 framework was removed. The
DHCP-DDNS server binary was renamed to kea-dhcp-ddns in July 2014. Kea
1.0.0 was released in December 2015.

See Also

kea-dhcp4(8), kea-dhcp6(8),
kea-ctrl-agent(8), kea-admin(8), keactrl(8),
perfdhcp(8), kea-netconf(8), kea-lfc(8),
Kea Administrator Reference Manual.

kea-lfc - Lease File Cleanup process in Kea

Synopsis

kea-lfc [-4**|-6**] [-c config-file] [-p pid-file] [-x previous-file] [-i copy-file] [-o output-file] [-f finish-file] [-v] [-V] [-W] [-d] [-h]

Description

The kea-lfc service process removes redundant information from the
files used to provide persistent storage for the memfile database
backend. The service is written to run as a stand-alone process. While
it can be started externally, there is usually no need to do this. It
is run periodically by the Kea DHCP servers.

Arguments

The arguments are as follows:

	-4 | -6

	Indicates the protocol version of the lease files; must be either 4 or 6.

	-c config-file

	Specifies the file with the configuration for the kea-lfc
process. It may also contain configuration entries for other Kea
services. Currently kea-lfc gets all of its arguments from the
command line; in the future it will be extended to obtain some arguments
from the configuration file.

	-p pid-file

	Specifies the PID file. When the kea-lfc process starts, it attempts to
determine if another instance of the process is already running by
examining the PID file. If one is already running, the new process is
terminated. If one is not running, Kea writes its PID into the PID file.

	-x previous-file

	Specifies the previous or ex-lease file. When kea-lfc starts, this is the
result of any previous run of kea-lfc; when kea-lfc finishes,
it is the result of this run. If kea-lfc is interrupted before
completing, this file may not exist.

	-i copy-file

	Specifies the input or copy of lease file. Before the DHCP server invokes
kea-lfc, it will move the current lease file here and then call
kea-lfc with this file.

	-o output-file

	Specifies the output lease file, which is the temporary file kea-lfc should use to
write the leases. Once this file is finished writing, it is
moved to the finish file (see below).

	-f finish-file

	Specifies the finish or completion file, another temporary file kea-lfc uses
for bookkeeping. When kea-lfc finishes writing the output file,
it moves it to this file name. After kea-lfc finishes deleting
the other files (previous and input), it moves this file to the previous
lease file. By moving the files in this fashion, the kea-lfc and
the DHCP server processes can determine the correct file to use even
if one of the processes was interrupted before completing its task.

	-v

	Causes the version stamp to be printed.

	-V

	Causes a longer form of the version stamp to be printed.

	-W

	Displays the configuration report.

	-d

	Sets the logging level to debug with extra verbosity. This is primarily for
development purposes in stand-alone mode.

	-h

	Causes the usage string to be printed.

Documentation

Kea comes with an extensive Kea Administrator Reference Manual that covers
all aspects of running the Kea software - compilation, installation,
configuration, configuration examples, and much more. Kea also features a
Kea Messages Manual, which lists all possible messages Kea can print
with a brief description for each of them. Both documents are
available in various formats (.txt, .html, .pdf) with the Kea
distribution. The Kea documentation is available at
https://kb.isc.org/docs/kea-administrator-reference-manual .

Kea source code is documented in the Kea Developer’s Guide. Its online
version is available at https://jenkins.isc.org/job/Kea_doc/doxygen/.

The Kea project website is available at https://kea.isc.org.

Mailing Lists and Support

There are two public mailing lists available for the Kea project. kea-users
(kea-users at lists.isc.org) is intended for Kea users, while kea-dev
(kea-dev at lists.isc.org) is intended for Kea developers, prospective
contributors, and other advanced users. Both lists are available at
https://lists.isc.org. The community provides best-effort support
on both of those lists.

ISC provides professional support for Kea services. See
https://www.isc.org/kea/ for details.

History

The kea-lfc process was first coded in January 2015 by the ISC
Kea/DHCP team.

See Also

kea-dhcp4(8), kea-dhcp6(8), kea-dhcp-ddns(8),
kea-ctrl-agent(8), kea-admin(8), keactrl(8),
perfdhcp(8), kea-netconf(8), Kea Administrator Reference Manual.

kea-shell - Text client for Control Agent process

Synopsis

kea-shell [-h] [-v] [–host] [–port] [–path] [–timeout] [–service] [command]

Description

The kea-shell provides a REST client for the Kea Control Agent (CA).
It takes command as a command-line parameter that is being sent to CA
with proper JSON encapsulation. Optional arguments may be specified on
the standard input. The request is sent via HTTP and a response is
retrieved, displayed on the standard output.

Arguments

The arguments are as follows:

	-h

	Displays help regarding command-line parameters.

	-v

	Displays the version.

	--host

	Specifies the host to connect to. Control Agent must be running at the
specified host. If not specified, 127.0.0.1 is used.

	--port

	Specifies the TCP port to connect to. Control Agent must be listening
at the specified port. If not specified, 8000 is used.

	--path

	Specifies the path in the URL to connect to. If not specified, an empty
path is used. As Control Agent listens at the empty path, this
parameter is useful only with a reverse proxy.

	--timeout

	Specifies the connection timeout in seconds. If not specified, 10
(seconds) is used.

	--service

	Specifies the service that is the target of a command. If not
specified, Control Agent will be targeted. May be used more than once
to specify multiple targets.

	command

	Specifies the command to be sent to CA. If not specified,
“list-commands” is used.

Documentation

Kea comes with an extensive Kea Administrator Reference Manual that covers
all aspects of running the Kea software - compilation, installation,
configuration, configuration examples, and much more. Kea also features a
Kea Messages Manual, which lists all possible messages Kea can print
with a brief description for each of them. Both documents are
available in various formats (.txt, .html, .pdf) with the Kea
distribution. The Kea documentation is available at
https://kb.isc.org/docs/kea-administrator-reference-manual .

Kea source code is documented in the Kea Developer’s Guide. Its online
version is available at https://jenkins.isc.org/job/Kea_doc/doxygen/.

The Kea project website is available at https://kea.isc.org.

Mailing Lists and Support

There are two public mailing lists available for the Kea project. kea-users
(kea-users at lists.isc.org) is intended for Kea users, while kea-dev
(kea-dev at lists.isc.org) is intended for Kea developers, prospective
contributors, and other advanced users. Both lists are available at
https://lists.isc.org. The community provides best-effort support
on both of those lists.

ISC provides professional support for Kea services. See
https://www.isc.org/kea/ for details.

History

The kea-shell was first coded in March 2017 by Tomek Mrugalski.

See Also

kea-dhcp4(8), kea-dhcp6(8), kea-dhcp-ddns(8),
kea-ctrl-agent(8), kea-admin(8), keactrl(8),
perfdhcp(8), kea-lfc(8), Kea Administrator Reference Manual.

kea-netconf - NETCONF agent for Kea environment

Synopsis

kea-netconf [-v] [-V] [-W] [-d] [-c config-file] [-t config-file]

Description

The kea-netconf agent provides a YANG/NETCONF interface for the Kea
environment.

Arguments

The arguments are as follows:

	-v

	Displays the version.

	-V

	Displays the extended version.

	-W

	Displays the configuration report.

	-d

	Enables the debug mode with extra verbosity.

	-c config-file

	Specifies the file with the configuration for the NETCONF agent.

	-t config-file

	Checks the syntax of the configuration file and reports the first error,
if any. Note that not all parameters are completely checked; in
particular, service and client sockets are not opened, and hook
libraries are not loaded.

Documentation

Kea comes with an extensive Kea Administrator Reference Manual that covers
all aspects of running the Kea software - compilation, installation,
configuration, configuration examples, and much more. Kea also features a
Kea Messages Manual, which lists all possible messages Kea can print
with a brief description for each of them. Both documents are
available in various formats (.txt, .html, .pdf) with the Kea
distribution. The Kea documentation is available at
https://kb.isc.org/docs/kea-administrator-reference-manual .

Kea source code is documented in the Kea Developer’s Guide. Its online
version is available at https://jenkins.isc.org/job/Kea_doc/doxygen/.

The Kea project website is available at https://kea.isc.org.

Mailing Lists and Support

There are two public mailing lists available for the Kea project. kea-users
(kea-users at lists.isc.org) is intended for Kea users, while kea-dev
(kea-dev at lists.isc.org) is intended for Kea developers, prospective
contributors, and other advanced users. Both lists are available at
https://lists.isc.org. The community provides best-effort support
on both of those lists.

ISC provides professional support for Kea services. See
https://www.isc.org/kea/ for details.

History

Early prototypes of kea-netconf implementation were written during IETF
Hackathons in Berlin, London, and Montreal. An actual production-ready
implementation was started in August 2018 by Tomek Mrugalski and Francis
Dupont.

See Also

kea-dhcp4(8), kea-dhcp6(8), kea-dhcp-ddns(8),
kea-ctrl-agent(8), kea-admin(8), keactrl(8),
perfdhcp(8), kea-lfc(8), Kea Administrator Reference Manual.

perfdhcp - DHCP benchmarking tool

Synopsis

perfdhcp [-1] [-4**|-6**] [-A encapsulation-level] [-b base] [-B] [-c] [-d drop-time] [-D max-drop] [-e lease-type] [-E time-offset] [-f renew-rate] [-F release-rate] [-g thread-mode] [-h] [-i] [-I ip-offset] [-l local-address|interface] [-L local-port] [-M mac-list-file] [-n num-request] [-N remote-port] [-O random-offset] [-o code,hexstring] [-p test-period] [-P preload] [-r rate] [-R num-clients] [-s seed] [-S srvid-offset] [–scenario name] [-t report] [-T template-file] [-v] [-W exit-wait-time] [-w script_name] [-x diagnostic-selector] [-X xid-offset] [server]

Description

perfdhcp is a DHCP benchmarking tool. It provides a way of measuring
the performance of DHCP servers by generating large amounts of traffic
from simulated multiple clients. It is able to test both IPv4 and IPv6
servers, and provides statistics concerning response times and the
number of requests that are dropped.

The tool supports scenarios, which offer certain behaviours.
By default (basic scenario) tests are run using the full four-packet exchange sequence
(DORA for DHCPv4, SARR for DHCPv6). An option is provided to run tests
using the initial two-packet exchange (DO and SA) instead. It is also
possible to configure perfdhcp to send DHCPv6 RENEW and RELEASE messages
at a specified rate in parallel with the DHCPv6 four-way exchanges. By
default, if there is no response received with 1 second, a response is
considered lost and perfdhcp continues with other transactions.

Second scenario is called avalanche, which is selected by --scenario avalanche.
It first sends as many Discovery or Solicit messages as request in -R option then
a retransmission (with exponential back off mechanism) is used for each simulated client until all requests are
answered. It will generate report when all clients get their addresses or when
it will be manually stopped. This scenario attempts to replicate a
case where the server is not able to handle the traffic swiftly
enough. Real clients will assume the packet or the response was lost
and will retransmit, further increasing DHCP traffic. This is
sometimes called avalanche effect, thus the scenario name.
Option -p is ignored in avalanche scenario.

When running a performance test, perfdhcp will exchange packets with
the server under test as fast as possible unless the -r parameter is used to
limit the request rate. The length of the test can be limited by setting
a threshold on any or all of the number of requests made by
perfdhcp, the elapsed time, or the number of requests dropped by the
server.

Templates

To allow the contents of packets sent to the server to be customized,
perfdhcp allows the specification of template files that determine
the contents of the packets. For example, the customized packet may
contain a DHCPv6 ORO to request a set of options to be returned by the
server, or it may contain the Client FQDN option to request that the server
perform DNS updates. This may be used to discover performance
bottlenecks for different server configurations (e.g. DDNS enabled or
disabled).

Up to two template files can be specified on the command line, each file
representing the contents of a particular type of packet, the type being
determined by the test being carried out. For example, if testing
DHCPv6:

	With no template files specified on the command line, perfdhcp
will generate both SOLICIT and REQUEST packets.

	With one template file specified, that file will be used as the
pattern for SOLICIT packets: perfdhcp will generate the REQUEST
packets.

	With two template files given on the command line, the first will be
used as the pattern for SOLICIT packets, the second as the pattern
for REQUEST packets.

(Similar determination applies to DHCPv4’s DISCOVER and REQUEST
packets.)

The template file holds the DHCP packet represented as a stream of ASCII
hexadecimal digits and it excludes any IP/UDP stack headers. The
template file must not contain any characters other than hexadecimal
digits and spaces. Spaces are discarded when the template file is parsed;
in the file, ‘12B4’ is the same as ‘12 B4’ which is the same as ‘1 2
B 4’.

The template files should be used in conjunction with the command-line
parameters which specify offsets of the data fields being modified in
outbound packets. For example, the -E time-offset switch specifies
the offset of the DHCPv6 Elapsed Time option in the packet template.
If the offset is specified, perfdhcp will inject the current elapsed-time
value into this field before sending the packet to the server.

In many scenarios, perfdhcp needs to simulate multiple clients,
each having a unique client identifier. Since packets for each client are
generated from the same template file, it is necessary to randomize the
client identifier (or HW address in DHCPv4) in the packet created from
it. The -O random-offset option allows specification of the offset in
the template where randomization should be performed. It is important to
note that this offset points to the end (not the beginning) of the
client identifier (or HW address field). The number of bytes being
randomized depends on the number of simulated clients. If the number of
simulated clients is between 1 and 255, only one byte (to which the
randomization offset points) will be randomized. If the number of
simulated clients is between 256 and 65535, two bytes will be
randomized. Note that the last two bytes of the client identifier will be
randomized in this case: the byte which the randomization offset parameter
points to, and the one which precedes it (random-offset - 1). If the
number of simulated clients exceeds 65535, three bytes will be
randomized, and so on.

Perfdhcp can now simulate traffic from multiple subnets by enabling option
-J and passing path to file that contains v4 addresses that will be used as
giaddr in generated messages. That enable testing of vast numbers of Kea shared
networks. Kea should be started with KEA_TEST_SEND_RESPONSES_TO_SOURCE
environment variable to force Kea to send generated messages to source
address of incoming packet. Feature is not available in kea-dhcp6.

Templates may currently be used to generate packets being sent to the
server in 4-way exchanges, i.e. SOLICIT, REQUEST (DHCPv6) and DISCOVER,
REQUEST (DHCPv4). They cannot be used when RENEW or RELEASE packets are
being sent.

Options

	-1

	Takes the server-ID option from the first received message.

	-4

	Establishes DHCPv4 operation; this is the default. It is incompatible with the
-6 option.

	-6

	Establishes DHCPv6 operation. This is incompatible with the -4 option.

	-u

	Enable checking address uniqueness. Lease valid lifetime should not be shorter
than test duration and clients should not request address more than once without
releasing it first.

	-b basetype=value

	Indicates the base MAC or DUID used to simulate different clients. The basetype
may be “mac” or “duid”. (The keyword “ether” may alternatively used
for MAC.) The -b option can be specified multiple times. The MAC
address must consist of six octets separated by single (:) or double
(::) colons, for example: mac=00:0c:01:02:03:04. The DUID value is a
hexadecimal string; it must be at least six octets long and not
longer than 64 bytes, and the length must be less than 128
hexadecimal digits, for example: duid=0101010101010101010110111F14.

	-d drop-time

	Specifies the time after which a request is treated as having been
lost. The value is given in seconds and may contain a fractional
component. The default is 1 second.

	-e lease-type

	Specifies the type of lease being requested from the server. It may
be one of the following:

	address-only

	Only regular addresses (v4 or v6) will be requested.

	prefix-only

	Only IPv6 prefixes will be requested.

	address-and-prefix

	Both IPv6 addresses and prefixes will be requested.

The -e prefix-only and -e address-and-prefix forms may not be used
with the -4 option.

	-f renew-rate

	Specifies the rate at which DHCPv4 or DHCPv6 renew requests are sent to a server.
This value is only valid when used in conjunction with the exchange
rate (given by -r rate). Furthermore, the sum of this value and
the release-rate (given by -F rate) must be equal to or less than the
exchange rate.

	-g thread-mode

	Allows selection of thread-mode, which can be either ‘single’ or ‘multi’. In multi-thread mode
packets are received in a separate thread, which allows better
utilisation of CPUs. In a single-CPU system it is better to run in one
thread to avoid threads blocking each other. If more than one CPU is
present in the system, multi-thread mode is the default; otherwise
single-thread is the default.

	-h

	Prints help and exits.

	-i

	Performs only the initial part of the exchange: DISCOVER-OFFER if -4 is
selected, SOLICIT-ADVERTISE if -6 is chosen.

-i is incompatible with the following options: -1, -d,
-D, -E, -S, -I and -F. In addition, it cannot be
used with multiple instances of -O, -T and -X.

	-l local-addr|interface

	For DHCPv4 operation, specifies the local hostname/address to use when
communicating with the server. By default, the interface address
through which traffic would normally be routed to the server is used.
For DHCPv6 operation, specifies the name of the network interface
through which exchanges are initiated.

	-L local-port

	Specifies the local port to use. This must be zero or a positive
integer up to 65535. A value of 0 (the default) allows perfdhcp
to choose its own port.

	-M mac-list-file

	Specifies a text file containing a list of MAC addresses, one per line. If
provided, a MAC address will be chosen randomly from this list for
every new exchange. In DHCPv6, MAC addresses are used to
generate DUID-LLs. This parameter must not be used in conjunction
with the -b parameter.

	-N remote-port

	Specifies the remote port to use. This must be zero or a positive
integer up to 65535. A value of 0 (the default) allows perfdhcp
to choose the standard service port.

	-o code,hexstring

	Forces perfdhcp to insert the specified extra option (or options if
used several times) into packets being transmitted. The code
specifies the option code and the hexstring is a hexadecimal string that
defines the content of the option. Care should be taken as perfdhcp
does not offer any kind of logic behind those options; they are simply
inserted into packets and sent as is. Be careful not to duplicate
options that are already inserted. For example, to insert client
class identifier (option code 60) with a string ‘docsis’, use
-o 60,646f63736973. The -o may be used multiple times. It is
necessary to specify the protocol family (either -4 or -6) before
using -o.

	-P preload

	Initiates preload exchanges back-to-back at startup. Must be 0
(the default) or a positive integer.

	-r rate

	Initiates the rate of DORA/SARR (or if -i is given, DO/SA) exchanges per
second. A periodic report is generated showing the number of
exchanges which were not completed, as well as the average response
latency. The program continues until interrupted, at which point a
final report is generated.

	-R num-clients

	Specifies how many different clients are used. With a value of 1 (the
default), all requests seem to come from the same client.
Must be a positive number.

	-s seed

	Specifies the seed for randomization, making runs of perfdhcp
repeatable. This must be 0 or a positive integer. The value 0 means that a
seed is not used; this is the default.

	--scenario name

	Specifies type of the scenario, can be basic (default) or avalanche.

	-T template-file

	Specifies a file containing the template to use as a stream of
hexadecimal digits. This may be specified up to two times and
controls the contents of the packets sent (see the “Templates”
section above).

	-v

	Prints the version of this program.

	-W exit-wait-time

	Specifies the exit-wait-time parameter, which causes perfdhcp to wait for
exit-wait-time after an exit condition has been met, to receive all
packets without sending any new packets. Expressed in microseconds.
If not specified, 0 is used (i.e. exit immediately after exit
conditions are met).

	-w script_name

	Specifies the name of the script to be run before/after perfdhcp.
When called, the script is passed a single parameter, either “start” or
“stop”, indicating whether it is being called before or after perfdhcp.

	-x diagnostic-selector

	Includes extended diagnostics in the output. This is a
string of single keywords specifying the operations for which verbose
output is desired. The selector key letters are:

	a

	Prints the decoded command line arguments.

	e

	Prints the exit reason.

	i

	Prints the rate processing details.

	s

	Prints the first server-ID.

	t

	When finished, prints timers of all successful exchanges.

	T

	When finished, prints templates.

DHCPv4-Only Options

The following options only apply for DHCPv4 (i.e. when -4 is given).

	-B

	Forces broadcast handling.

	-J<giaddr-list-file>

	Text file that include multiple addresses. If provided perfdhcp will choose
randomly one of addresses for each exchange. This is used to generate traffic
from multiple subnets. Designed to test shared-networks in kea-dhcp4. Kea should
be started with KEA_TEST_SEND_RESPONSES_TO_SOURCE=ENABLE env variable otherwise
perfdhcp will not be able to receive responses.

DHCPv6-Only Options

The following options only apply for DHCPv6 (i.e. when -6 is given).

	-c

	Adds a rapid-commit option (exchanges will be SOLICIT-ADVERTISE).

	-F release-rate

	Specifies the rate at which IPv6 RELEASE requests are sent to a server. This value
is only valid when used in conjunction with the exchange rate (given
by -r rate). Furthermore, the sum of this value and the renew-rate
(given by -f rate) must be equal to or less than the exchange
rate value.

	-A encapsulation-level

	Specifies that relayed traffic must be generated. The argument
specifies the level of encapsulation, i.e. how many relay agents are
simulated. Currently the only supported encapsulation-level value is
1, which means that the generated traffic is equivalent to the amount of
traffic passing through a single relay agent.

Template-Related Options

The following options may only be used in conjunction with -T and
control how perfdhcp modifies the template. The options may be
specified multiple times on the command line; each occurrence affects
the corresponding template file (see “Templates” above).

	-E time-offset

	Specifies the offset of the secs field (DHCPv4) or elapsed-time option (DHCPv6) in the
second (i.e. REQUEST) template; must be 0 or a positive integer. A
value of 0 disables this.

	-I ip-offset

	Specifies the offset of the IP address (DHCPv4) in the requested-IP
option or IA_NA option (DHCPv6) in the second (REQUEST) template.

	-O random-offset

	Specifies the offset of the last octet to randomize in the template. This
must be an integer greater than 3. The -T switch must be given to
use this option.

	-S srvid-offset

	Specifies the offset of the server-ID option in the second (REQUEST) template.
This must be a positive integer, and the switch can only be used
when the template option (-T) is also given.

	-X xid-offset

	Specifies the offset of the transaction ID (xid) in the template. This must be a
positive integer, and the switch can only be used when the template
option (-T) is also given.

Options Controlling a Test

	-D max-drop

	Aborts the test immediately if max-drop requests have been dropped.
Use -D 0 to abort if even a single request has
been dropped. max-drop must be a positive integer. If max-drop
includes the suffix ‘%’, it specifies a maximum percentage of
requests that may be dropped before abort. In this case, testing of
the threshold begins after 10 requests have been expected to be
received.

	-n num-requests

	Initiates num-request transactions. No report is generated until all
transactions have been initiated/waited-for, after which a report is
generated and the program terminates.

	-p test-period

	Sends requests for test-period, which is specified in the same manner
as -d. This can be used as an alternative to -n or both
options can be given, in which case the testing is completed when
either limit is reached.

	-t interval

	Sets the delay (in seconds) between two successive reports.

	-C<separator>

	Output reduced, an argument is a separator for periodic (-t) reports
generated in easy parsable mode. Data output won’t be changed,
remain identical as in -t option.

Arguments

	server

	Indicates the server to test, specified as an IP address. In the DHCPv6 case, the
special name ‘all’ can be used to refer to
All_DHCP_Relay_Agents_and_Servers (the multicast address FF02::1:2),
or the special name ‘servers’ to refer to All_DHCP_Servers (the
multicast address FF05::1:3). The server is mandatory except where
the -l option is given to specify an interface, in which case it
defaults to ‘all’.

Errors

perfdhcp can report the following errors in the packet exchange:

	tooshort

	A message was received that was too short.

	orphans

	A message was received which does not match one sent to the server (i.e.
it is a duplicate message, a message that has arrived after an
excessive delay, or one that is just not recognized).

	locallimit

	Local system limits have been reached when sending a message.

Exit Status

perfdhcp can exit with one of the following status codes:

	0

	Success.

	1

	General error.

	2

	Error in command-line arguments.

	3

	No general failures in operation, but one or more exchanges were
unsuccessful.

Mailing Lists and Support

There are two public mailing lists available for the Kea project. kea-users
(kea-users at lists.isc.org) is intended for Kea users, while kea-dev
(kea-dev at lists.isc.org) is intended for Kea developers, prospective
contributors, and other advanced users. Both lists are available at
https://lists.isc.org. The community provides best-effort support
on both of those lists.

ISC provides professional support for Kea services. See
https://www.isc.org/kea/ for details.

History

The perfdhcp tool was initially coded in October 2011 by John
DuBois, Francis Dupont, and Marcin Siodelski of ISC. Kea 1.0.0, which
included perfdhcp, was released in December 2015.

See Also

kea-dhcp4(8), kea-dhcp6(8), kea-dhcp-ddns(8),
kea-ctrl-agent(8), kea-admin(8), kea-netconf(8),
keactrl(8), kea-lfc(8), Kea Administrator Reference Manual.

Kea Messages Manual

Kea is an open source implementation of the Dynamic Host Configuration
Protocol (DHCP) servers, developed and maintained by Internet Systems
Consortium (ISC).

This is the reference guide for Kea version 1.7.8-git.
Links to the most up-to-date version of this document (in PDF, HTML,
and plain text formats), along with other documents for
Kea, can be found in ISC’s Knowledgebase [https://kb.isc.org/docs/kea-administrator-reference-manual].

ALLOC

ALLOC_ENGINE_LEASE_RECLAIMED

successfully reclaimed lease %1

This debug message is logged when the allocation engine successfully
reclaims a lease. The lease is now available for assignment.

ALLOC_ENGINE_REMOVAL_NCR_FAILED

sending removal name change request failed for lease %1: %2

This error message is logged when sending a removal name change request
to DHCP DDNS failed. This name change request is usually generated when
the lease reclamation routine acts upon expired leases. If a lease being
reclaimed has a corresponding DNS entry it needs to be removed.
This message indicates that removal of the DNS entry has failed.
Nevertheless the lease will be reclaimed.

ALLOC_ENGINE_V4_ALLOC_ERROR

%1: error during attempt to allocate an IPv4 address: %2

An error occurred during an attempt to allocate an IPv4 address, the
reason for the failure being contained in the message. The server will
return a message to the client refusing a lease. The first argument
includes the client identification information.

ALLOC_ENGINE_V4_ALLOC_FAIL

%1: failed to allocate an IPv4 address after %2 attempt(s)

The DHCP allocation engine gave up trying to allocate an IPv4 address
after the specified number of attempts. This probably means that the
address pool from which the allocation is being attempted is either
empty, or very nearly empty. As a result, the client will have been
refused a lease. The first argument includes the client identification
information.
This message may indicate that your address pool is too small for the
number of clients you are trying to service and should be expanded.
Alternatively, if the you know that the number of concurrently active
clients is less than the addresses you have available, you may want to
consider reducing the lease lifetime. In this way, addresses allocated
to clients that are no longer active on the network will become available
sooner.

ALLOC_ENGINE_V4_ALLOC_FAIL_CLASSES

%1: Failed to allocate an IPv4 address for client with classes: %2

This warning message is printed when Kea failed to allocate an address
and the client’s packet belongs to one or more classes. There may be several
reasons why a lease was not assigned. One of them may be a case when all
pools require packet to belong to certain classes and the incoming packet
didn’t belong to any of them. Another case where this information may be
useful is to point out that the pool reserved to a given class has ran
out of addresses. When you see this message, you may consider checking your
pool size and your classification definitions.

ALLOC_ENGINE_V4_DECLINED_RECOVERED

IPv4 address %1 was recovered after %2 seconds of probation-period

This informational message indicates that the specified address was reported
as duplicate (client sent DECLINE) and the server marked this address as
unvailable for a period of time. This time now has elapsed and the address
has been returned to the available pool. This step concludes decline recovery
process.

ALLOC_ENGINE_V4_DISCOVER_ADDRESS_CONFLICT

%1: conflicting reservation for address %2 with existing lease %3

This warning message is issued when the DHCP server finds that the
address reserved for the client can’t be offered because this address
is currently allocated to another client. The server will try to allocate
a different address to the client to use until the conflict is resolved.
The first argument includes the client identification information.

ALLOC_ENGINE_V4_DISCOVER_HR

client %1 sending DHCPDISCOVER has reservation for the address %2

This message is issued when the allocation engine determines that the
client sending the DHCPDISCOVER has a reservation for the specified
address. The allocation engine will try to offer this address to
the client.

ALLOC_ENGINE_V4_LEASES_RECLAMATION_COMPLETE

reclaimed %1 leases in %2

This debug message is logged when the allocation engine completes
reclamation of a set of expired leases. The maximum number of leases
to be reclaimed in a single pass of the lease reclamation routine
is configurable using ‘max-reclaim-leases’ parameter. However,
the number of reclaimed leases may also be limited by the timeout
value, configured with ‘max-reclaim-time’. The message includes the
number of reclaimed leases and the total time.

ALLOC_ENGINE_V4_LEASES_RECLAMATION_SLOW

expired leases still exist after %1 reclamations

This warning message is issued when the server has been unable to
reclaim all expired leases in a specified number of consecutive
attempts. This indicates that the value of “reclaim-timer-wait-time”
may be too high. However, if this is just a short burst of leases’
expirations the value does not have to be modified and the server
should deal with this in subsequent reclamation attempts. If this
is a result of a permanent increase of the server load, the value
of “reclaim-timer-wait-time” should be decreased, or the
values of “max-reclaim-leases” and “max-reclaim-time” should be
increased to allow processing more leases in a single cycle.
Alternatively, these values may be set to 0 to remove the
limitations on the number of leases and duration. However, this
may result in longer periods of server’s unresponsiveness to
DHCP packets, while it processes the expired leases.

ALLOC_ENGINE_V4_LEASES_RECLAMATION_START

starting reclamation of expired leases (limit = %1 leases or %2 milliseconds)

This debug message is issued when the allocation engine starts the
reclamation of the expired leases. The maximum number of leases to
be reclaimed and the timeout is included in the message. If any of
these values is 0, it means “unlimited”.

ALLOC_ENGINE_V4_LEASES_RECLAMATION_TIMEOUT

timeout of %1 ms reached while reclaiming IPv4 leases

This debug message is issued when the allocation engine hits the
timeout for performing reclamation of the expired leases. The
reclamation will now be interrupted and all leases which haven’t
been reclaimed, because of the timeout, will be reclaimed when the
next scheduled reclamation is started. The argument is the timeout
value expressed in milliseconds.

ALLOC_ENGINE_V4_LEASE_RECLAIM

%1: reclaiming expired lease for address %2

This debug message is issued when the server begins reclamation of the
expired DHCPv4 lease. The first argument specifies the client identification
information. The second argument holds the leased IPv4 address.

ALLOC_ENGINE_V4_LEASE_RECLAMATION_FAILED

failed to reclaim the lease %1: %2

This error message is logged when the allocation engine fails to
reclaim an expired lease. The reason for the failure is included in the
message. The error may be triggered in the lease expiration hook or
while performing the operation on the lease database.

ALLOC_ENGINE_V4_NO_MORE_EXPIRED_LEASES

all expired leases have been reclaimed

This debug message is issued when the server reclaims all expired
DHCPv4 leases in the database.

ALLOC_ENGINE_V4_OFFER_EXISTING_LEASE

allocation engine will try to offer existing lease to the client %1

This message is issued when the allocation engine determines that
the client has a lease in the lease database, it doesn’t have
reservation for any other lease, and the leased address is not
reserved for any other client. The allocation engine will try
to offer the same lease to the client.

ALLOC_ENGINE_V4_OFFER_NEW_LEASE

allocation engine will try to offer new lease to the client %1

This message is issued when the allocation engine will try to
offer a new lease to the client. This is the case when the
client doesn’t have any existing lease, it has no reservation
or the existing or reserved address is leased to another client.
Also, the client didn’t specify a hint, or the address in
the hint is in use.

ALLOC_ENGINE_V4_OFFER_REQUESTED_LEASE

allocation engine will try to offer requested lease %1 to the client %2

This message is issued when the allocation engine will try to
offer the lease specified in the hint. This situation may occur
when: (a) client doesn’t have any reservations, (b) client has
reservation but the reserved address is leased to another client.

ALLOC_ENGINE_V4_RECLAIMED_LEASES_DELETE

begin deletion of reclaimed leases expired more than %1 seconds ago

This debug message is issued when the allocation engine begins
deletion of the reclaimed leases which have expired more than
a specified number of seconds ago. This operation is triggered
periodically according to the “flush-reclaimed-timer-wait-time”
parameter. The “hold-reclaimed-time” parameter defines a number
of seconds for which the leases are stored before they are
removed.

ALLOC_ENGINE_V4_RECLAIMED_LEASES_DELETE_COMPLETE

successfully deleted %1 expired-reclaimed leases

This debug message is issued when the server successfully deletes
“expired-reclaimed” leases from the lease database. The number of
deleted leases is included in the log message.

ALLOC_ENGINE_V4_RECLAIMED_LEASES_DELETE_FAILED

deletion of expired-reclaimed leases failed: %1

This error message is issued when the deletion of “expired-reclaimed”
leases from the database failed. The error message is appended to
the log message.

ALLOC_ENGINE_V4_REQUEST_ADDRESS_RESERVED

%1: requested address %2 is reserved

This message is issued when the allocation engine refused to
allocate address requested by the client because this
address is reserved for another client. The first argument
includes the client identification information.

ALLOC_ENGINE_V4_REQUEST_ALLOC_REQUESTED

%1: trying to allocate requested address %2

This message is issued when the allocation engine is trying
to allocate (or reuse an expired) address which has been
requested by the client. The first argument includes the
client identification information.

ALLOC_ENGINE_V4_REQUEST_EXTEND_LEASE

%1: extending lifetime of the lease for address %2

This message is issued when the allocation engine determines
that the client already has a lease whose lifetime can be
extended, and which can be returned to the client.
The first argument includes the client identification information.

ALLOC_ENGINE_V4_REQUEST_INVALID

client %1 having a reservation for address %2 is requesting invalid address %3

This message is logged when the client, having a reservation for
one address, is requesting a different address. The client is
only allowed to do this when the reserved address is in use by
another client. However, the allocation engine has
determined that the reserved address is available and the
client should request the reserved address.

ALLOC_ENGINE_V4_REQUEST_IN_USE

%1: requested address %2 is in use

This message is issued when the client is requesting or has a
reservation for an address which is in use. The first argument
includes the client identification information.

ALLOC_ENGINE_V4_REQUEST_OUT_OF_POOL

client %1, which doesn’t have a reservation, requested address %2 out of the dynamic pool

This message is issued when the client has requested allocation
of the address which doesn’t belong to any address pool from
which addresses are dynamically allocated. The client also
doesn’t have reservation for this address. This address
could only be allocated if the client had reservation for it.

ALLOC_ENGINE_V4_REQUEST_PICK_ADDRESS

client %1 hasn’t specified an address - picking available address from the pool

This message is logged when the client hasn’t specified any
preferred address (the client should always do it, but Kea
tries to be forgiving). The allocation engine will try to pick an available
address from the dynamic pool and allocate it to the client.

ALLOC_ENGINE_V4_REQUEST_REMOVE_LEASE

%1: removing previous client’s lease %2

This message is logged when the allocation engine removes previous
lease for the client because the client has been allocated new one.

ALLOC_ENGINE_V4_REQUEST_USE_HR

client %1 hasn’t requested specific address, using reserved address %2

This message is issued when the client is not requesting any specific
address but the allocation engine has determined that there is a
reservation for this client. The allocation engine will try to
allocate the reserved address.

ALLOC_ENGINE_V4_REUSE_EXPIRED_LEASE_DATA

%1: reusing expired lease, updated lease information: %2

This message is logged when the allocation engine is reusing
an existing lease. The details of the updated lease are
printed. The first argument includes the client identification
information.

ALLOC_ENGINE_V6_ALLOC_ERROR

%1: error during attempt to allocate an IPv6 address: %2

An error occurred during an attempt to allocate an IPv6 address, the
reason for the failure being contained in the message. The server will
return a message to the client refusing a lease. The first argument
includes the client identification information.

ALLOC_ENGINE_V6_ALLOC_FAIL

%1: failed to allocate an IPv6 address after %2 attempt(s)

The DHCP allocation engine gave up trying to allocate an IPv6 address
after the specified number of attempts. This probably means that the
address pool from which the allocation is being attempted is either
empty, or very nearly empty. As a result, the client will have been
refused a lease. The first argument includes the client identification
information.
This message may indicate that your address pool is too small for the
number of clients you are trying to service and should be expanded.
Alternatively, if the you know that the number of concurrently active
clients is less than the addresses you have available, you may want to
consider reducing the lease lifetime. In this way, addresses allocated
to clients that are no longer active on the network will become available
sooner.

ALLOC_ENGINE_V6_ALLOC_HR_LEASE_EXISTS

%1: lease type %2 for reserved address/prefix %3 already exists

This debug message is issued when the allocation engine determines that
the lease for the IPv6 address or prefix has already been allocated
for the client and the client can continue using it. The first argument
includes the client identification information.

ALLOC_ENGINE_V6_ALLOC_LEASES_HR

leases and static reservations found for client %1

This message is logged when the allocation engine is in the process of
allocating leases for the client, it found existing leases and static
reservations for the client. The allocation engine will verify if
existing leases match reservations. Those leases that are reserved for
other clients and those that are not reserved for the client will
be removed. All leases matching the reservations will be renewed
and returned.

ALLOC_ENGINE_V6_ALLOC_LEASES_NO_HR

no reservations found but leases exist for client %1

This message is logged when the allocation engine is in the process if
allocating leases for the client, there are no static reservations,
but lease(s) exist for the client. The allocation engine will remove
leases which are reserved for other clients, and return all
remaining leases to the client.

ALLOC_ENGINE_V6_ALLOC_NO_LEASES_HR

no leases found but reservations exist for client %1

This message is logged when the allocation engine is in the process of
allocating leases for the client. It hasn’t found any existing leases
for this client, but the client appears to have static reservations.
The allocation engine will try to allocate the reserved resources for
the client.

ALLOC_ENGINE_V6_ALLOC_NO_V6_HR

%1: unable to allocate reserved leases - no IPv6 reservations

This message is logged when the allocation engine determines that the
client has no IPv6 reservations and thus the allocation engine will have
to try to allocate allocating leases from the dynamic pool or stop
the allocation process if none can be allocated. The first argument
includes the client identification information.

ALLOC_ENGINE_V6_ALLOC_UNRESERVED

no static reservations available - trying to dynamically allocate leases for client %1

This debug message is issued when the allocation engine will attempt
to allocate leases from the dynamic pools. This may be due to one of
(a) there are no reservations for this client, (b) there are
reservations for the client but they are not usable because the addresses
are in use by another client or (c) we had a reserved lease but that
has now been allocated to another client.

ALLOC_ENGINE_V6_DECLINED_RECOVERED

IPv6 address %1 was recovered after %2 seconds of probation-period

This informational message indicates that the specified address was reported
as duplicate (client sent DECLINE) and the server marked this address as
unvailable for a period of time. This time now has elapsed and the address
has been returned to the available pool. This step concludes decline recovery
process.

ALLOC_ENGINE_V6_EXPIRED_HINT_RESERVED

%1: expired lease for the client’s hint %2 is reserved for another client

This message is logged when the allocation engine finds that the
expired lease for the client’s hint can’t be reused because it
is reserved for another client. The first argument includes the
client identification information.

ALLOC_ENGINE_V6_EXTEND_ALLOC_UNRESERVED

allocate new (unreserved) leases for the renewing client %1

This debug message is issued when the allocation engine is trying to
allocate new leases for the renewing client because it was unable to
renew any of the existing client’s leases, e.g. because leases are
reserved for another client or for any other reason.

ALLOC_ENGINE_V6_EXTEND_ERROR

%1: allocation engine experienced error with attempting to extend lease lifetime: %2

This error message indicates that an error was experienced during Renew
or Rebind processing. Additional explanation is provided with this
message. Depending on its nature, manual intervention may be required to
continue processing messages from this particular client; other clients
will be unaffected. The first argument includes the client identification
information.

ALLOC_ENGINE_V6_EXTEND_LEASE

%1: extending lifetime of the lease type %2, address %3

This debug message is issued when the allocation engine is trying
to extend lifetime of the lease. The first argument includes the
client identification information.

ALLOC_ENGINE_V6_EXTEND_LEASE_DATA

%1: detailed information about the lease being extended: %2

This debug message prints detailed information about the lease which
lifetime is being extended (renew or rebind). The first argument
includes the client identification information.

ALLOC_ENGINE_V6_EXTEND_NEW_LEASE_DATA

%1: new lease information for the lease being extended: %2

This debug message prints updated information about the lease to be
extended. If the lease update is successful, the information printed
by this message will be stored in the database. The first argument
includes the client identification information.

ALLOC_ENGINE_V6_HINT_RESERVED

%1: lease for the client’s hint %2 is reserved for another client

This message is logged when the allocation engine cannot allocate
the lease using the client’s hint because the lease for this hint
is reserved for another client. The first argument includes the
client identification information.

ALLOC_ENGINE_V6_HR_ADDR_GRANTED

reserved address %1 was assigned to client %2

This informational message signals that the specified client was assigned the address
reserved for it.

ALLOC_ENGINE_V6_HR_PREFIX_GRANTED

reserved prefix %1/%2 was assigned to client %3

This informational message signals that the specified client was assigned the prefix
reserved for it.

ALLOC_ENGINE_V6_LEASES_RECLAMATION_COMPLETE

reclaimed %1 leases in %2

This debug message is logged when the allocation engine completes
reclamation of a set of expired leases. The maximum number of leases
to be reclaimed in a single pass of the lease reclamation routine
is configurable using ‘max-reclaim-leases’ parameter. However,
the number of reclaimed leases may also be limited by the timeout
value, configured with ‘max-reclaim-time’. The message includes the
number of reclaimed leases and the total time.

ALLOC_ENGINE_V6_LEASES_RECLAMATION_SLOW

expired leases still exist after %1 reclamations

This warning message is issued when the server has been unable to
reclaim all expired leases in a specified number of consecutive
attempts. This indicates that the value of “reclaim-timer-wait-time”
may be too high. However, if this is just a short burst of leases’
expirations the value does not have to be modified and the server
should deal with this in subsequent reclamation attempts. If this
is a result of a permanent increase of the server load, the value
of “reclaim-timer-wait-time” should be decreased, or the
values of “max-reclaim-leases” and “max-reclaim-time” should be
increased to allow processing more leases in a single cycle.
Alternatively, these values may be set to 0 to remove the
limitations on the number of leases and duration. However, this
may result in longer periods of server’s unresponsiveness to
DHCP packets, while it processes the expired leases.

ALLOC_ENGINE_V6_LEASES_RECLAMATION_START

starting reclamation of expired leases (limit = %1 leases or %2 milliseconds)

This debug message is issued when the allocation engine starts the
reclamation of the expired leases. The maximum number of leases to
be reclaimed and the timeout is included in the message. If any of
these values is 0, it means “unlimited”.

ALLOC_ENGINE_V6_LEASES_RECLAMATION_TIMEOUT

timeout of %1 ms reached while reclaiming IPv6 leases

This debug message is issued when the allocation engine hits the
timeout for performing reclamation of the expired leases. The
reclamation will now be interrupted and all leases which haven’t
been reclaimed, because of the timeout, will be reclaimed when the
next scheduled reclamation is started. The argument is the timeout
value expressed in milliseconds.

ALLOC_ENGINE_V6_LEASE_RECLAIM

%1: reclaiming expired lease for prefix %2/%3

This debug message is issued when the server begins reclamation of the
expired DHCPv6 lease. The reclaimed lease may either be an address lease
or delegated prefix. The first argument provides the client identification
information. The other arguments specify the prefix and the prefix length
for the lease. The prefix length for address lease is equal to 128.

ALLOC_ENGINE_V6_LEASE_RECLAMATION_FAILED

failed to reclaim the lease %1: %2

This error message is logged when the allocation engine fails to
reclaim an expired lease. The reason for the failure is included in the
message. The error may be triggered in the lease expiration hook or
while performing the operation on the lease database.

ALLOC_ENGINE_V6_NO_MORE_EXPIRED_LEASES

all expired leases have been reclaimed

This debug message is issued when the server reclaims all expired
DHCPv6 leases in the database.

ALLOC_ENGINE_V6_RECLAIMED_LEASES_DELETE

begin deletion of reclaimed leases expired more than %1 seconds ago

This debug message is issued when the allocation engine begins
deletion of the reclaimed leases which have expired more than
a specified number of seconds ago. This operation is triggered
periodically according to the “flush-reclaimed-timer-wait-time”
parameter. The “hold-reclaimed-time” parameter defines a number
of seconds for which the leases are stored before they are
removed.

ALLOC_ENGINE_V6_RECLAIMED_LEASES_DELETE_COMPLETE

successfully deleted %1 expired-reclaimed leases

This debug message is issued when the server successfully deletes
“expired-reclaimed” leases from the lease database. The number of
deleted leases is included in the log message.

ALLOC_ENGINE_V6_RECLAIMED_LEASES_DELETE_FAILED

deletion of expired-reclaimed leases failed: %1

This error message is issued when the deletion of “expired-reclaimed”
leases from the database failed. The error message is appended to
the log message.

ALLOC_ENGINE_V6_RENEW_HR

allocating leases reserved for the client %1 as a result of Renew

This debug message is issued when the allocation engine tries to
allocate reserved leases for the client sending a Renew message.
The server will also remove any leases that the client is trying
to renew that are not reserved for the client.

ALLOC_ENGINE_V6_RENEW_REMOVE_RESERVED

%1: checking if existing client’s leases are reserved for another client

This message is logged when the allocation engine finds leases for
the client and will check if these leases are reserved for another
client. If they are, they will not be renewed for the client
requesting their renewal. The first argument includes the client
identification information.

ALLOC_ENGINE_V6_RENEW_REMOVE_UNRESERVED

dynamically allocating leases for the renewing client %1

This debug message is issued as the allocation engine is trying
to dynamically allocate new leases for the renewing client. This
is the case when the server couldn’t renew any of the existing
client’s leases, e.g. because leased resources are reserved for
another client.

ALLOC_ENGINE_V6_REUSE_EXPIRED_LEASE_DATA

%1: reusing expired lease, updated lease information: %2

This message is logged when the allocation engine is reusing
an existing lease. The details of the updated lease are
printed. The first argument includes the client identification
information.

ALLOC_ENGINE_V6_REVOKED_ADDR_LEASE

address %1 was revoked from client %2 as it is reserved for client %3

This informational message is an indication that the specified IPv6
address was used by client A but it is now reserved for client B. Client
A has been told to stop using it so that it can be leased to client B.
This is a normal occurrence during conflict resolution, which can occur
in cases such as the system administrator adding a reservation for an
address that is currently in use by another client. The server will fully
recover from this situation, but clients will change their addresses.

ASIODNS

ASIODNS_FD_ADD_TCP

adding a new TCP server by opened fd %1

A debug message informing about installing a file descriptor as a server.
The file descriptor number is noted.

ASIODNS_FD_ADD_UDP

adding a new UDP server by opened fd %1

A debug message informing about installing a file descriptor as a server.
The file descriptor number is noted.

ASIODNS_FETCH_COMPLETED

upstream fetch to %1(%2) has now completed

A debug message, this records that the upstream fetch (a query made by the
resolver on behalf of its client) to the specified address has completed.

ASIODNS_FETCH_STOPPED

upstream fetch to %1(%2) has been stopped

An external component has requested the halting of an upstream fetch. This
is an allowed operation, and the message should only appear if debug is
enabled.

ASIODNS_OPEN_SOCKET

error %1 opening %2 socket to %3(%4)

The asynchronous I/O code encountered an error when trying to open a socket
of the specified protocol in order to send a message to the target address.
The number of the system error that caused the problem is given in the
message.

ASIODNS_READ_DATA

error %1 reading %2 data from %3(%4)

The asynchronous I/O code encountered an error when trying to read data from
the specified address on the given protocol. The number of the system
error that caused the problem is given in the message.

ASIODNS_READ_TIMEOUT

receive timeout while waiting for data from %1(%2)

An upstream fetch from the specified address timed out. This may happen for
any number of reasons and is most probably a problem at the remote server
or a problem on the network. The message will only appear if debug is
enabled.

ASIODNS_SEND_DATA

error %1 sending data using %2 to %3(%4)

The asynchronous I/O code encountered an error when trying to send data to
the specified address on the given protocol. The number of the system
error that caused the problem is given in the message.

ASIODNS_SYNC_UDP_CLOSE_FAIL

failed to close a DNS/UDP socket: %1

This is the same to ASIODNS_UDP_CLOSE_FAIL but happens on the
“synchronous UDP server”, mainly used for the authoritative DNS server
daemon.

ASIODNS_TCP_ACCEPT_FAIL

failed to accept TCP DNS connection: %1

Accepting a TCP connection from a DNS client failed due to an error
that could happen but should be rare. The reason for the error is
included in the log message. The server still keeps accepting new
connections, so unless it happens often it’s probably okay to ignore
this error. If the shown error indicates something like “too many
open files”, it’s probably because the run time environment is too
restrictive on this limitation, so consider adjusting the limit using
a tool such as ulimit. If you see other types of errors too often,
there may be something overlooked; please file a bug report in that case.

ASIODNS_TCP_CLEANUP_CLOSE_FAIL

failed to close a DNS/TCP socket on port cleanup: %1

A TCP DNS server tried to close a TCP socket (one created on accepting
a new connection or is already unused) as a step of cleaning up the
corresponding listening port, but it failed to do that. This is
generally an unexpected event and so is logged as an error.
See also the description of ASIODNS_TCP_CLOSE_ACCEPTOR_FAIL.

ASIODNS_TCP_CLOSE_ACCEPTOR_FAIL

failed to close listening TCP socket: %1

A TCP DNS server tried to close a listening TCP socket (for accepting
new connections) as a step of cleaning up the corresponding listening
port (e.g., on server shutdown or updating port configuration), but it
failed to do that. This is generally an unexpected event and so is
logged as an error. See ASIODNS_TCP_CLOSE_FAIL on the implication of
related system resources.

ASIODNS_TCP_CLOSE_FAIL

failed to close DNS/TCP socket with a client: %1

A TCP DNS server tried to close a TCP socket used to communicate with
a client, but it failed to do that. While closing a socket should
normally be an error-free operation, there have been known cases where
this happened with a “connection reset by peer” error. This might be
because of some odd client behavior, such as sending a TCP RST after
establishing the connection and before the server closes the socket,
but how exactly this could happen seems to be system dependent (i.e,
it’s not part of the standard socket API), so it’s difficult to
provide a general explanation. In any case, it is believed that an
error on closing a socket doesn’t mean leaking system resources (the
kernel should clean up any internal resource related to the socket,
just reporting an error detected in the close call), but, again, it
seems to be system dependent. This message is logged at a debug level
as it’s known to happen and could be triggered by a remote node and it
would be better to not be too verbose, but you might want to increase
the log level and make sure there’s no resource leak or other system
level troubles when it’s logged.

ASIODNS_TCP_CLOSE_NORESP_FAIL

failed to close DNS/TCP socket with a client: %1

A TCP DNS server tried to close a TCP socket used to communicate with
a client without returning an answer (which normally happens for zone
transfer requests), but it failed to do that. See ASIODNS_TCP_CLOSE_FAIL
for more details.

ASIODNS_TCP_GETREMOTE_FAIL

failed to get remote address of a DNS TCP connection: %1

A TCP DNS server tried to get the address and port of a remote client
on a connected socket but failed. It’s expected to be rare but can
still happen. See also ASIODNS_TCP_READLEN_FAIL.

ASIODNS_TCP_READDATA_FAIL

failed to get DNS data on a TCP socket: %1

A TCP DNS server tried to read a DNS message (that follows a 2-byte
length field) but failed. It’s expected to be rare but can still happen.
See also ASIODNS_TCP_READLEN_FAIL.

ASIODNS_TCP_READLEN_FAIL

failed to get DNS data length on a TCP socket: %1

A TCP DNS server tried to get the length field of a DNS message (the first
2 bytes of a new chunk of data) but failed. This is generally expected to
be rare but can still happen, e.g, due to an unexpected reset of the
connection. A specific reason for the failure is included in the log
message.

ASIODNS_TCP_WRITE_FAIL

failed to send DNS message over a TCP socket: %1

A TCP DNS server tried to send a DNS message to a remote client but
failed. It’s expected to be rare but can still happen. See also
ASIODNS_TCP_READLEN_FAIL.

ASIODNS_UDP_ASYNC_SEND_FAIL

Error sending UDP packet to %1: %2

The low-level ASIO library reported an error when trying to send a UDP
packet in asynchronous UDP mode. This can be any error reported by
send_to(), and can indicate problems such as too high a load on the network,
or a problem in the underlying library or system.
This packet is dropped and will not be sent, but service should resume
normally.
If you see a single occurrence of this message, it probably does not
indicate any significant problem, but if it is logged often, it is probably
a good idea to inspect your network traffic.

ASIODNS_UDP_CLOSE_FAIL

failed to close a DNS/UDP socket: %1

A UDP DNS server tried to close its UDP socket, but failed to do that.
This is generally an unexpected event and so is logged as an error.

ASIODNS_UDP_RECEIVE_FAIL

failed to receive UDP DNS packet: %1

Receiving a UDP packet from a DNS client failed due to an error that
could happen but should be very rare. The server still keeps
receiving UDP packets on this socket. The reason for the error is
included in the log message. This log message is basically not
expected to appear at all in practice; if it does, there may be some
system level failure and other system logs may have to be checked.

ASIODNS_UDP_SYNC_RECEIVE_FAIL

failed to receive UDP DNS packet: %1

This is the same to ASIODNS_UDP_RECEIVE_FAIL but happens on the
“synchronous UDP server”, mainly used for the authoritative DNS server
daemon.

ASIODNS_UDP_SYNC_SEND_FAIL

Error sending UDP packet to %1: %2

The low-level ASIO library reported an error when trying to send a UDP
packet in synchronous UDP mode. See ASIODNS_UDP_ASYNC_SEND_FAIL for
more information.

ASIODNS_UNKNOWN_ORIGIN

unknown origin for ASIO error code %1 (protocol: %2, address %3)

An internal consistency check on the origin of a message from the
asynchronous I/O module failed. This may indicate an internal error;
please submit a bug report.

BOOTP

BOOTP_BOOTP_QUERY

recognized a BOOTP query: %1

This debug message is printed when the BOOTP query was recognized. The
BOOTP client class was added and the message type set to DHCPREQUEST.
The query client and transaction identification are displayed.

BOOTP_LOAD

Bootp hooks library has been loaded

This info message indicates that the Bootp hooks library has been loaded.

BOOTP_PACKET_OPTIONS_SKIPPED

an error upacking an option, caused subsequent options to be skipped: %1

A debug message issued when an option failed to unpack correctly, making it
impossible to unpack the remaining options in the DHCPv4 query. The server
will still attempt to service the packet. The sole argument provides a
reason for unpacking error.

BOOTP_PACKET_PACK

%1: preparing on-wire format of the packet to be sent

This debug message is issued when the server starts preparing the on-wire
format of the packet to be sent back to the client. The argument specifies
the client and the transaction identification information.

BOOTP_PACKET_PACK_FAIL

%1: preparing on-wire-format of the packet to be sent failed %2

This error message is issued when preparing an on-wire format of the
packet has failed. The first argument identifies the client and the
BOOTP transaction. The second argument includes the error string.

BOOTP_PACKET_UNPACK_FAILED

failed to parse query from %1 to %2, received over interface %3, reason: %4

This debug message is issued when received DHCPv4 query is malformed and
can’t be parsed by the buffer4_receive callout. The query will be
dropped by the server. The first three arguments specify source IP address,
destination IP address and the interface. The last argument provides a
reason for failure.

COMMAND

COMMAND_ACCEPTOR_START

Starting to accept connections via unix domain socket bound to %1

This informational message is issued when the Kea server starts an acceptor
via which it is going to accept new control connections. The acceptor is
bound to the endpoint associated with the filename provided as an argument.
If starting the acceptor fails, subsequent error messages will provide a
reason for failure.

COMMAND_DEREGISTERED

Command %1 deregistered

This debug message indicates that the daemon stopped supporting specified
command. This command can no longer be issued. If the command socket is
open and this command is issued, the daemon will not be able to process it.

COMMAND_EXTENDED_REGISTERED

Command %1 registered

This debug message indicates that the daemon started supporting specified
command. The handler for the registered command includes a parameter holding
entire command to be processed.

COMMAND_PROCESS_ERROR1

Error while processing command: %1

This warning message indicates that the server encountered an error while
processing received command. Additional information will be provided, if
available. Additional log messages may provide more details.

COMMAND_PROCESS_ERROR2

Error while processing command: %1

This warning message indicates that the server encountered an error while
processing received command. The difference, compared to COMMAND_PROCESS_ERROR1
is that the initial command was well formed and the error occurred during
logic processing, not the command parsing. Additional information will be
provided, if available. Additional log messages may provide more details.

COMMAND_RECEIVED

Received command ‘%1’

This informational message indicates that a command was received over command
socket. The nature of this command and its possible results will be logged
with separate messages.

COMMAND_REGISTERED

Command %1 registered

This debug message indicates that the daemon started supporting specified
command. If the command socket is open, this command can now be issued.

COMMAND_RESPONSE_ERROR

Server failed to generate response for command: %1

This error message indicates that the server failed to generate response for
specified command. This likely indicates a server logic error, as the server
is expected to generate valid responses for all commands, even malformed
ones.

COMMAND_SOCKET_ACCEPT_FAIL

Failed to accept incoming connection on command socket %1: %2

This error indicates that the server detected incoming connection and executed
accept system call on said socket, but this call returned an error. Additional
information may be provided by the system as second parameter.

COMMAND_SOCKET_CLOSED_BY_FOREIGN_HOST

Closed command socket %1 by foreign host, %2

This is an information message indicating that the command connection has been
closed by a command control client, and whether or not any partially read data
was discarded.

COMMAND_SOCKET_CONNECTION_CANCEL_FAIL

Failed to cancel read operation on socket %1: %2

This error message is issued to indicate an error to cancel asynchronous read
of the control command over the control socket. The cancel operation is performed
when the timeout occurs during communication with a client. The error message
includes details about the reason for failure.

COMMAND_SOCKET_CONNECTION_CLOSED

Closed socket %1 for existing command connection

This is a debug message indicating that the socket created for handling
client’s connection is closed. This usually means that the client disconnected,
but may also mean a timeout.

COMMAND_SOCKET_CONNECTION_CLOSE_FAIL

Failed to close command connection: %1

This error message is issued when an error occurred when closing a
command connection and/or removing it from the connections pool. The
detailed error is provided as an argument.

COMMAND_SOCKET_CONNECTION_OPENED

Opened socket %1 for incoming command connection

This is a debug message indicating that a new incoming command connection was
detected and a dedicated socket was opened for that connection.

COMMAND_SOCKET_CONNECTION_SHUTDOWN_FAIL

Encountered error %1 while trying to gracefully shutdown socket

This message indicates an error while trying to gracefully shutdown command
connection. The type of the error is included in the message.

COMMAND_SOCKET_CONNECTION_TIMEOUT

Timeout occurred for connection over socket %1

This is an informational message that indicates that the timeout has
occurred for one of the command channel connections. The response
sent by the server indicates a timeout and is then closed.

COMMAND_SOCKET_READ

Received %1 bytes over command socket %2

This debug message indicates that specified number of bytes was received
over command socket identified by specified file descriptor.

COMMAND_SOCKET_READ_FAIL

Encountered error %1 while reading from command socket %2

This error message indicates that an error was encountered while
reading from command socket.

COMMAND_SOCKET_WRITE

Sent response of %1 bytes (%2 bytes left to send) over command socket %3

This debug message indicates that the specified number of bytes was sent
over command socket identifier by the specified file descriptor.

COMMAND_SOCKET_WRITE_FAIL

Error while writing to command socket %1 : %2

This error message indicates that an error was encountered while
attempting to send a response to the command socket.

COMMAND_WATCH_SOCKET_CLEAR_ERROR

watch socket failed to clear: %1

This error message is issued when the command manager was unable to reset
the ready status after completing a send. This is a programmatic error
that should be reported. The command manager may or may not continue
to operate correctly.

COMMAND_WATCH_SOCKET_CLOSE_ERROR

watch socket failed to close: %1

This error message is issued when command manager attempted to close the
socket used for indicating the ready status for send operations. This
should not have any negative impact on the operation of the command
manager as it happens when the connection is being terminated.

CTRL

CTRL_AGENT_COMMAND_FORWARDED

command %1 successfully forwarded to the service %2

This informational message is issued when the CA successfully forwards
the control message to the specified Kea service and receives a response.

CTRL_AGENT_COMMAND_FORWARD_BEGIN

begin forwarding command %1 to service %2

This debug message is issued when the Control Agent starts forwarding a
received command to one of the Kea servers.

CTRL_AGENT_COMMAND_FORWARD_FAILED

failed forwarding command %1: %2

This debug message is issued when the Control Agent failed forwarding a
received command to one of the Kea servers. The second argument provides
the details of the error.

CTRL_AGENT_CONFIG_CHECK_FAIL

Control Agent configuration check failed: %1

This error message indicates that the CA had failed configuration
check. Details are provided. Additional details may be available
in earlier log entries, possibly on lower levels.

CTRL_AGENT_CONFIG_FAIL

Control Agent configuration failed: %1

This error message indicates that the CA had failed configuration
attempt. Details are provided. Additional details may be available
in earlier log entries, possibly on lower levels.

CTRL_AGENT_FAILED

application experienced a fatal error: %1

This is a fatal error message issued when the Control Agent application
encounters an unrecoverable error from within the event loop.

CTRL_AGENT_HTTP_SERVICE_STARTED

HTTP service bound to address %1:%2

This informational message indicates that the server has started HTTP service
on the specified address and port. All control commands should be sent to this
address and port.

CTRL_AGENT_RUN_EXIT

application is exiting the event loop

This is a debug message issued when the Control Agent exits its
event loop.

DATABASE

DATABASE_CQL_CONNECTION_BEGIN_TRANSACTION

begin transaction on current connection.

The server has issued a begin transaction call.

DATABASE_CQL_CONNECTION_COMMIT

committing to Cassandra database on current connection.

A commit call been issued on the server. For Cassandra, this is a no-op.

DATABASE_CQL_CONNECTION_ROLLBACK

rolling back Cassandra database on current connection.

The code has issued a rollback call. For Cassandra, this is a no-op.

DATABASE_CQL_DEALLOC_ERROR

An error occurred while closing the CQL connection: %1

This is an error message issued when a DHCP server (either V4 or V6) experienced
and error freeing CQL database resources as part of closing its connection to
the Cassandra database. The connection is closed as part of normal server
shutdown. This error is most likely a programmatic issue that is highly
unlikely to occur or negatively impact server operation.

DATABASE_INVALID_ACCESS

invalid database access string: %1

This is logged when an attempt has been made to parse a database access string
and the attempt ended in error. The access string in question - which
should be of the form ‘keyword=value keyword=value…’ is included in
the message.

DATABASE_MYSQL_COMMIT

committing to MySQL database

The code has issued a commit call. All outstanding transactions will be
committed to the database. Note that depending on the MySQL settings,
the committal may not include a write to disk.

DATABASE_MYSQL_FATAL_ERROR

Unrecoverable MySQL error occurred: %1 for <%2>, reason: %3 (error code: %4).

An error message indicating that communication with the MySQL database server
has been lost. If automatic recovery has been enabled, then the server will
attempt to recover connectivity. If not the server wil exit with a
non-zero exit code. The cause of such an error is most likely a network issue
or the MySQL server has gone down.

DATABASE_MYSQL_ROLLBACK

rolling back MySQL database

The code has issued a rollback call. All outstanding transaction will
be rolled back and not committed to the database.

DATABASE_MYSQL_START_TRANSACTION

starting new MySQL transaction

A debug message issued when a new MySQL transaction is being started.
This message is typically not issued when inserting data into a
single table because the server doesn’t explicitly start
transactions in this case. This message is issued when data is
inserted into multiple tables with multiple INSERT statements
and there may be a need to rollback the whole transaction if
any of these INSERT statements fail.

DATABASE_PGSQL_COMMIT

committing to PostgreSQL database

The code has issued a commit call. All outstanding transactions will be
committed to the database. Note that depending on the PostgreSQL settings,
the committal may not include a write to disk.

DATABASE_PGSQL_DEALLOC_ERROR

An error occurred deallocating SQL statements while closing the PostgreSQL lease database: %1

This is an error message issued when a DHCP server (either V4 or V6) experienced
and error freeing database SQL resources as part of closing its connection to
the PostgreSQL database. The connection is closed as part of normal server
shutdown. This error is most likely a programmatic issue that is highly
unlikely to occur or negatively impact server operation.

DATABASE_PGSQL_FATAL_ERROR

Unrecoverable PostgreSQL error occurred: Statement: <%1>, reason: %2 (error code: %3).

An error message indicating that communication with the PostgreSQL database server
has been lost. If automatic recovery has been enabled, then the server will
attempt to recover the connectivity. If not the server wil exit with a
non-zero exit code. The cause of such an error is most likely a network issue
or the PostgreSQL server has gone down.

DATABASE_PGSQL_ROLLBACK

rolling back PostgreSQL database

The code has issued a rollback call. All outstanding transaction will
be rolled back and not committed to the database.

DATABASE_PGSQL_START_TRANSACTION

starting a new PostgreSQL transaction

A debug message issued when a new PostgreSQL transaction is being started.
This message is typically not issued when inserting data into a
single table because the server doesn’t explicitly start
transactions in this case. This message is issued when data is
inserted into multiple tables with multiple INSERT statements
and there may be a need to rollback the whole transaction if
any of these INSERT statements fail.

DCTL

DCTL_ALREADY_RUNNING

%1 already running? %2

This is an error message that occurs when a module encounters a pre-existing
PID file which contains the PID of a running process. This most likely
indicates an attempt to start a second instance of a module using the
same configuration file. It is possible, though unlikely, that the PID file
is a remnant left behind by a server crash or power failure and the PID
it contains refers to a process other than Kea process. In such an event,
it would be necessary to manually remove the PID file. The first argument is
the process name, the second contains the PID and PID file.

DCTL_CCSESSION_ENDING

%1 ending control channel session

This debug message is issued just before the controller attempts
to disconnect from its session with the Kea control channel.

DCTL_CFG_FILE_RELOAD_ERROR

configuration reload failed: %1, reverting to current configuration.

This is an error message indicating that the application attempted to reload
its configuration from file and encountered an error. This is likely due to
invalid content in the configuration file. The application should continue
to operate under its current configuration.

DCTL_CFG_FILE_RELOAD_SIGNAL_RECVD

OS signal %1 received, reloading configuration from file: %2

This is an informational message indicating the application has received a signal
instructing it to reload its configuration from file.

DCTL_COMMAND_RECEIVED

%1 received command: %2, arguments: %3

A debug message listing the command (and possible arguments) received
from the Kea control system by the controller.

DCTL_CONFIG_CHECK_COMPLETE

server has completed configuration check: %1, result: %2

This is an informational message announcing the successful processing of a
new configuration check is complete. The result of that check is printed.
This informational message is printed when configuration check is requested.

DCTL_CONFIG_COMPLETE

server has completed configuration: %1

This is an informational message announcing the successful processing of a
new configuration. It is output during server startup, and when an updated
configuration is committed by the administrator. Additional information
may be provided.

DCTL_CONFIG_DEPRECATED

server configuration includes a deprecated object: %1

This warning message is issued when the configuration includes a deprecated
object (i.e. a top level element) which will be ignored.

DCTL_CONFIG_FETCH

Fetching configuration data from config backends.

This is an informational message emitted when the Kea server is about to begin
retrieving configuration data from one or more configuration backends.

DCTL_CONFIG_FILE_LOAD_FAIL

%1 reason: %2

This fatal error message indicates that the application attempted to load its
initial configuration from file and has failed. The service will exit.

DCTL_CONFIG_LOAD_FAIL

%1 configuration failed to load: %2

This critical error message indicates that the initial application
configuration has failed. The service will start, but will not
process requests until the configuration has been corrected.

DCTL_CONFIG_START

parsing new configuration: %1

A debug message indicating that the application process has received an
updated configuration and has passed it to its configuration manager
for parsing.

DCTL_CONFIG_STUB

%1 configuration stub handler called

This debug message is issued when the dummy handler for configuration
events is called. This only happens during initial startup.

DCTL_CONFIG_UPDATE

%1 updated configuration received: %2

A debug message indicating that the controller has received an
updated configuration from the Kea configuration system.

DCTL_DEVELOPMENT_VERSION

This software is a development branch of Kea. It is not recommended for production use.

This warning message is displayed when the version is a development
(vs stable) one: the second number of the version is odd.

DCTL_INIT_PROCESS

%1 initializing the application

This debug message is issued just before the controller attempts
to create and initialize its application instance.

DCTL_INIT_PROCESS_FAIL

%1 application initialization failed: %2

This error message is issued if the controller could not initialize the
application and will exit.

DCTL_NOT_RUNNING

%1 application instance is not running

A warning message is issued when an attempt is made to shut down the
application when it is not running.

DCTL_OPEN_CONFIG_DB

Opening configuration database: %1

This message is printed when the Kea server is attempting to open a
configuration database. The database access string with password redacted
is logged.

DCTL_PARSER_FAIL

: %1

On receipt of a new configuration, the server failed to create a parser to
decode the contents of the named configuration element, or the creation
succeeded but the parsing actions and committal of changes failed.
The reason for the failure is given in the message.

DCTL_PID_FILE_ERROR

%1 could not create a PID file: %2

This is an error message that occurs when the server is unable to create
its PID file. The log message should contain details sufficient to
determine the underlying cause. The most likely culprits are that
some portion of the pathname does not exist or a permissions issue. The
default path is determined by –localstatedir or –runstatedir configure
parameters but may be overridden by setting environment variable,
KEA_PIDFILE_DIR. The first argument is the process name.

DCTL_PROCESS_FAILED

%1 application execution failed: %2

The controller has encountered a fatal error while running the
application and is terminating. The reason for the failure is
included in the message.

DCTL_RUN_PROCESS

%1 starting application event loop

This debug message is issued just before the controller invokes
the application run method.

DCTL_SESSION_FAIL

%1 controller failed to establish Kea session: %1

The controller has failed to establish communication with the rest of
Kea and will exit.

DCTL_SHUTDOWN

%1 has shut down, pid: %2, version: %3

This is an informational message indicating that the service has shut
down. The argument specifies a name of the service.

DCTL_SHUTDOWN_SIGNAL_RECVD

OS signal %1 received, starting shutdown

This is a debug message indicating the application has received a signal
instructing it to shutdown.

DCTL_SIGNAL_ERROR

signal handler for signal %1, threw an unexpected exception: %2

This is an error message indicating that the application encountered an unexpected
error after receiving a signal. This is a programmatic error and should be
reported. While The application will likely continue to operating, it may be
unable to respond correctly to signals.

DCTL_STANDALONE

%1 skipping message queue, running standalone

This is a debug message indicating that the controller is running in the
application in standalone mode. This means it will not connected to the Kea
message queue. Standalone mode is only useful during program development,
and should not be used in a production environment.

DCTL_STARTING

%1 starting, pid: %2, version: %3 (%4)

This is an informational message issued when controller for the
service first starts. Version is also reported.

DHCP4

DHCP4_ACTIVATE_INTERFACE

activating interface %1

This message is printed when DHCPv4 server enabled an interface to be used
to receive DHCPv4 traffic. IPv4 socket on this interface will be opened once
Interface Manager starts up procedure of opening sockets.

DHCP4_ALREADY_RUNNING

%1 already running? %2

This is an error message that occurs when the DHCPv4 server encounters
a pre-existing PID file which contains the PID of a running process.
This most likely indicates an attempt to start a second instance of
the server using the same configuration file. It is possible, though
unlikely that the PID file is a remnant left behind by a server crash or
power failure and the PID it contains refers to a process other than
the server. In such an event, it would be necessary to manually remove
the PID file. The first argument is the DHCPv4 process name, the
second contains the PID and PID file.

DHCP4_BUFFER_RECEIVED

received buffer from %1:%2 to %3:%4 over interface %5

This debug message is logged when the server has received a packet
over the socket. When the message is logged the contents of the received
packet hasn’t been parsed yet. The only available information is the
interface and the source and destination IPv4 addresses/ports.

DHCP4_BUFFER_RECEIVE_FAIL

error on attempt to receive packet: %1

The DHCPv4 server tried to receive a packet but an error
occurred during this attempt. The reason for the error is included in
the message.

DHCP4_BUFFER_UNPACK

parsing buffer received from %1 to %2 over interface %3

This debug message is issued when the server starts parsing the received
buffer holding the DHCPv4 message. The arguments specify the source and
destination IPv4 addresses as well as the interface over which the buffer has
been received.

DHCP4_BUFFER_WAIT_SIGNAL

signal received while waiting for next packet, next waiting signal is %1

This debug message is issued when the server was waiting for the
packet, but the wait has been interrupted by the signal received
by the process. The signal will be handled before the server starts
waiting for next packets. The argument specifies the next signal to
be handled by the server.

DHCP4_CB_ON_DEMAND_FETCH_UPDATES_FAIL

error on demand attempt to fetch configuration updates from the configuration backend(s): %1

This error message is issued when the server attempted to fetch
configuration updates from the database and this on demand attempt failed.
The sole argument which is returned to the config-backend-pull command
caller too contains the reason for failure.

DHCP4_CB_PERIODIC_FETCH_UPDATES_FAIL

error on periodic attempt to fetch configuration updates from the configuration backend(s): %1

This error message is issued when the server attempted to fetch
configuration updates from the database and this periodic attempt failed.
The server will re-try according to the configured value of the
config-fetch-wait-time parameter. The sole argument contains the
reason for failure.

DHCP4_CB_PERIODIC_FETCH_UPDATES_RETRIES_EXHAUSTED

maximum number of configuration fetch attempts: 10, has been exhausted without success

This error indicates that the server has made a number of unsuccessful
periodic attempts to fetch configuration updates from a configuration backend.
The server will continue to operate but won’t make any further attempts
to fetch configuration updates. The administrator must fix the configuration
in the database and reload (or restart) the server.

DHCP4_CLASS_ASSIGNED

%1: client packet has been assigned to the following class(es): %2

This debug message informs that incoming packet has been assigned to specified
class or classes. This is a normal behavior and indicates successful operation.
The first argument specifies the client and transaction identification
information. The second argument includes all classes to which the
packet has been assigned.

DHCP4_CLASS_UNCONFIGURED

%1: client packet belongs to an unconfigured class: %2

This debug message informs that incoming packet belongs to a class
which cannot be found in the configuration. Either a hook written
before the classification was added to Kea is used, or class naming is
inconsistent.

DHCP4_CLASS_UNDEFINED

required class %1 has no definition

This debug message informs that a class is listed for required evaluation but
has no definition.

DHCP4_CLASS_UNTESTABLE

required class %1 has no test expression

This debug message informs that a class was listed for required evaluation but
its definition does not include a test expression to evaluate.

DHCP4_CLIENTID_IGNORED_FOR_LEASES

%1: not using client identifier for lease allocation for subnet %2

This debug message is issued when the server is processing the DHCPv4 message
for which client identifier will not be used when allocating new lease or
renewing existing lease. The server is explicitly configured to not use
client identifier to lookup existing leases for the client and will not
record client identifier in the lease database. This mode of operation
is useful when clients don’t use stable client identifiers, e.g. multi
stage booting. The first argument includes the client and transaction
identification information. The second argument specifies the identifier
of the subnet where the client is connected and for which this mode of
operation is configured on the server.

DHCP4_CLIENT_FQDN_DATA

%1: Client sent FQDN option: %2

This debug message includes the detailed information extracted from the
Client FQDN option sent in the query. The first argument includes the
client and transaction identification information. The second argument
specifies the detailed information about the FQDN option received
by the server.

DHCP4_CLIENT_FQDN_PROCESS

%1: processing Client FQDN option

This debug message is issued when the server starts processing the Client
FQDN option sent in the client’s query. The argument includes the
client and transaction identification information.

DHCP4_CLIENT_HOSTNAME_DATA

%1: client sent Hostname option: %2

This debug message includes the detailed information extracted from the
Hostname option sent in the query. The first argument includes the
client and transaction identification information. The second argument
specifies the hostname carried in the Hostname option sent by the
client.

DHCP4_CLIENT_HOSTNAME_MALFORMED

%1: client hostname option malformed: %2

This debug message is issued when the DHCP server was unable to process the
the hostname option sent by the client because the content is malformed.
The first argument includes the client and transaction identification
information. The second argument contains a description of the data error.

DHCP4_CLIENT_HOSTNAME_PROCESS

%1: processing client’s Hostname option

This debug message is issued when the server starts processing the Hostname
option sent in the client’s query. The argument includes the client and
transaction identification information.

DHCP4_CLIENT_NAME_PROC_FAIL

%1: failed to process the fqdn or hostname sent by a client: %2

This debug message is issued when the DHCP server was unable to process the
FQDN or Hostname option sent by a client. This is likely because the client’s
name was malformed or due to internal server error. The first argument
contains the client and transaction identification information. The
second argument holds the detailed description of the error.

DHCP4_COMMAND_RECEIVED

received command %1, arguments: %2

A debug message listing the command (and possible arguments) received
from the Kea control system by the DHCPv4 server.

DHCP4_CONFIG_COMPLETE

DHCPv4 server has completed configuration: %1

This is an informational message announcing the successful processing of a
new configuration. It is output during server startup, and when an updated
configuration is committed by the administrator. Additional information
may be provided.

DHCP4_CONFIG_FETCH

Fetching configuration data from config backends.

This is an informational message emitted when the DHCPv4 server about to begin
retrieving configuration data from one or more configuration backends.

DHCP4_CONFIG_LOAD_FAIL

configuration error using file: %1, reason: %2

This error message indicates that the DHCPv4 configuration has failed.
If this is an initial configuration (during server’s startup) the server
will fail to start. If this is a dynamic reconfiguration attempt the
server will continue to use an old configuration.

DHCP4_CONFIG_NEW_SUBNET

a new subnet has been added to configuration: %1

This is an informational message reporting that the configuration has
been extended to include the specified IPv4 subnet.

DHCP4_CONFIG_OPTION_DUPLICATE

multiple options with the code %1 added to the subnet %2

This warning message is issued on an attempt to configure multiple options
with the same option code for a particular subnet. Adding multiple options
is uncommon for DHCPv4, but is not prohibited.

DHCP4_CONFIG_PACKET_QUEUE

DHCPv4 packet queue info after configuration: %1

This informational message is emitted during DHCPv4 server configuration,
immediately after configuring the DHCPv4 packet queue. The information
shown depends upon the packet queue type selected.

DHCP4_CONFIG_RECEIVED

received configuration %1

A debug message listing the configuration received by the DHCPv4 server.
The source of that configuration depends on used configuration backend.

DHCP4_CONFIG_START

DHCPv4 server is processing the following configuration: %1

This is a debug message that is issued every time the server receives a
configuration. That happens at start up and also when a server configuration
change is committed by the administrator.

DHCP4_CONFIG_UNSUPPORTED_OBJECT

DHCPv4 server configuration includes an unsupported object: %1

This error message is issued when the configuration includes an unsupported
object (i.e. a top level element).

DHCP4_CONFIG_UPDATE

updated configuration received: %1

A debug message indicating that the DHCPv4 server has received an
updated configuration from the Kea configuration system.

DHCP4_DB_RECONNECT_ATTEMPT_FAILED

database reconnect failed: %1

An error message indicating that an attempt to reconnect to the lease and/or
host data bases has failed. This occurs after connectivity to either one
has been lost and an automatic attempt to reconnect has failed.

DHCP4_DB_RECONNECT_ATTEMPT_SCHEDULE

scheduling attempt %1 of %2 in %3 milliseconds

An informational message indicating that the server is scheduling the next
attempt to reconnect to its lease and/or host databases. This occurs when the
server has lost databse connectivity and is attempting to reconnect
automatically.

DHCP4_DB_RECONNECT_DISABLED

database reconnect is disabled: max-reconnect-tries %1, reconnect-wait-time %2

This is an informational message indicating that connectivity to either the
lease or host database or both and that automatic reconnect is not enabled.

DHCP4_DB_RECONNECT_NO_DB_CTL

unexpected error in database reconnect

This is an error message indicating a programmatic error that should not
occur. It will prohibit the server from attempting to reconnect to its
databases if connectivy is lost, and the server will exit. This error
should be reported.

DHCP4_DB_RECONNECT_RETRIES_EXHAUSTED

maximum number of database reconnect attempts: %1, has been exhausted without success, server is shutting down!

This error indicates that the server is shutting down after failing to reconnect to
the lease and/or host database(s) after making the maximum configured number
of reconnect attempts. Loss of connectivity is typically a network or database
server issue.

DHCP4_DDNS_REQUEST_SEND_FAILED

failed sending a request to kea-dhcp-ddns, error: %1, ncr: %2

This error message indicates that DHCP4 server attempted to send a DDNS
update request to the DHCP-DDNS server. This is most likely a configuration or
networking error.

DHCP4_DEACTIVATE_INTERFACE

deactivate interface %1

This message is printed when DHCPv4 server disables an interface from being
used to receive DHCPv4 traffic. Sockets on this interface will not be opened
by the Interface Manager until interface is enabled.

DHCP4_DECLINE_LEASE

Received DHCPDECLINE for addr %1 from client %2. The lease will be unavailable for %3 seconds.

This informational message is printed when a client received an address, but
discovered that it is being used by some other device and notified the server by
sending a DHCPDECLINE message. The server checked that this address really was
leased to the client and marked this address as unusable for a certain
amount of time. This message may indicate a misconfiguration in a network,
as there is either a buggy client or more likely a device that is using an
address that it is not supposed to. The server will fully recover from this
situation, but if the underlying problem of a misconfigured or rogue device
is not solved, this address may be declined again in the future.

DHCP4_DECLINE_LEASE_MISMATCH

Received DHCPDECLINE for addr %1 from client %2, but the data doesn’t match: received hwaddr: %3, lease hwaddr: %4, received client-id: %5, lease client-id: %6

This informational message means that a client attempted to report his address
as declined (i.e. used by unknown entity). The server has information about
a lease for that address, but the client’s hardware address or client identifier
does not match the server’s stored information. The client’s request will be ignored.

DHCP4_DECLINE_LEASE_NOT_FOUND

Received DHCPDECLINE for addr %1 from client %2, but no such lease found.

This warning message indicates that a client reported that his address was
detected as a duplicate (i.e. another device in the network is using this address).
However, the server does not have a record for this address. This may indicate
a client’s error or a server’s purged database.

DHCP4_DEFERRED_OPTION_MISSING

can find deferred option code %1 in the query

This debug message is printed when a deferred option cannot be found in
the query.

DHCP4_DEFERRED_OPTION_UNPACK_FAIL

An error unpacking the deferred option %1: %2

A debug message issued when deferred unpacking of an option failed, making it
to be left unpacked in the packet. The first argument is the option code,
the second the error.

DHCP4_DEVELOPMENT_VERSION

This software is a development branch of Kea. It is not recommended for production use.

This warning message is displayed when the version is a development
(vs stable) one: the second number of the version is odd.

DHCP4_DHCP4O6_BAD_PACKET

received malformed DHCPv4o6 packet: %1

A malformed DHCPv4o6 packet was received.

DHCP4_DHCP4O6_PACKET_RECEIVED

received DHCPv4o6 packet from DHCPv4 server (type %1) for %2 on interface %3

This debug message is printed when the server is receiving a DHCPv4o6
from the DHCPv4 server over inter-process communication.

DHCP4_DHCP4O6_PACKET_SEND

%1: trying to send packet %2 (type %3) to %4 port %5 on interface %6 encapsulating %7: %8 (type %9)

The arguments specify the client identification information (HW address
and client identifier), DHCPv6 message name and type, source IPv6
address and port, and interface name, DHCPv4 client identification,
message name and type.

DHCP4_DHCP4O6_PACKET_SEND_FAIL

%1: failed to send DHCPv4o6 packet: %2

This error is output if the IPv4 DHCP server fails to send an
DHCPv4o6 message to the IPv6 DHCP server. The reason for the
error is included in the message.

DHCP4_DHCP4O6_RECEIVE_FAIL

failed to receive DHCPv4o6: %1

This debug message indicates the inter-process communication with the
DHCPv6 server failed. The reason for the error is included in
the message.

DHCP4_DHCP4O6_RECEIVING

receiving DHCPv4o6 packet from DHCPv6 server

This debug message is printed when the server is receiving a DHCPv4o6
from the DHCPv6 server over inter-process communication socket.

DHCP4_DHCP4O6_RESPONSE_DATA

%1: responding with packet %2 (type %3), packet details: %4

A debug message including the detailed data about the packet being
sent to the DHCPv6 server to be forwarded to the client. The first
argument contains the client and the transaction identification
information. The second and third argument contains the packet name
and type respectively. The fourth argument contains detailed packet
information.

DHCP4_DYNAMIC_RECONFIGURATION

initiate server reconfiguration using file: %1, after receiving SIGHUP signal or config-reload command

This is the info message logged when the DHCPv4 server starts reconfiguration
as a result of receiving SIGHUP signal or config-reload command.

DHCP4_DYNAMIC_RECONFIGURATION_FAIL

dynamic server reconfiguration failed with file: %1

This is an error message logged when the dynamic reconfiguration of the
DHCP server failed.

DHCP4_EMPTY_HOSTNAME

%1: received empty hostname from the client, skipping processing of this option

This debug message is issued when the server received an empty Hostname option
from a client. Server does not process empty Hostname options and therefore
option is skipped. The argument holds the client and transaction identification
information.

DHCP4_FLEX_ID

flexible identifier generated for incoming packet: %1

This debug message is printed when host reservation type is set to flexible identifier
and the expression specified in its configuration generated (was evaluated to)
an identifier for incoming packet. This debug message is mainly intended as a
debugging assistance for flexible identifier.

DHCP4_GENERATE_FQDN

%1: client did not send a FQDN or hostname; FQDN will be be generated for the client

This debug message is issued when the server did not receive a Hostname option
from the client and hostname generation is enabled. This provides a means to
create DNS entries for unsophisticated clients.

DHCP4_HANDLE_SIGNAL_EXCEPTION

An exception was thrown while handing signal: %1

This error message is printed when an ISC or standard exception was raised during signal
processing. This likely indicates a coding error and should be reported to ISC.

DHCP4_HOOKS_LIBS_RELOAD_FAIL

reload of hooks libraries failed

A “libreload” command was issued to reload the hooks libraries but for
some reason the reload failed. Other error messages issued from the
hooks framework will indicate the nature of the problem.

DHCP4_HOOK_BUFFER_RCVD_DROP

received buffer from %1 to %2 over interface %3 was dropped because a callout set the drop flag

This debug message is printed when a callout installed on buffer4_receive
hook point set the drop flag. For this particular hook point, the
setting of the flag by a callout instructs the server to drop the packet.
The arguments specify the source and destination IPv4 address as well as
the name of the interface over which the buffer has been received.

DHCP4_HOOK_BUFFER_RCVD_SKIP

received buffer from %1 to %2 over interface %3 is not parsed because a callout set the next step to SKIP.

This debug message is printed when a callout installed on
buffer4_receive hook point set the next step to SKIP. For this particular hook
point, this value set by a callout instructs the server to
not parse the buffer because it was already parsed by the hook. The
arguments specify the source and destination IPv4 address as well as
the name of the interface over which the buffer has been received.

DHCP4_HOOK_BUFFER_SEND_SKIP

%1: prepared response is dropped because a callout set the next step to SKIP.

This debug message is printed when a callout installed on buffer4_send
hook point set the next step to SKIP. For this particular hook point, the
SKIP value set by a callout instructs the server to drop the packet.
Server completed all the processing (e.g. may have assigned, updated
or released leases), but the response will not be send to the client.

DHCP4_HOOK_DECLINE_SKIP

Decline4 hook callouts set status to DROP, ignoring packet.

This message indicates that the server received DHCPDECLINE message, it was verified
to be correct and matching server’s lease information. The server called hooks
for decline4 hook point and one of the callouts set next step status to DROP.
The server will now abort processing of the packet as if it was never
received. The lease will continue to be assigned to this client.

DHCP4_HOOK_LEASE4_RELEASE_SKIP

%1: lease was not released because a callout set the next step to SKIP

This debug message is printed when a callout installed on lease4_release
hook point set the next step status to SKIP. For this particular hook point, the
value set by a callout instructs the server to not release a lease.

DHCP4_HOOK_LEASES4_COMMITTED_DROP

%1: packet is dropped, because a callout set the next step to DROP

This debug message is printed when a callout installed on the leases4_committed
hook point sets the next step to DROP.

DHCP4_HOOK_LEASES4_COMMITTED_PARK

%1: packet is parked, because a callout set the next step to PARK

This debug message is printed when a callout installed on the lease4_committed
hook point sets the next step to PARK.

DHCP4_HOOK_PACKET_RCVD_SKIP

%1: packet is dropped, because a callout set the next step to SKIP

This debug message is printed when a callout installed on the pkt4_receive
hook point sets the next step to SKIP. For this particular hook point, the
value setting of the flag instructs the server to drop the packet.

DHCP4_HOOK_PACKET_SEND_DROP

%1: prepared DHCPv4 response was not sent because a callout set the next ste to DROP

This debug message is printed when a callout installed on the pkt4_send
hook point set the next step to DROP. For this particular hook point, the setting
of the value by a callout instructs the server to drop the packet. This
effectively means that the client will not get any response, even though
the server processed client’s request and acted on it (e.g. possibly
allocated a lease). The argument specifies the client and transaction
identification information.

DHCP4_HOOK_PACKET_SEND_SKIP

%1: prepared response is not sent, because a callout set the next stp to SKIP

This debug message is printed when a callout installed on the pkt4_send
hook point sets the next step to SKIP. For this particular hook point, this
setting instructs the server to drop the packet. This means that
the client will not get any response, even though the server processed
client’s request and acted on it (e.g. possibly allocated a lease).

DHCP4_HOOK_SUBNET4_SELECT_DROP

%1: packet was dropped, because a callout set the next step to ‘drop’

This debug message is printed when a callout installed on the
subnet4_select hook point sets the next step to ‘drop’ value. For this particular hook
point, the setting to that value instructs the server to drop the received
packet. The argument specifies the client and transaction identification
information.

DHCP4_HOOK_SUBNET4_SELECT_SKIP

%1: no subnet was selected, because a callout set the next skip flag

This debug message is printed when a callout installed on the
subnet4_select hook point sets the next step to SKIP value. For this particular hook
point, the setting of the flag instructs the server not to choose a
subnet, an action that severely limits further processing; the server
will be only able to offer global options - no addresses will be assigned.
The argument specifies the client and transaction identification
information.

DHCP4_INFORM_DIRECT_REPLY

%1: DHCPACK in reply to the DHCPINFORM will be sent directly to %2 over %3

This debug message is issued when the DHCPACK will be sent directly to the
client, rather than via a relay. The first argument contains the client
and transaction identification information. The second argument contains
the client’s IPv4 address to which the response will be sent. The third
argument contains the local interface name.

DHCP4_INIT_FAIL

failed to initialize Kea server: %1

The server has failed to initialize. This may be because the configuration
was not successful, or it encountered any other critical error on startup.
Attached error message provides more details about the issue.

DHCP4_INIT_REBOOT

%1: client is in INIT-REBOOT state and requests address %2

This informational message is issued when the client is in the INIT-REBOOT
state and is requesting an IPv4 address it is using to be allocated for it.
The first argument includes the client and transaction identification
information. The second argument specifies the requested IPv4 address.

DHCP4_LEASE_ADVERT

%1: lease %2 will be advertised

This informational message indicates that the server has found the lease to be
offered to the client. It is up to the client to choose one server out of
those which offered leases and continue allocation with that server.
The first argument specifies the client and the transaction identification
information. The second argument specifies the IPv4 address to be offered.

DHCP4_LEASE_ALLOC

%1: lease %2 has been allocated for %3 seconds

This informational message indicates that the server successfully granted a
lease in response to client’s DHCPREQUEST message. The lease information will
be sent to the client in the DHCPACK message. The first argument contains the
client and the transaction identification information. The second argument
contains the allocated IPv4 address. The third argument is the validity
lifetime.

DHCP4_MULTI_THREADING_INFO

enabled: %1, number of threads: %2, queue size: %3

This is a message listing some information about the multi-threading parameters
with which the server is running.

DHCP4_MULTI_THREADING_WARNING

The multi-threading feature is experimental. Don’t use in production environment.

This is a message warning about the experimental multi-threading feature.

DHCP4_NCR_CREATE

%1: DDNS updates enabled, therefore sending name change requests

This debug message is issued when the server is starting to send
name change requests to the D2 module to update records for the client
in the DNS. This includes removal of old records and addition of the
new records as required. Details of the name change requests will be
logged in additional log entries. The argument includes the client
and the transaction identification information.

DHCP4_NCR_CREATION_FAILED

%1: failed to generate name change requests for DNS: %2

This message indicates that server was unable to generate NameChangeRequests
which should be sent to the kea-dhcp_ddns module to create
new DNS records for the lease being acquired or to update existing records
for the renewed lease. The first argument contains the client and transaction
identification information. The second argument includes the reason for the
failure.

DHCP4_NOT_RUNNING

DHCPv4 server is not running

A warning message is issued when an attempt is made to shut down the
DHCPv4 server but it is not running.

DHCP4_NO_LEASE_INIT_REBOOT

%1: no lease for address %2 requested by INIT-REBOOT client

This debug message is issued when the client being in the INIT-REBOOT state
requested an IPv4 address but this client is unknown. The server will not
respond. The first argument includes the client and the transaction id
identification information. The second argument includes the IPv4 address
requested by the client.

DHCP4_NO_SOCKETS_OPEN

no interface configured to listen to DHCP traffic

This warning message is issued when current server configuration specifies
no interfaces that server should listen on, or specified interfaces are not
configured to receive the traffic.

DHCP4_OPEN_CONFIG_DB

Opening configuration database: %1

This message is printed when the DHCPv4 server is attempting to open a
configuration database. The database access string with password redacted
is logged.

DHCP4_OPEN_SOCKET

opening service sockets on port %1

A debug message issued during startup, this indicates that the DHCPv4
server is about to open sockets on the specified port.

DHCP4_OPEN_SOCKET_FAIL

failed to open socket: %1

A warning message issued when IfaceMgr fails to open and bind a socket. The reason
for the failure is appended as an argument of the log message.

DHCP4_PACKET_DROP_0001

failed to parse packet from %1 to %2, received over interface %3, reason: %4

The DHCPv4 server has received a packet that it is unable to
interpret. The reason why the packet is invalid is included in the message.

DHCP4_PACKET_DROP_0002

%1, from interface %2: no suitable subnet configured for a direct client

This info message is logged when received a message from a directly connected
client but there is no suitable subnet configured for the interface on
which this message has been received. The IPv4 address assigned on this
interface must belong to one of the configured subnets. Otherwise
received message is dropped.

DHCP4_PACKET_DROP_0003

%1, from interface %2: it contains a foreign server identifier

This debug message is issued when received DHCPv4 message is dropped because
it is addressed to a different server, i.e. a server identifier held by
this message doesn’t match the identifier used by our server. The arguments
of this message hold the name of the transaction id and interface on which
the message has been received.

DHCP4_PACKET_DROP_0004

%1, from interface %2: missing msg-type option

This is a debug message informing that incoming DHCPv4 packet did not
have mandatory DHCP message type option and thus was dropped. The
arguments specify the client and transaction identification information,
as well as the interface on which the message has been received.

DHCP4_PACKET_DROP_0005

%1: unrecognized type %2 in option 53

This debug message indicates that the message type carried in DHCPv4 option
53 is unrecognized by the server. The valid message types are listed
on the IANA website: http://www.iana.org/assignments/bootp-dhcp-parameters/bootp-dhcp-parameters.xhtml#message-type-53.
The message will not be processed by the server. The arguments specify
the client and transaction identification information, as well as the
received message type.

DHCP4_PACKET_DROP_0006

%1: unsupported DHCPv4 message type %2

This debug message indicates that the message type carried in DHCPv4 option
53 is valid but the message will not be processed by the server. This includes
messages being normally sent by the server to the client, such as DHCPOFFER,
DHCPACK, DHCPNAK etc. The first argument specifies the client and transaction
identification information. The second argument specifies the message type.

DHCP4_PACKET_DROP_0007

%1: failed to process packet: %2

This is a general catch-all message indicating that the processing of a
received packet failed. The reason is given in the message. The server
will not send a response but will instead ignore the packet. The first
argument contains the client and transaction identification information.
The second argument includes the details of the error.

DHCP4_PACKET_DROP_0008

%1: DHCP service is globally disabled

This debug message is issued when a packet is dropped because the DHCP service
has been temporarily disabled. This affects all received DHCP packets. The
service may be enabled by the “dhcp-enable” control command or automatically
after a specified amount of time since receiving “dhcp-disable” command.

DHCP4_PACKET_DROP_0009

%1: Option 53 missing (no DHCP message type), is this a BOOTP packet?

This debug message is issued when a packet is dropped because it did contain
option 53 and thus has no DHCP message type. The most likely explanation is
that it was BOOTP packet.

DHCP4_PACKET_DROP_0010

dropped as member of the special class ‘DROP’: %1

This debug message is emitted when an incoming packet was classified
into the special class ‘DROP’ and dropped. The packet details are displayed.

DHCP4_PACKET_NAK_0001

%1: failed to select a subnet for incoming packet, src %2, type %3

This error message is output when a packet was received from a subnet
for which the DHCPv4 server has not been configured. The most probable
cause is a misconfiguration of the server. The first argument contains
the client and transaction identification information. The second argument
contains the source IPv4 address of the packet. The third argument contains
the name of the received packet.

DHCP4_PACKET_NAK_0002

%1: invalid address %2 requested by INIT-REBOOT

This debug message is issued when the client being in the INIT-REBOOT state
requested an IPv4 address which is not assigned to him. The server will respond
to this client with DHCPNAK. The first argument contains the client and
the transaction identification information. The second arguments holds the
IPv4 address requested by the client.

DHCP4_PACKET_NAK_0003

%1: failed to advertise a lease, client sent ciaddr %2, requested-ip-address %3

This message indicates that the server has failed to offer a lease to
the specified client after receiving a DISCOVER message from it. There are
many possible reasons for such a failure. The first argument contains
the client and the transaction identification information. The second
argument contains the IPv4 address in the ciaddr field. The third
argument contains the IPv4 address in the requested-ip-address option
(if present).

DHCP4_PACKET_NAK_0004

%1: failed to grant a lease, client sent ciaddr %2, requested-ip-address %3

This message indicates that the server failed to grant a lease to the
specified client after receiving a REQUEST message from it. There are many
possible reasons for such a failure. Additional messages will indicate the
reason. The first argument contains the client and the transaction
identification information. The second argument contains the IPv4 address
in the ciaddr field. The third argument contains the IPv4 address in the
requested-ip-address option (if present).

DHCP4_PACKET_OPTIONS_SKIPPED

An error unpacking an option, caused subsequent options to be skipped: %1

A debug message issued when an option failed to unpack correctly, making it
impossible to unpack the remaining options in the packet. The server will
server will still attempt to service the packet.

DHCP4_PACKET_OPTION_UNPACK_FAIL

An error unpacking the option %1: %2

A debug message issued when an option failed to unpack correctly, making it
to be left unpacked in the packet. The first argument is the option code,
the second the error.

DHCP4_PACKET_PACK

%1: preparing on-wire format of the packet to be sent

This debug message is issued when the server starts preparing the on-wire
format of the packet to be sent back to the client. The argument specifies
the client and the transaction identification information.

DHCP4_PACKET_PACK_FAIL

%1: preparing on-wire-format of the packet to be sent failed %2

This error message is issued when preparing an on-wire format of the packet
has failed. The first argument identifies the client and the DHCP transaction.
The second argument includes the error string.

DHCP4_PACKET_PROCESS_EXCEPTION

exception occurred during packet processing

This error message indicates that a non-standard exception was raised
during packet processing that was not caught by other, more specific
exception handlers. This packet will be dropped and the server will
continue operation.

DHCP4_PACKET_PROCESS_STD_EXCEPTION

exception occurred during packet processing: %1

This error message indicates that a standard exception was raised
during packet processing that was not caught by other, more specific
exception handlers. This packet will be dropped and the server will
continue operation.

DHCP4_PACKET_QUEUE_FULL

multi-threading packet queue is full

A debug message noting that the multi-threading packet queue is full so
the oldest packet of the queue was dropped to make room for the received one.

DHCP4_PACKET_RECEIVED

%1: %2 (type %3) received from %4 to %5 on interface %6

A debug message noting that the server has received the specified type of
packet on the specified interface. The first argument specifies the
client and transaction identification information. The second and third
argument specify the name of the DHCPv4 message and its numeric type
respectively. The remaining arguments specify the source IPv4 address,
destination IPv4 address and the name of the interface on which the
message has been received.

DHCP4_PACKET_SEND

%1: trying to send packet %2 (type %3) from %4:%5 to %6:%7 on interface %8

The arguments specify the client identification information (HW address
and client identifier), DHCP message name and type, source IPv4
address and port, destination IPv4 address and port and the
interface name.
This debug message is issued when the server is trying to send the
response to the client. When the server is using an UDP socket
to send the packet there are cases when this operation may be
unsuccessful and no error message will be displayed. One such situation
occurs when the server is unicasting the response to the ‘ciaddr’ of
a DHCPINFORM message. This often requires broadcasting an ARP
message to obtain the link layer address of the unicast destination.
If broadcast ARP messages are blocked in the network, according to
the firewall policy, the ARP message will not cause a response.
Consequently, the response to the DHCPINFORM will not be sent.
Since the ARP communication is under the OS control, Kea is not
notified about the drop of the packet which it is trying to send
and it has no means to display an error message.

DHCP4_PACKET_SEND_FAIL

%1: failed to send DHCPv4 packet: %2

This error is output if the DHCPv4 server fails to send an assembled
DHCP message to a client. The first argument includes the client and
the transaction identification information. The second argument includes
the reason for failure.

DHCP4_PARSER_COMMIT_EXCEPTION

parser failed to commit changes

On receipt of message containing details to a change of the DHCPv4
server configuration, a set of parsers were successfully created, but one
of them failed to commit its changes due to a low-level system exception
being raised. Additional messages may be output indicating the reason.

DHCP4_PARSER_COMMIT_FAIL

parser failed to commit changes: %1

On receipt of message containing details to a change of the DHCPv4
server configuration, a set of parsers were successfully created, but
one of them failed to commit its changes. The reason for the failure
is given in the message.

DHCP4_PARSER_EXCEPTION

failed to create or run parser for configuration element %1

On receipt of message containing details to a change of its configuration,
the DHCPv4 server failed to create a parser to decode the contents of
the named configuration element, or the creation succeeded but the parsing
actions and committal of changes failed. The message has been output in
response to a non-Kea exception being raised. Additional messages
may give further information.

DHCP4_PARSER_FAIL

failed to create or run parser for configuration element %1: %2

On receipt of message containing details to a change of its configuration,
the DHCPv4 server failed to create a parser to decode the contents
of the named configuration element, or the creation succeeded but the
parsing actions and committal of changes failed. The reason for the
failure is given in the message.

DHCP4_POST_ALLOCATION_NAME_UPDATE_FAIL

%1: failed to update hostname %2 in a lease after address allocation: %3

This message indicates the failure when trying to update the lease and/or
options in the server’s response with the hostname generated by the server
or reserved for the client belonging to a shared network. The latter is
the case when the server dynamically switches to another subnet (than
initially selected for allocation) from the same shared network.

DHCP4_QUERY_DATA

%1, packet details: %2

A debug message printing the details of the received packet. The first
argument includes the client and the transaction identification
information.

DHCP4_RELEASE

%1: address %2 was released properly.

This informational message indicates that an address was released properly. It
is a normal operation during client shutdown. The first argument includes
the client and transaction identification information. The second argument
includes the released IPv4 address.

DHCP4_RELEASE_EXCEPTION

%1: while trying to release address %2 an exception occurred: %3

This message is output when an error was encountered during an attempt
to process a DHCPRELEASE message. The error will not affect the client,
which does not expect any response from the server for DHCPRELEASE
messages. Depending on the nature of problem, it may affect future
server operation. The first argument includes the client and the
transaction identification information. The second argument
includes the IPv4 address which release was attempted. The last
argument includes the detailed error description.

DHCP4_RELEASE_FAIL

%1: failed to remove lease for address %2

This error message indicates that the software failed to remove a
lease from the lease database. It is probably due to an error during a
database operation: resolution will most likely require administrator
intervention (e.g. check if DHCP process has sufficient privileges to
update the database). It may also be triggered if a lease was manually
removed from the database during RELEASE message processing. The
first argument includes the client and the transaction identification
information. The second argument holds the IPv4 address which release
was attempted.

DHCP4_RELEASE_FAIL_NO_LEASE

%1: client is trying to release non-existing lease %2

This debug message is printed when client attempts to release a lease,
but no such lease is known to the server. The first argument contains
the client and transaction identification information. The second
argument contains the IPv4 address which the client is trying to
release.

DHCP4_RELEASE_FAIL_WRONG_CLIENT

%1: client is trying to release the lease %2 which belongs to a different client

This debug message is issued when a client is trying to release the
lease for the address which is currently used by another client, i.e.
the ‘client identifier’ or ‘chaddr’ doesn’t match between the client
and the lease. The first argument includes the client and the
transaction identification information. The second argument specifies
the leased address.

DHCP4_RESERVED_HOSTNAME_ASSIGNED

%1: server assigned reserved hostname %2

This debug message is issued when the server found a hostname reservation
for a client and uses this reservation in a hostname option sent back
to this client. The reserved hostname is qualified with a value
of ‘qualifying-suffix’ parameter, if this parameter is specified.

DHCP4_RESPONSE_DATA

%1: responding with packet %2 (type %3), packet details: %4

A debug message including the detailed data about the packet being sent
to the client. The first argument contains the client and the transaction
identification information. The second and third argument contains the
packet name and type respectively. The fourth argument contains detailed
packet information.

DHCP4_RESPONSE_FQDN_DATA

%1: including FQDN option in the server’s response: %2

This debug message is issued when the server is adding the Client FQDN
option in its response to the client. The first argument includes the
client and transaction identification information. The second argument
includes the details of the FQDN option being included. Note that the
name carried in the FQDN option may be modified by the server when
the lease is acquired for the client.

DHCP4_RESPONSE_HOSTNAME_DATA

%1: including Hostname option in the server’s response: %2

This debug message is issued when the server is adding the Hostname
option in its response to the client. The first argument includes the
client and transaction identification information. The second argument
includes the details of the FQDN option being included. Note that the
name carried in the Hostname option may be modified by the server when
the lease is acquired for the client.

DHCP4_RESPONSE_HOSTNAME_GENERATE

%1: server has generated hostname %2 for the client

This debug message includes the auto-generated hostname which will be used
for the client which message is processed. Hostnames may need to be generated
when required by the server’s configuration or when the client hasn’t
supplied its hostname. The first argument includes the client and the
transaction identification information. The second argument holds the
generated hostname.

DHCP4_SERVER_FAILED

server failed: %1

The DHCPv4 server has encountered a fatal error and is terminating.
The reason for the failure is included in the message.

DHCP4_SHUTDOWN

server shutdown

The DHCPv4 server has terminated normally.

DHCP4_SHUTDOWN_REQUEST

shutdown of server requested

This debug message indicates that a shutdown of the DHCPv4 server has
been requested via a call to the ‘shutdown’ method of the core Dhcpv4Srv
object.

DHCP4_SRV_CONSTRUCT_ERROR

error creating Dhcpv4Srv object, reason: %1

This error message indicates that during startup, the construction of a
core component within the DHCPv4 server (the Dhcpv4 server object)
has failed. As a result, the server will exit. The reason for the
failure is given within the message.

DHCP4_SRV_D2STOP_ERROR

error stopping IO with DHCP_DDNS during shutdown: %1

This error message indicates that during shutdown, an error occurred while
stopping IO between the DHCPv4 server and the DHCP_DDNS server. This is
probably due to a programmatic error is not likely to impact either server
upon restart. The reason for the failure is given within the message.

DHCP4_SRV_DHCP4O6_ERROR

error stopping IO with DHCPv4o6 during shutdown: %1

This error message indicates that during shutdown, an error occurred while
stopping IO between the DHCPv4 server and the DHCPv6o6 server. This is
probably due to a programmatic error is not likely to impact either server
upon restart. The reason for the failure is given within the message.

DHCP4_STARTED

Kea DHCPv4 server version %1 started

This informational message indicates that the DHCPv4 server has
processed all configuration information and is ready to process
DHCPv4 packets. The version is also printed.

DHCP4_STARTING

Kea DHCPv4 server version %1 (%2) starting

This informational message indicates that the DHCPv4 server has
processed any command-line switches and is starting. The version
is also printed.

DHCP4_START_INFO

pid: %1, server port: %2, client port: %3, verbose: %4

This is a debug message issued during the DHCPv4 server startup.
It lists some information about the parameters with which the server
is running.

DHCP4_SUBNET_DATA

%1: the selected subnet details: %2

This debug message includes the details of the subnet selected for
the client. The first argument includes the client and the
transaction identification information. The second arguments
includes the subnet details.

DHCP4_SUBNET_DYNAMICALLY_CHANGED

%1: changed selected subnet %2 to subnet %3 from shared network %4 for client assignments

This debug message indicates that the server is using another subnet
than initially selected for client assignments. This newly selected
subnet belongs to the same shared network as the original subnet.
Some reasons why the new subnet was selected include: address pool
exhaustion in the original subnet or the fact that the new subnet
includes some static reservations for this client.

DHCP4_SUBNET_SELECTED

%1: the subnet with ID %2 was selected for client assignments

This is a debug message noting the selection of a subnet to be used for
address and option assignment. Subnet selection is one of the early
steps in the processing of incoming client message. The first
argument includes the client and the transaction identification
information. The second argument holds the selected subnet id.

DHCP4_SUBNET_SELECTION_FAILED

%1: failed to select subnet for the client

This debug message indicates that the server failed to select the
subnet for the client which has sent a message to the server.
The server will not be able to offer any lease to the client and
will drop its message if the received message was DHCPDISCOVER,
and will send DHCPNAK if the received message was DHCPREQUEST.
The argument includes the client and the transaction identification
information.

DHCP4_TESTING_MODE_SEND_TO_SOURCE_ENABLED

All packets will be send to source address of an incoming packet - use only for testing

This message is printed then KEA_TEST_SEND_RESPONSES_TO_SOURCE
environment variable is set. It’s causing Kea to send packets to
source address of incoming packet. Usable just in testing environment
to simulate multiple subnet traffic from single source.

DHCP6

DHCP6_ACTIVATE_INTERFACE

activating interface %1

This message is printed when DHCPv6 server enabled an interface to be used
to receive DHCPv6 traffic. IPv6 socket on this interface will be opened once
Interface Manager starts up procedure of opening sockets.

DHCP6_ADD_GLOBAL_STATUS_CODE

%1: adding Status Code to DHCPv6 packet: %2

This message is logged when the server is adding the top-level
Status Code option. The first argument includes the client and the
transaction identification information. The second argument includes
the details of the status code.

DHCP6_ADD_STATUS_CODE_FOR_IA

%1: adding Status Code to IA with iaid=%2: %3

This message is logged when the server is adding the Status Code
option to an IA. The first argument includes the client and the
transaction identification information. The second argument specifies
the IAID. The third argument includes the details of the status code.

DHCP6_ALREADY_RUNNING

%1 already running? %2

This is an error message that occurs when the DHCPv6 server encounters
a pre-existing PID file which contains the PID of a running process.
This most likely indicates an attempt to start a second instance of
the server using the same configuration file. It is possible, though
unlikely that the PID file is a remnant left behind by a server crash or
power failure and the PID it contains refers to a process other than
the server. In such an event, it would be necessary to manually remove
the PID file. The first argument is the DHCPv6 process name, the second
contains the PID and PID file.

DHCP6_BUFFER_RECEIVED

received buffer from %1:%2 to %3:%4 over interface %5

This debug message is logged when the server has received a packet
over the socket. When the message is logged the contents of the received
packet hasn’t been parsed yet. The only available information is the
interface and the source and destination addresses/ports.

DHCP6_BUFFER_UNPACK

parsing buffer received from %1 to %2 over interface %3

This debug message is issued when the server starts parsing the received
buffer holding the DHCPv6 message. The arguments specify the source and
destination addresses as well as the interface over which the buffer has
been received.

DHCP6_BUFFER_WAIT_SIGNAL

signal received while waiting for next packet, next waiting signal is %1

This debug message is issued when the server was waiting for the
packet, but the wait has been interrupted by the signal received
by the process. The signal will be handled before the server starts
waiting for next packets. The argument specifies the next signal to
be handled by the server.

DHCP6_CB_ON_DEMAND_FETCH_UPDATES_FAIL

error on demand attempt to fetch configuration updates from the configuration backend(s): %1

This error message is issued when the server attempted to fetch
configuration updates from the database and this on demand attempt failed.
The sole argument which is returned to the config-backend-pull command
caller too contains the reason for failure.

DHCP6_CB_PERIODIC_FETCH_UPDATES_FAIL

error on periodic attempt to fetch configuration updates from the configuration backend(s): %1

This error message is issued when the server attempted to fetch
configuration updates from the database and this periodic attempt failed.
The server will re-try according to the configured value of the
config-fetch-wait-time parameter. The sole argument contains the
reason for failure.

DHCP6_CB_PERIODIC_FETCH_UPDATES_RETRIES_EXHAUSTED

maximum number of configuration fetch attempts: 10, has been exhausted without success

This error indicates that the server has made a number of unsuccessful
periodic attempts to fetch configuration updates from a configuration backend.
The server will continue to operate but won’t make any further attempts
to fetch configuration updates. The administrator must fix the configuration
in the database and reload (or restart) the server.

DHCP6_CLASS_ASSIGNED

%1: client packet has been assigned to the following class(es): %2

This debug message informs that incoming packet has been assigned to specified
class or classes. This is a normal behavior and indicates successful operation.
The first argument specifies the client and transaction identification
information. The second argument includes all classes to which the
packet has been assigned.

DHCP6_CLASS_UNCONFIGURED

%1: client packet belongs to an unconfigured class: %2

This debug message informs that incoming packet belongs to a class
which cannot be found in the configuration. Either a hook written
before the classification was added to Kea is used, or class naming is
inconsistent.

DHCP6_CLASS_UNDEFINED

required class %1 has no definition

This debug message informs that a class is listed for required evaluation but
has no definition.

DHCP6_CLASS_UNTESTABLE

required class %1 has no test expression

This debug message informs that a class was listed for required evaluation but
its definition does not include a test expression to evaluate.

DHCP6_COMMAND_RECEIVED

received command %1, arguments: %2

A debug message listing the command (and possible arguments) received
from the Kea control system by the IPv6 DHCP server.

DHCP6_CONFIG_COMPLETE

DHCPv6 server has completed configuration: %1

This is an informational message announcing the successful processing of a
new configuration. it is output during server startup, and when an updated
configuration is committed by the administrator. Additional information
may be provided.

DHCP6_CONFIG_LOAD_FAIL

configuration error using file: %1, reason: %2

This error message indicates that the DHCPv6 configuration has failed.
If this is an initial configuration (during server’s startup) the server
will fail to start. If this is a dynamic reconfiguration attempt the
server will continue to use an old configuration.

DHCP6_CONFIG_PACKET_QUEUE

DHCPv6 packet queue info after configuration: %1

This informational message is emitted during DHCPv6 server configuration,
immediately after configuring the DHCPv6 packet queue. The information
shown depends upon the packet queue type selected.

DHCP6_CONFIG_RECEIVED

received configuration: %1

A debug message listing the configuration received by the DHCPv6 server.
The source of that configuration depends on used configuration backend.

DHCP6_CONFIG_START

DHCPv6 server is processing the following configuration: %1

This is a debug message that is issued every time the server receives a
configuration. That happens start up and also when a server configuration
change is committed by the administrator.

DHCP6_CONFIG_UNSUPPORTED_OBJECT

DHCPv6 server configuration includes an unsupported object: %1

This error message is issued when the configuration includes an unsupported
object (i.e. a top level element).

DHCP6_CONFIG_UPDATE

updated configuration received: %1

A debug message indicating that the IPv6 DHCP server has received an
updated configuration from the Kea configuration system.

DHCP6_DB_BACKEND_STARTED

lease database started (type: %1, name: %2)

This informational message is printed every time the IPv6 DHCP server
is started. It indicates what database backend type is being to store
lease and other information.

DHCP6_DB_RECONNECT_ATTEMPT_FAILED

database reconnect failed: %1

An error message indicating that an attempt to reconnect to the lease and/or
host data bases has failed. This occurs after connectivity to either one
has been lost and an automatic attempt to reconnect has failed.

DHCP6_DB_RECONNECT_ATTEMPT_SCHEDULE

scheduling attempt %1 of %2 in %3 milliseconds

An informational message indicating that the server is scheduling the next
attempt to reconnect to its lease and/or host databases. This occurs when the
server has lost databse connectivity and is attempting to reconnect
automatically.

DHCP6_DB_RECONNECT_DISABLED

database reconnect is disabled: max-reconnect-tries %1, reconnect-wait-time %2

This is an informational message indicating that connectivity to either the
lease or host database or both and that automatic reconnect is not enabled.

DHCP6_DB_RECONNECT_NO_DB_CTL

unexpected error in database reconnect

This is an error message indicating a programmatic error that should not
occur. It will prohibit the server from attempting to reconnect to its
databases if connectivy is lost, and the server will exit. This error
should be reported.

DHCP6_DB_RECONNECT_RETRIES_EXHAUSTED

maximum number of database reconnect attempts: %1, has been exhausted without success, server is shutting down!

This error indicates that the server is shutting down after failing to reconnect to
the lease and/or host database(s) after making the maximum configured number
of reconnect attempts. Loss of connectivity is typically a network or database
server issue.

DHCP6_DDNS_CREATE_ADD_NAME_CHANGE_REQUEST

created name change request: %1

This debug message is logged when the new Name Change Request has been created
to perform the DNS Update, which adds new RRs.

DHCP6_DDNS_FQDN_GENERATED

%1: generated FQDN for the client: %2

This debug message is logged when the server generated FQDN (name)
for the client which message is processed. The names may be
generated by the server when required by the server’s policy or
when the client doesn’t provide any specific FQDN in its message
to the server. The first argument includes the client and
transaction identification information. The second argument includes
the generated FQDN.

DHCP6_DDNS_GENERATED_FQDN_UPDATE_FAIL

%1: failed to update the lease using address %2, after generating FQDN for a client, reason: %3

This message indicates the failure when trying to update the lease and/or
options in the server’s response with the hostname generated by the server
from the acquired address. The first argument includes the client and the
transaction identification information. The second argument is a leased
address. The third argument includes the reason for the failure.

DHCP6_DDNS_GENERATE_FQDN

%1: client did not send a FQDN option; FQDN will be

generated for the client.
This debug message is issued when the server did not receive a FQDN option
from the client and client name replacement is enabled. This provides a means
to create DNS entries for unsophisticated clients.

DHCP6_DDNS_RECEIVE_FQDN

%1: received DHCPv6 Client FQDN option: %2

This debug message is logged when server has found the DHCPv6 Client FQDN Option
sent by a client and started processing it. The first argument includes the
client and transaction identification information. The second argument
includes the received FQDN.

DHCP6_DDNS_REMOVE_OLD_LEASE_FQDN

%1: FQDN for a lease: %2 has changed. New values: hostname = %3, reverse mapping = %4, forward mapping = %5

This debug message is logged during lease renewal when an old lease that is
no longer being offered has a different FQDN than the renewing lesae. Thus
the old DNS entries need to be removed. The first argument includes the client
and the transaction identification information. The second argument holds the
details about the lease for which the FQDN information and/or mappings have
changed. The remaining arguments hold the new FQDN information and flags for
mappings.

DHCP6_DDNS_REQUEST_SEND_FAILED

failed sending a request to kea-dhcp-ddns, error: %1, ncr: %2

This error message indicates that IPv6 DHCP server failed to send a DDNS
update request to the DHCP-DDNS server. This is most likely a configuration or
networking error.

DHCP6_DDNS_RESPONSE_FQDN_DATA

%1: including FQDN option in the server’s response: %2

This debug message is issued when the server is adding the Client FQDN
option in its response to the client. The first argument includes the
client and transaction identification information. The second argument
includes the details of the FQDN option being included. Note that the
name carried in the FQDN option may be modified by the server when
the lease is acquired for the client.

DHCP6_DDNS_SEND_FQDN

sending DHCPv6 Client FQDN Option to the client: %1

This debug message is logged when server includes an DHCPv6 Client FQDN Option
in its response to the client.

DHCP6_DEACTIVATE_INTERFACE

deactivate interface %1

This message is printed when DHCPv6 server disables an interface from being
used to receive DHCPv6 traffic. Sockets on this interface will not be opened
by the Interface Manager until interface is enabled.

DHCP6_DECLINE_FAIL_DUID_MISMATCH

Client %1 sent DECLINE for address %2, but it belongs to client with DUID %3

This informational message is printed when a client attempts to decline
a lease, but that lease belongs to a different client. The decline request
will be rejected.

DHCP6_DECLINE_FAIL_IAID_MISMATCH

Client %1 sent DECLINE for address %2, but used a wrong IAID (%3), instead of expected %4

This informational message is printed when a client attempts to decline
a lease. The server has a lease for this address, it belongs to this client,
but the recorded IAID does not match what client has sent. This means
the server will reject this Decline.

DHCP6_DECLINE_FAIL_LEASE_WITHOUT_DUID

Client %1 sent DECLINE for address %2, but the associated lease has no DUID

This error condition likely indicates database corruption, as every IPv6
lease is supposed to have a DUID, even if it is an empty one.

DHCP6_DECLINE_FAIL_NO_LEASE

Client %1 sent DECLINE for address %2, but there’s no lease for it

This informational message is printed when a client tried to decline an address,
but the server has no lease for said address. This means that the server’s
and client’s perception of the leases are different. The likely causes
of this could be: a confused (e.g. skewed clock) or broken client (e.g. client
moved to a different location and didn’t notice) or possibly an attack
(a rogue client is trying to decline random addresses). The server will
inform the client that his decline request was rejected and client should
be able to recover from that.

DHCP6_DECLINE_LEASE

Client %1 sent DECLINE for address %2 and the server marked it as declined. The lease will be recovered in %3 seconds.

This informational message indicates that the client leased an address, but
discovered that it is being used by some other device and reported this to the
server by sending a Decline message. The server marked the lease as
declined. This likely indicates a misconfiguration in the network. Either
the server is configured with an incorrect pool or there are devices that have
statically assigned addresses that are supposed to be assigned by the DHCP
server. Both client (will request a different address) and server (will recover
the lease after decline-probation-time elapses) will recover automatically.
However, if the underlying problem is not solved, the conditions leading
to this message may reappear.

DHCP6_DECLINE_PROCESS_IA

Processing of IA (IAID: %1) from client %2 started.

This debug message is printed when the server starts processing an IA_NA option
received in Decline message. It’s expected that the option will contain an
address that is being declined. Specific information will be printed in a
separate message.

DHCP6_DEVELOPMENT_VERSION

This software is a development branch of Kea. It is not recommended for production use.

This warning message is displayed when the version is a development
(vs stable) one: the second number of the version is odd.

DHCP6_DHCP4O6_PACKET_RECEIVED

received DHCPv4o6 packet from DHCPv4 server (type %1) for %2 port %3 on interface %4

This debug message is printed when the server is receiving a DHCPv4o6
from the DHCPv4 server over inter-process communication.

DHCP6_DHCP4O6_RECEIVE_FAIL

failed to receive DHCPv4o6: %1

This debug message indicates the inter-process communication with the
DHCPv4 server failed. The reason for the error is included in
the message.

DHCP6_DHCP4O6_RECEIVING

receiving DHCPv4o6 packet from DHCPv4 server

This debug message is printed when the server is receiving a DHCPv4o6
from the DHCPv4 server over inter-process communication socket.

DHCP6_DHCP4O6_SEND_FAIL

failed to send DHCPv4o6 packet: %1

This error is output if the IPv6 DHCP server fails to send an assembled
DHCPv4o6 message to a client. The reason for the error is included in the
message.

DHCP6_DYNAMIC_RECONFIGURATION

initiate server reconfiguration using file: %1, after receiving SIGHUP signal or config-reload command

This is the info message logged when the DHCPv6 server starts reconfiguration
as a result of receiving SIGHUP signal or config-reload command.

DHCP6_DYNAMIC_RECONFIGURATION_FAIL

dynamic server reconfiguration failed with file: %1

This is an error message logged when the dynamic reconfiguration of the
DHCP server failed.

DHCP6_FLEX_ID

flexible identifier generated for incoming packet: %1

This debug message is printed when host reservation type is set to flexible identifier
and the expression specified in its configuration generated (was evaluated to)
an identifier for incoming packet. This debug message is mainly intended as a
debugging assistance for flexible identifier.

DHCP6_HANDLE_SIGNAL_EXCEPTION

An exception was thrown while handing signal: %1

This error message is printed when an exception was raised during signal
processing. This likely indicates a coding error and should be reported to ISC.

DHCP6_HOOKS_LIBS_RELOAD_FAIL

reload of hooks libraries failed

A “libreload” command was issued to reload the hooks libraries but for
some reason the reload failed. Other error messages issued from the
hooks framework will indicate the nature of the problem.

DHCP6_HOOK_BUFFER_RCVD_DROP

received buffer from %1 to %2 over interface %3 was dropped because a callout set the drop flag

This debug message is printed when a callout installed on buffer6_receive
hook point set the drop flag. For this particular hook point, the
setting of the flag by a callout instructs the server to drop the packet.
The arguments specify the source and destination address as well as
the name of the interface over which the buffer has been received.

DHCP6_HOOK_BUFFER_RCVD_SKIP

received buffer from %1 to %2 over interface %3 is not parsed because a callout set the next step to SKIP

This debug message is printed when a callout installed on
buffer6_receive hook point set the next step status to skip. For this particular
hook point, this value set by a callout instructs the server to
not parse the buffer because it was already parsed by the hook. The
arguments specify the source and destination address as well as the
name of the interface over which the buffer has been received.

DHCP6_HOOK_BUFFER_SEND_SKIP

%1: prepared DHCPv6 response was dropped because a callout set the next step to SKIP

This debug message is printed when a callout installed on buffer6_send
hook point set the next step to SKIP value. For this particular hook point, the
SKIP setting a callout instructs the server to drop the packet.
Server completed all the processing (e.g. may have assigned, updated
or released leases), but the response will not be send to the client.
The argument includes the client and transaction identification
information.

DHCP6_HOOK_DECLINE_DROP

During Decline processing (client=%1, interface=%2, addr=%3) hook callout set next step to DROP, dropping packet.

This message indicates that the server received DECLINE message, it was verified
to be correct and matching server’s lease information. The server called hooks
for the lease6_decline hook point and one of the callouts set next step status to DROP.
The server will now abort processing of the packet as if it was never
received. The lease will continue to be assigned to this client.

DHCP6_HOOK_DECLINE_SKIP

During Decline processing (client=%1, interface=%2, addr=%3) hook callout set status to SKIP, skipping decline.

This message indicates that the server received DECLINE message, it was verified
to be correct and matching server’s lease information. The server called hooks
for the lease6_decline hook point and one of the callouts set next step status to SKIP.
The server will skip the operation of moving the lease to the declined state and
will continue processing the packet. In particular, it will send a REPLY message
as if the decline actually took place.

DHCP6_HOOK_LEASE6_RELEASE_NA_SKIP

%1: DHCPv6 address lease was not released because a callout set the next step to SKIP

This debug message is printed when a callout installed on the
lease6_release hook point set the next step to SKIP. For this particular hook
point, this setting by a callout instructs the server to not
release a lease. If a client requested the release of multiples leases
(by sending multiple IA options), the server will retain this particular
lease and proceed with other releases as usual. The argument holds the
client and transaction identification information.

DHCP6_HOOK_LEASE6_RELEASE_PD_SKIP

%1: prefix lease was not released because a callout set the next step to SKIP

This debug message is printed when a callout installed on lease6_release
hook point set the next step to SKIP value. For this particular hook point, that
setting by a callout instructs the server to not release
a lease. If client requested release of multiples leases (by sending
multiple IA options), the server will retains this particular lease and
will proceed with other renewals as usual. The argument holds the
client and transaction identification information.

DHCP6_HOOK_LEASES6_COMMITTED_DROP

%1: packet is dropped, because a callout set the next step to DROP

This debug message is printed when a callout installed on the leases6_committed
hook point sets the next step to DROP.

DHCP6_HOOK_LEASES6_COMMITTED_PARK

%1: packet is parked, because a callout set the next step to PARK

This debug message is printed when a callout installed on the lease6_committed
hook point sets the next step to PARK.

DHCP6_HOOK_PACKET_RCVD_SKIP

%1: packet is dropped, because a callout set the next step to SKIP

This debug message is printed when a callout installed on the pkt6_receive
hook point sets the next step to SKIP. For this particular hook point, the
value setting instructs the server to drop the packet.

DHCP6_HOOK_PACKET_SEND_DROP

%1: prepared DHCPv6 response was not sent because a callout set the next ste to DROP

This debug message is printed when a callout installed on the pkt6_send
hook point set the next step to DROP. For this particular hook point, the setting
of the value by a callout instructs the server to drop the packet. This
effectively means that the client will not get any response, even though
the server processed client’s request and acted on it (e.g. possibly
allocated a lease). The argument specifies the client and transaction
identification information.

DHCP6_HOOK_PACKET_SEND_SKIP

%1: prepared DHCPv6 response is not built because a callout set the next step to SKIP

This debug message is printed when a callout installed on the
pkt6_send hook point set the next step to SKIP. For this particular hook
point, the setting of the value by a callout instructs the server to
not build the wire data (pack) because it was already done by the
book. The argument specifies the client and transaction identification
information.

DHCP6_HOOK_SUBNET6_SELECT_DROP

%1: packet was dropped because a callout set the drop flag

This debug message is printed when a callout installed on the
subnet6_select hook point set the drop flag. For this particular hook
point, the setting of the flag instructs the server to drop the
received packet. The argument holds the client and transaction
identification information.

DHCP6_HOOK_SUBNET6_SELECT_SKIP

%1: no subnet was selected because a callout set the next step to SKIP

This debug message is printed when a callout installed on the
subnet6_select hook point set the next step to SKIP value. For this particular hook
point, the setting of this value instructs the server not to choose a
subnet, an action that severely limits further processing; the server
will be only able to offer global options - no addresses or prefixes
will be assigned. The argument holds the client and transaction
identification information.

DHCP6_INIT_FAIL

failed to initialize Kea server: %1

The server has failed to establish communication with the rest of Kea,
failed to read JSON configuration file or encountered any other critical
issue that prevents it from starting up properly. Attached error message
provides more details about the issue.

DHCP6_LEASE_ADVERT

%1: lease for address %2 and iaid=%3 will be advertised

This informational message indicates that the server will advertise an
address to the client in the ADVERTISE message. The client will
request allocation of this address with the REQUEST message sent
in the next message exchange. The first argument includes the client
and transaction identification information. The remaining arguments
hold the allocated address and IAID.

DHCP6_LEASE_ADVERT_FAIL

%1: failed to advertise an address lease for iaid=%2

This message indicates that in response to a received SOLICIT, the server
failed to advertise a non-temporary lease for a given client. There may
be many reasons for such failure. Each failure is logged in a separate
log entry. The first argument holds the client and transaction identification
information. The second argument holds the IAID.

DHCP6_LEASE_ALLOC

%1: lease for address %2 and iaid=%3 has been allocated for %4 seconds

This informational message indicates that in response to a client’s REQUEST
message, the server successfully granted a non-temporary address
lease. This is a normal behavior and indicates successful operation.
The first argument includes the client and transaction identification
information. The remaining arguments hold the allocated address,
IAID and validity lifetime.

DHCP6_LEASE_ALLOC_FAIL

%1: failed to grant an address lease for iaid=%2

This message indicates that in response to a received REQUEST, the server
failed to grant a non-temporary address lease for the client. There may
be many reasons for such failure. Each failure is logged in a separate
log entry. The first argument holds the client and transaction identification
information. The second argument holds the IAID.

DHCP6_LEASE_DATA

%1: detailed lease information for iaid=%2: %3

This debug message is used to print the detailed information about the
allocated lease or a lease which will be advertised to the client.
The first argument holds the client and the transaction identification
information. The second argument holds the IAID. The third argument
holds the detailed lease information.

DHCP6_LEASE_NA_WITHOUT_DUID

%1: address lease for address %2 does not have a DUID

This error message indicates a database consistency problem. The lease
database has an entry indicating that the given address is in use,
but the lease does not contain any client identification. This is most
likely due to a software error: please raise a bug report. As a temporary
workaround, manually remove the lease entry from the database. The first
argument includes the client and transaction identification information.
The second argument holds the address to be released.

DHCP6_LEASE_PD_WITHOUT_DUID

%1: lease for prefix %2/%3 does not have a DUID

This error message indicates a database consistency failure. The lease
database has an entry indicating that the given prefix is in use,
but the lease does not contain any client identification. This is most
likely due to a software error: please raise a bug report. As a temporary
workaround, manually remove the lease entry from the database. The
first argument includes client and transaction identification
information. The second and third argument hold the prefix and the
prefix length.

DHCP6_LEASE_RENEW

%1: lease for address %2 and iaid=%3 has been allocated

This informational message indicates that in response to a client’s REQUEST
message, the server successfully renewed a non-temporary address
lease. This is a normal behavior and indicates successful operation.
The first argument includes the client and transaction identification
information. The remaining arguments hold the allocated address and
IAID.

DHCP6_MULTI_THREADING_INFO

enabled: %1, number of threads: %2, queue size: %3

This is a message listing some information about the multi-threading parameters
with which the server is running.

DHCP6_MULTI_THREADING_WARNING

The multi-threading feature is experimental. Don’t use in production environment.

This is a message warning about the experimental multi-threading feature.

DHCP6_NOT_RUNNING

IPv6 DHCP server is not running

A warning message is issued when an attempt is made to shut down the
IPv6 DHCP server but it is not running.

DHCP6_NO_INTERFACES

failed to detect any network interfaces

During startup the IPv6 DHCP server failed to detect any network
interfaces and is therefore shutting down.

DHCP6_NO_SOCKETS_OPEN

no interface configured to listen to DHCP traffic

This warning message is issued when current server configuration specifies
no interfaces that server should listen on, or specified interfaces are not
configured to receive the traffic.

DHCP6_OPEN_SOCKET

opening service sockets on port %1

A debug message issued during startup, this indicates that the IPv6 DHCP
server is about to open sockets on the specified port.

DHCP6_OPEN_SOCKET_FAIL

failed to open socket: %1

A warning message issued when IfaceMgr fails to open and bind a socket. The reason
for the failure is appended as an argument of the log message.

DHCP6_PACKET_DROP_DHCP_DISABLED

%1: DHCP service is globally disabled

This debug message is issued when a packet is dropped because the DHCP service
has been temporarily disabled. This affects all received DHCP packets. The
service may be enabled by the “dhcp-enable” control command or automatically
after a specified amount of time since receiving “dhcp-disable” command.

DHCP6_PACKET_DROP_DROP_CLASS

dropped as member of the special class ‘DROP’: %1

This debug message is emitted when an incoming packet was classified
into the special class ‘DROP’ and dropped. The packet details are displayed.

DHCP6_PACKET_DROP_PARSE_FAIL

failed to parse packet from %1 to %2, received over interface %3, reason: %4

The DHCPv6 server has received a packet that it is unable to
interpret. The reason why the packet is invalid is included in the message.

DHCP6_PACKET_DROP_SERVERID_MISMATCH

%1: dropping packet with server identifier: %2, server is using: %3

A debug message noting that server has received message with server identifier
option that not matching server identifier that server is using.

DHCP6_PACKET_DROP_UNICAST

%1: dropping unicast %2 packet as this packet should be sent to multicast

This debug message is issued when the server drops the unicast packet,
because packets of this type must be sent to multicast. The first argument
specifies the client and transaction identification information, the
second argument specifies packet type.

DHCP6_PACKET_OPTIONS_SKIPPED

An error upacking an option, caused subsequent options to be skipped: %1

A debug message issued when an option failed to unpack correctly, making it
impossible to unpack the remaining options in the packet. The server will
server will still attempt to service the packet.

DHCP6_PACKET_PROCESS_EXCEPTION

exception occurred during packet processing

This error message indicates that a non-standard exception was raised
during packet processing that was not caught by other, more specific
exception handlers. This packet will be dropped and the server will
continue operation.

DHCP6_PACKET_PROCESS_FAIL

processing of %1 message received from %2 failed: %3

This is a general catch-all message indicating that the processing of the
specified packet type from the indicated address failed. The reason is given in the
message. The server will not send a response but will instead ignore the packet.

DHCP6_PACKET_PROCESS_STD_EXCEPTION

exception occurred during packet processing: %1

This error message indicates that a standard exception was raised
during packet processing that was not caught by other, more specific
exception handlers. This packet will be dropped and the server will
continue operation.

DHCP6_PACKET_QUEUE_FULL

multi-threading packet queue is full

A debug message noting that the multi-threading packet queue is full so
the oldest packet of the queue was dropped to make room for the received one.

DHCP6_PACKET_RECEIVED

%1: %2 (type %3) received from %4 to %5 on interface %6

A debug message noting that the server has received the specified type of
packet on the specified interface. The first argument specifies the
client and transaction identification information. The second and third
argument specify the name of the DHCPv6 message and its numeric type
respectively. The remaining arguments specify the source address,
destination IP address and the name of the interface on which the
message has been received.

DHCP6_PACKET_RECEIVE_FAIL

error on attempt to receive packet: %1

The IPv6 DHCP server tried to receive a packet but an error
occurred during this attempt. The reason for the error is included in
the message.

DHCP6_PACKET_SEND

%1: trying to send packet %2 (type %3) from [%4]:%5 to [%6]:%7 on interface %8

The arguments specify the client identification information (HW address
and client identifier), DHCP message name and type, source IPv6
address and port, destination IPv6 address and port and the
interface name.

DHCP6_PACKET_SEND_FAIL

failed to send DHCPv6 packet: %1

This error is output if the IPv6 DHCP server fails to send an assembled
DHCP message to a client. The reason for the error is included in the
message.

DHCP6_PACK_FAIL

failed to assemble response correctly

This error is output if the server failed to assemble the data to be
returned to the client into a valid packet. The reason is most likely
to be to a programming error: please raise a bug report.

DHCP6_PARSER_COMMIT_EXCEPTION

parser failed to commit changes

On receipt of message containing details to a change of the IPv6 DHCP
server configuration, a set of parsers were successfully created, but one
of them failed to commit its changes due to a low-level system exception
being raised. Additional messages may be output indicating the reason.

DHCP6_PARSER_COMMIT_FAIL

parser failed to commit changes: %1

On receipt of message containing details to a change of the IPv6 DHCP
server configuration, a set of parsers were successfully created, but
one of them failed to commit its changes. The reason for the failure
is given in the message.

DHCP6_PARSER_EXCEPTION

failed to create or run parser for configuration element %1

On receipt of message containing details to a change of its configuration,
the IPv6 DHCP server failed to create a parser to decode the contents of
the named configuration element, or the creation succeeded but the parsing
actions and committal of changes failed. The message has been output in
response to a non-Kea exception being raised. Additional messages
may give further information.
The most likely cause of this is that the specification file for the
server (which details the allowable contents of the configuration) is
not correct for this version of Kea. This may be the result of an
interrupted installation of an update to Kea.

DHCP6_PARSER_FAIL

failed to create or run parser for configuration element %1: %2

On receipt of message containing details to a change of its configuration,
the IPv6 DHCP server failed to create a parser to decode the contents
of the named configuration element, or the creation succeeded but the
parsing actions and committal of changes failed. The reason for the
failure is given in the message.

DHCP6_PD_LEASE_ADVERT

%1: lease for prefix %2/%3 and iaid=%4 will be advertised

This informational message indicates that the server will advertise a
prefix to the client in the ADVERTISE message. The client will
request allocation of this prefix with the REQUEST message sent
in the next message exchange. The first argument includes the client
and transaction identification information. The remaining arguments
hold the allocated prefix, prefix length and IAID.

DHCP6_PD_LEASE_ADVERT_FAIL

%1: failed to advertise a prefix lease for iaid=%2

This message indicates that in response to a received SOLICIT, the
server failed to advertise a prefix lease for a given client. There may
be many reasons for such failure. Each failure is logged in a separate
log entry. The first argument holds the client and transaction identification
information. The second argument holds the IAID.

DHCP6_PD_LEASE_ALLOC

%1: lease for prefix %2/%3 and iaid=%4 has been allocated for %5 seconds

This informational message indicates that in response to a client’s REQUEST
message, the server successfully granted a prefix lease.
This is a normal behavior and indicates successful operation.
The first argument includes the client and transaction identification
information. The remaining arguments hold the allocated prefix,
prefix length, IAID and validity lifetime.

DHCP6_PD_LEASE_ALLOC_FAIL

%1: failed to grant a prefix lease for iaid=%2

This message indicates that in response to a received REQUEST, the server
failed to grant a prefix lease for the client. There may be many reasons
for such failure. Each failure is logged in a separate log entry. The first
argument holds the client and transaction identification information.
The second argument holds the IAID.

DHCP6_PD_LEASE_RENEW

%1: lease for prefix %2/%3 and iaid=%4 has been allocated

This informational message indicates that in response to a client’s REQUEST
message, the server successfully renewed a prefix lease.
This is a normal behavior and indicates successful operation.
The first argument includes the client and transaction identification
information. The remaining arguments hold the allocated prefix,
prefix length and and IAID.

DHCP6_PROCESS_IA_NA_EXTEND

%1: extending lease lifetime for IA_NA option with iaid=%2

This message is logged when the server is starting to extend the lifetime
of the address lease associated with the particular IAID. The first argument
includes the client and transaction identification information. The second
argument contains the IAID.

DHCP6_PROCESS_IA_NA_RELEASE

%1: releasing lease for IA_NA option with iaid=%2

This message is logged when the server is trying to release the client’s
as a result of receiving the RELEASE message. The first argument
includes the client and transaction identification information. The second
argument contains the IAID.

DHCP6_PROCESS_IA_NA_REQUEST

%1: server is processing IA_NA option with iaid=%2 and hint=%3

This is a debug message that indicates the processing of a received
IA_NA option. The first argument contains the client and the transaction
identification information. The second argument holds the IAID of the
IA_NA option. The third argument may hold the hint for the server
about the address that the client would like to have allocated.
If there is no hint, the argument should provide the text indicating
that the hint hasn’t been sent.

DHCP6_PROCESS_IA_PD_EXTEND

%1: extending lease lifetime for IA_PD option with iaid=%2

This message is logged when the server is starting to extend the lifetime
of the prefix lease associated with the particular IAID. The first argument
includes the client and transaction identification information. The second
argument contains the IAID.

DHCP6_PROCESS_IA_PD_REQUEST

%1: server is processing IA_PD option with iaid=%2 and hint=%3

This is a debug message that indicates a processing of received IA_PD
option. The first argument contains the client and the transaction
identification information. The second argument holds the IAID of the
IA_PD option. The third argument may hold the hint for the server
about the prefix that the client would like to have allocated.
If there is no hint, the argument should provide the text indicating
that the hint hasn’t been sent.

DHCP6_QUERY_DATA

%1, packet details: %2

A debug message printing the details of the received packet. The first
argument includes the client and the transaction identification
information.

DHCP6_RAPID_COMMIT

%1: Rapid Commit option received, following 2-way exchange

This debug message is issued when the server found a Rapid Commit option
in the client’s message and 2-way exchanges are supported by the
server for the subnet on which the client is connected. The argument
specifies the client and transaction identification information.

DHCP6_RELEASE_NA

%1: binding for address %2 and iaid=%3 was released properly

This informational message indicates that an address was released properly. It
is a normal operation during client shutdown.

DHCP6_RELEASE_NA_FAIL

%1: failed to remove address lease for address %2 and iaid=%3

This error message indicates that the software failed to remove an address
lease from the lease database. It probably due to an error during a
database operation: resolution will most likely require administrator
intervention (e.g. check if DHCP process has sufficient privileges to
update the database). It may also be triggered if a lease was manually
removed from the database during RELEASE message processing. The first
argument holds the client and transaction identification information.
The second and third argument hold the released address and IAID
respectively.

DHCP6_RELEASE_NA_FAIL_WRONG_DUID

%1: client tried to release address %2, but it belongs to another client using duid=%3

This warning message indicates that a client tried to release an address
that belongs to a different client. This should not happen in normal
circumstances and may indicate a misconfiguration of the client. However,
since the client releasing the address will stop using it anyway, there
is a good chance that the situation will correct itself.

DHCP6_RELEASE_NA_FAIL_WRONG_IAID

%1: client tried to release address %2, but it used wrong IAID (expected %3, but got %4)

This warning message indicates that client tried to release an address
that does belong to it, but the address was expected to be in a different
IA (identity association) container. This probably means that the client’s
support for multiple addresses is flawed.

DHCP6_RELEASE_PD

%1: prefix %2/%3 for iaid=%4 was released properly

This informational message indicates that a prefix was released properly. It
is a normal operation during client shutdown. The first argument holds
the client and transaction identification information. The second and
third argument define the prefix and its length. The fourth argument
holds IAID.

DHCP6_RELEASE_PD_FAIL

%1: failed to release prefix %2/%3 for iaid=%4

This error message indicates that the software failed to remove a prefix
lease from the lease database. It probably due to an error during a
database operation: resolution will most likely require administrator
intervention (e.g. check if DHCP process has sufficient privileges to
update the database). It may also be triggered if a lease was manually
removed from the database during RELEASE message processing. The
first argument hold the client and transaction identification
information. The second and third argument define the prefix and
its length. The fourth argument holds the IAID.

DHCP6_RELEASE_PD_FAIL_WRONG_DUID

%1: client tried to release prefix %2/%3, but it belongs to another client (duid=%4)

This warning message indicates that client tried to release a prefix
that belongs to a different client. This should not happen in normal
circumstances and may indicate a misconfiguration of the client. However,
since the client releasing the prefix will stop using it anyway, there
is a good chance that the situation will correct itself. The first
argument includes the client and the transaction identification
information. The second and third argument include the prefix and
prefix length. The last argument holds the DUID of the client holding
the lease.

DHCP6_RELEASE_PD_FAIL_WRONG_IAID

%1: client tried to release prefix %2/%3, but it used wrong IAID (expected %4, but got %5)

This warning message indicates that client tried to release a prefix
that does belong to it, but the address was expected to be in a different
IA (identity association) container. This probably means that the client’s
support for multiple prefixes is flawed. The first argument includes the
client and transaction identification information. The second and third
argument identify the prefix. The fourth and fifth argument hold the
expected IAID and IAID found respectively.

DHCP6_REQUIRED_OPTIONS_CHECK_FAIL

%1 message received from %2 failed the following check: %3

This message indicates that received DHCPv6 packet is invalid. This may be due
to a number of reasons, e.g. the mandatory client-id option is missing,
the server-id forbidden in that particular type of message is present,
there is more than one instance of client-id or server-id present,
etc. The exact reason for rejecting the packet is included in the message.

DHCP6_RESPONSE_DATA

responding with packet type %1 data is %2

A debug message listing the data returned to the client.

DHCP6_SERVER_FAILED

server failed: %1

The IPv6 DHCP server has encountered a fatal error and is terminating.
The reason for the failure is included in the message.

DHCP6_SHUTDOWN

server shutdown

The IPv6 DHCP server has terminated normally.

DHCP6_SHUTDOWN_REQUEST

shutdown of server requested

This debug message indicates that a shutdown of the IPv6 server has
been requested via a call to the ‘shutdown’ method of the core Dhcpv6Srv
object.

DHCP6_SOCKET_UNICAST

server is about to open socket on address %1 on interface %2

This is a debug message that inform that a unicast socket will be opened.

DHCP6_SRV_CONSTRUCT_ERROR

error creating Dhcpv6Srv object, reason: %1

This error message indicates that during startup, the construction of a
core component within the IPv6 DHCP server (the Dhcpv6 server object)
has failed. As a result, the server will exit. The reason for the
failure is given within the message.

DHCP6_SRV_D2STOP_ERROR

error stopping IO with DHCP_DDNS during shutdown: %1

This error message indicates that during shutdown, an error occurred while
stopping IO between the DHCPv6 server and the DHCP_DDNS server. This is
probably due to a programmatic error is not likely to impact either server
upon restart. The reason for the failure is given within the message.

DHCP6_STANDALONE

skipping message queue, running standalone

This is a debug message indicating that the IPv6 server is running in
standalone mode, not connected to the message queue. Standalone mode
is only useful during program development, and should not be used in a
production environment.

DHCP6_STARTED

Kea DHCPv6 server version %1 started

This informational message indicates that the IPv6 DHCP server has
processed all configuration information and is ready to process
DHCPv6 packets. The version is also printed.

DHCP6_STARTING

Kea DHCPv6 server version %1 (%2) starting

This informational message indicates that the IPv6 DHCP server has
processed any command-line switches and is starting. The version
is also printed.

DHCP6_START_INFO

pid: %1, server port: %2, client port: %3, verbose: %4

This is a debug message issued during the IPv6 DHCP server startup.
It lists some information about the parameters with which the server
is running.

DHCP6_SUBNET_DATA

%1: the selected subnet details: %2

This debug message includes the details of the subnet selected for
the client. The first argument includes the client and the
transaction identification information. The second argument
includes the subnet details.

DHCP6_SUBNET_DYNAMICALLY_CHANGED

%1: changed selected subnet %2 to subnet %3 from shared network %4 for client assignments

This debug message indicates that the server is using another subnet
than initially selected for client assignments. This newly selected
subnet belongs to the same shared network as the original subnet.
Some reasons why the new subnet was selected include: address pool
exhaustion in the original subnet or the fact that the new subnet
includes some static reservations for this client.

DHCP6_SUBNET_SELECTED

%1: the subnet with ID %2 was selected for client assignments

This is a debug message noting the selection of a subnet to be used for
address and option assignment. Subnet selection is one of the early
steps in the processing of incoming client message. The first
argument includes the client and the transaction identification
information. The second argument holds the selected subnet id.

DHCP6_SUBNET_SELECTION_FAILED

%1: failed to select subnet for the client

This debug message indicates that the server failed to select the
subnet for the client which has sent a message to the server.
The cause is likely due to a misconfiguration of the server. The packet
processing will continue, but the response will only contain generic
configuration and no addresses or prefixes. The argument includes
the client and the transaction identification information.

DHCP6_UNKNOWN_MSG_RECEIVED

received unknown message (type %1) on interface %2

This debug message is printed when server receives a message of unknown type.
That could either mean missing functionality or invalid or broken relay or client.
The list of formally defined message types is available here:
http://www.iana.org/assignments/dhcpv6-parameters.

DHCPSRV

DHCPSRV_CFGMGR_ADD_IFACE

listening on interface %1

An info message issued when a new interface is being added to the collection of
interfaces on which the server listens to DHCP messages.

DHCPSRV_CFGMGR_ADD_SUBNET4

adding subnet %1

A debug message reported when the DHCP configuration manager is adding the
specified IPv4 subnet to its database.

DHCPSRV_CFGMGR_ADD_SUBNET6

adding subnet %1

A debug message reported when the DHCP configuration manager is adding the
specified IPv6 subnet to its database.

DHCPSRV_CFGMGR_ALL_IFACES_ACTIVE

enabling listening on all interfaces

A debug message issued when the server is being configured to listen on all
interfaces.

DHCPSRV_CFGMGR_CFG_DHCP_DDNS

Setting DHCP-DDNS configuration to: %1

A debug message issued when the server’s DHCP-DDNS settings are changed.

DHCPSRV_CFGMGR_CLEAR_ACTIVE_IFACES

stop listening on all interfaces

A debug message issued when configuration manager clears the internal list
of active interfaces. This doesn’t prevent the server from listening to
the DHCP traffic through open sockets, but will rather be used by Interface
Manager to select active interfaces when sockets are re-opened.

DHCPSRV_CFGMGR_CONFIG4_MERGED

Configuration backend data has been merged.

This is an informational message emitted when the DHCPv4 server has
successfully merged configuration data retrieved from its configuration
backends into the current configuration.

DHCPSRV_CFGMGR_CONFIG6_MERGED

Configuration backend data has been merged.

This is an informational message emitted when the DHCPv6 server has
successfully merged configuration data retrieved from its configuration
backends into the current configuration.

DHCPSRV_CFGMGR_CONFIGURE_SERVERID

server configuration includes specification of a server identifier

This warning message is issued when the server specified configuration of
a server identifier. If this new configuration overrides an existing
server identifier, this will affect existing bindings of the clients.
Clients will use old server identifier when they renew their bindings.
The server will not respond to those renews, and the clients will
eventually transition to rebinding state. The server should reassign
existing bindings and the clients will subsequently use new server
identifier. It is recommended to not modify the server identifier, unless
there is a good reason for it, to avoid increased number of renewals and
a need for rebinding (increase of multicast traffic, which may be received
by multiple servers).

DHCPSRV_CFGMGR_DDNS_PARAMETER_IGNORED

dhpd-ddns:%1 is deprecated, using existing global:%2

This is an informational message issued during configuration parsing when
the server detects that a deprecated parameter has been specified in the
“dhcp-ddns” element which conflicts with its corresponding global parameter.
When this occurs the server simply ignores the value from dhcp-ddns.
The log message shows be the deprecated and the supported parameter names.
Note the configuration change only affects the in memory configuration.
You should modify your configuration to comply the supported parameters.

DHCPSRV_CFGMGR_DDNS_PARAMETER_MOVED

dhcp-ddns:%1 is deprecated, moving it to global:%2

This is an informational message issued during configuration parsing when
the server detects that a deprecated parameter has been specified in the
“dhcp-ddns” element for which no corresponding global value exists. When
this occurs the server removes the parameter from dhcp-ddns and inserts the
parameter into the global scope. The log message shows be the deprecated
and the supported parameter names. Note the configuration change only affects
the in memory configuration. You should modify your configuration to comply
the supported parameters.

DHCPSRV_CFGMGR_DEL_SUBNET4

IPv4 subnet %1 removed

This debug message is issued when a subnet is successfully removed from the
server configuration. The argument identifies the subnet removed.

DHCPSRV_CFGMGR_DEL_SUBNET6

IPv6 subnet %1 removed

This debug message is issued when a subnet is successfully removed from the

DHCPSRV_CFGMGR_NEW_SUBNET4

a new subnet has been added to configuration: %1

This is an informational message reporting that the configuration has
been extended to include the specified IPv4 subnet.

DHCPSRV_CFGMGR_NEW_SUBNET6

a new subnet has been added to configuration: %1

This is an informational message reporting that the configuration has
been extended to include the specified subnet.

DHCPSRV_CFGMGR_NO_SUBNET4

no suitable subnet is defined for address hint %1

This debug message is output when the DHCP configuration manager has received
a request for an IPv4 subnet for the specified address, but no such
subnet exists.

DHCPSRV_CFGMGR_NO_SUBNET6

no suitable subnet is defined for address hint %1

This debug message is output when the DHCP configuration manager has received
a request for an IPv6 subnet for the specified address, but no such
subnet exists.

DHCPSRV_CFGMGR_ONLY_SUBNET4

retrieved subnet %1 for address hint %2

This is a debug message reporting that the DHCP configuration manager has
returned the specified IPv4 subnet when given the address hint specified
because it is the only subnet defined.

DHCPSRV_CFGMGR_ONLY_SUBNET6

retrieved subnet %1 for address hint %2

This is a debug message reporting that the DHCP configuration manager has
returned the specified IPv6 subnet when given the address hint specified
because it is the only subnet defined.

DHCPSRV_CFGMGR_OPTION_DUPLICATE

multiple options with the code: %1 added to the subnet: %2

This warning message is issued on an attempt to configure multiple options with the
same option code for the particular subnet. Adding multiple options is uncommon
for DHCPv6, but it is not prohibited.

DHCPSRV_CFGMGR_RELAY_IP_ADDRESS_DEPRECATED

“relay” uses “ip-address”, which has been deprecated, please use “ip-addresses”: %1

This is debug message issued when the “relay” element being parse
contains “ip-address” rather than its replacement, “ip-addresses”.
The server will still honor the value but users are encouraged to
move to the new list parameter.

DHCPSRV_CFGMGR_SOCKET_RAW_UNSUPPORTED

use of raw sockets is unsupported on this OS, UDP sockets will be used

This warning message is logged when the user specified that the
DHCPv4 server should use the raw sockets to receive the DHCP
messages and respond to the clients, but the use of raw sockets
is not supported on the particular environment. The raw sockets
are useful when the server must respond to the directly connected
clients which don’t have an address yet. If the raw sockets are
not supported by Kea on the particular platform, Kea will fall
back to use of the IP/UDP sockets. The responses to
the directly connected clients will be broadcast. The responses
to relayed clients will be unicast as usual.

DHCPSRV_CFGMGR_SOCKET_TYPE_DEFAULT

“dhcp-socket-type” not specified , using default socket type %1

This informational message is logged when the administrator hasn’t
specified the “dhcp-socket-type” parameter in configuration for interfaces.
In such case, the default socket type will be used.

DHCPSRV_CFGMGR_SOCKET_TYPE_SELECT

using socket type %1

This informational message is logged when the DHCPv4 server selects the
socket type to be used for all sockets that will be opened on the
interfaces. Typically, the socket type is specified by the server
administrator. If the socket type hasn’t been specified, the raw
socket will be selected. If the raw socket has been selected but
Kea doesn’t support the use of raw sockets on the particular
OS, it will use an UDP socket instead.

DHCPSRV_CFGMGR_SUBNET4

retrieved subnet %1 for address hint %2

This is a debug message reporting that the DHCP configuration manager has
returned the specified IPv4 subnet when given the address hint specified
as the address is within the subnet.

DHCPSRV_CFGMGR_SUBNET4_ADDR

selected subnet %1 for packet received by matching address %2

This is a debug message reporting that the DHCP configuration manager
has returned the specified IPv4 subnet for a received packet. This particular
subnet was selected, because an IPv4 address was matched which belonged to that
subnet.

DHCPSRV_CFGMGR_SUBNET4_IFACE

selected subnet %1 for packet received over interface %2

This is a debug message reporting that the DHCP configuration manager
has returned the specified IPv4 subnet for a packet received over
the given interface. This particular subnet was selected, because it
was specified as being directly reachable over the given interface. (see
‘interface’ parameter in the subnet4 definition).

DHCPSRV_CFGMGR_SUBNET4_RELAY

selected subnet %1, because of matching relay addr %2

This is a debug message reporting that the DHCP configuration manager has
returned the specified IPv4 subnet, because detected relay agent address
matches value specified for this subnet.

DHCPSRV_CFGMGR_SUBNET6

retrieved subnet %1 for address hint %2

This is a debug message reporting that the DHCP configuration manager has
returned the specified IPv6 subnet when given the address hint specified
as the address is within the subnet.

DHCPSRV_CFGMGR_SUBNET6_IFACE

selected subnet %1 for packet received over interface %2

This is a debug message reporting that the DHCP configuration manager
has returned the specified IPv6 subnet for a packet received over
given interface. This particular subnet was selected, because it
was specified as being directly reachable over given interface. (see
‘interface’ parameter in the subnet6 definition).

DHCPSRV_CFGMGR_SUBNET6_IFACE_ID

selected subnet %1 (interface-id match) for incoming packet

This is a debug message reporting that the DHCP configuration manager
has returned the specified IPv6 subnet for a received packet. This particular
subnet was selected, because value of interface-id option matched what was
configured in the server’s interface-id option for that selected subnet6.
(see ‘interface-id’ parameter in the subnet6 definition).

DHCPSRV_CFGMGR_SUBNET6_RELAY

selected subnet %1, because of matching relay addr %2

This is a debug message reporting that the DHCP configuration manager has
returned the specified IPv6 subnet, because detected relay agent address
matches value specified for this subnet.

DHCPSRV_CFGMGR_UNICAST_LINK_LOCAL

specified link local address %1 for unicast traffic on interface %2

This warning message is logged when user specified a link-local address to
receive unicast traffic. The warning message is issued because it is an
uncommon use.

DHCPSRV_CFGMGR_UPDATE_SUBNET4

updating subnet %1 (result %2)

A debug message reported when the DHCP configuration manager is updating the
specified IPv4 subnet in its current configuration. Subnet ID and result
(expected to be true) are displayed.

DHCPSRV_CFGMGR_UPDATE_SUBNET6

updating subnet %1 (result %2)

A debug message reported when the DHCP configuration manager is replacing the
specified IPv6 subnet in its current configuration. Subnet ID and result
(expected to be true) are displayed.

DHCPSRV_CFGMGR_USE_ADDRESS

listening on address %1, on interface %2

A message issued when the server is configured to listen on the explicitly specified
IP address on the given interface.

DHCPSRV_CFGMGR_USE_UNICAST

listening on unicast address %1, on interface %2

An info message issued when configuring the DHCP server to listen on the unicast
address on the specific interface.

DHCPSRV_CLOSE_DB

closing currently open %1 database

This is a debug message, issued when the DHCP server closes the currently
open lease database. It is issued at program shutdown and whenever
the database access parameters are changed: in the latter case, the
server closes the currently open database, and opens a database using
the new parameters.

DHCPSRV_CQL_ADD_ADDR4

adding IPv4 lease with address %1

A debug message issued when the server is about to add an IPv4 lease
with the specified address to the Cassandra backend database.

DHCPSRV_CQL_ADD_ADDR6

adding IPv6 lease with address %1

A debug message issued when the server is about to add an IPv6 lease
with the specified address to the Cassandra backend database.

DHCPSRV_CQL_COMMIT

committing to Cassandra database.

A commit call been issued on the server. For Cassandra, this is a no-op.

DHCPSRV_CQL_CONNECTION_BEGIN_TRANSACTION

begin transaction on current connection.

The server has issued a begin transaction call.

DHCPSRV_CQL_CONNECTION_COMMIT

committing to Cassandra database on current connection.

A commit call been issued on the server. For Cassandra, this is a no-op.

DHCPSRV_CQL_CONNECTION_ROLLBACK

rolling back Cassandra database on current connection.

The code has issued a rollback call. For Cassandra, this is a no-op.

DHCPSRV_CQL_DB

opening Cassandra lease database: %1

This informational message is logged when a DHCP server (either V4 or
V6) is about to open a Cassandra lease database. The parameters of
the connection including database name and username needed to access it
(but not the password if any) are logged.

DHCPSRV_CQL_DEALLOC_ERROR

An error occurred while closing the CQL connection: %1

This is an error message issued when a DHCP server (either V4 or V6) experienced
and error freeing CQL database resources as part of closing its connection to
the Cassandra database. The connection is closed as part of normal server
shutdown. This error is most likely a programmatic issue that is highly
unlikely to occur or negatively impact server operation.

DHCPSRV_CQL_DELETE_ADDR

deleting lease for address %1

A debug message issued when the server is attempting to delete a lease from the
Cassandra database for the specified address.

DHCPSRV_CQL_DELETE_EXPIRED_RECLAIMED4

deleting reclaimed IPv4 leases that expired more than %1 seconds ago

A debug message issued when the server is removing reclaimed DHCPv4
leases which have expired longer than a specified period of time.
The argument is the amount of time Kea waits after a reclaimed
lease expires before considering its removal.

DHCPSRV_CQL_DELETE_EXPIRED_RECLAIMED6

deleting reclaimed IPv6 leases that expired more than %1 seconds ago

A debug message issued when the server is removing reclaimed DHCPv6
leases which have expired longer than a specified period of time.
The argument is the amount of time Kea waits after a reclaimed
lease expires before considering its removal.

DHCPSRV_CQL_GET4

obtaining all IPv4 leases

A debug message issued when the server is attempting to obtain all IPv4
leases from the Cassandra database.

DHCPSRV_CQL_GET_ADDR4

obtaining IPv4 lease for address %1

A debug message issued when the server is attempting to obtain an IPv4
lease from the Cassandra database for the specified address.

DHCPSRV_CQL_GET_ADDR6

obtaining IPv6 lease for address %1 and lease type %2

A debug message issued when the server is attempting to obtain an IPv6
lease from the Cassandra database for the specified address.

DHCPSRV_CQL_GET_CLIENTID

obtaining IPv4 leases for client ID %1

A debug message issued when the server is attempting to obtain a set of
IPv4 leases from the Cassandra database for a client with the specified
client identification.

DHCPSRV_CQL_GET_CLIENTID_HWADDR_SUBID

obtaining IPv4 lease for client ID %1, hardware address %2 and subnet ID %3

A debug message issued when the server is attempting to obtain an IPv4
lease from the Cassandra database for a client with the specified
client ID, hardware address and subnet ID.

DHCPSRV_CQL_GET_EXPIRED4

obtaining maximum %1 of expired IPv4 leases

A debug message issued when the server is attempting to obtain expired
IPv4 leases to reclaim them. The maximum number of leases to be retrieved
is logged in the message.

DHCPSRV_CQL_GET_EXPIRED6

obtaining maximum %1 of expired IPv6 leases

A debug message issued when the server is attempting to obtain expired
IPv6 leases to reclaim them. The maximum number of leases to be retrieved
is logged in the message.

DHCPSRV_CQL_GET_HOSTNAME4

obtaining IPv4 leases for hostname %1

A debug message issued when the server is attempting to obtain a set of
IPv4 leases from the Cassandra database for a client with the specified
hostname.

DHCPSRV_CQL_GET_HOSTNAME6

obtaining IPv6 leases for hostname %1

A debug message issued when the server is attempting to obtain a set of
IPv6 leases from the Cassandra database for a client with the specified
hostname.

DHCPSRV_CQL_GET_HWADDR

obtaining IPv4 leases for hardware address %1

A debug message issued when the server is attempting to obtain a set of
IPv4 leases from the Cassandra database for a client with the specified
hardware address.

DHCPSRV_CQL_GET_IAID_DUID

obtaining IPv6 leases for IAID %1 and DUID %2 and lease type %3

A debug message issued when the server is attempting to obtain a set of IPv6
leases from the Cassandra database for a client with the specified IAID
(Identity Association ID) and DUID (DHCP Unique Identifier).

DHCPSRV_CQL_GET_IAID_SUBID_DUID

obtaining IPv6 leases for IAID %1, Subnet ID %2, DUID %3 and lease type %4

A debug message issued when the server is attempting to obtain an IPv6
lease from the Cassandra database for a client with the specified IAID
(Identity Association ID), Subnet ID and DUID (DHCP Unique Identifier).

DHCPSRV_CQL_GET_PAGE4

obtaining at most %1 IPv4 leases starting from address %2

A debug message issued when the server is attempting to obtain a page
of leases beginning with the specified address.

DHCPSRV_CQL_GET_PAGE6

obtaining at most %1 IPv6 leases starting from address %2

A debug message issued when the server is attempting to obtain a page
of leases beginning with the specified address.

DHCPSRV_CQL_GET_SUBID4

obtaining IPv4 leases for subnet ID %1

A debug message issued when the server is attempting to obtain all IPv4
leases for a given subnet identifier from the Cassandra database.

DHCPSRV_CQL_GET_SUBID_CLIENTID

obtaining IPv4 lease for subnet ID %1 and client ID %2

A debug message issued when the server is attempting to obtain an IPv4
lease from the Cassandra database for a client with the specified
subnet ID and client ID.

DHCPSRV_CQL_GET_SUBID_HWADDR

obtaining IPv4 lease for subnet ID %1 and hardware address %2

A debug message issued when the server is attempting to obtain an IPv4
lease from the Cassandra database for a client with the specified
subnet ID and hardware address.

DHCPSRV_CQL_GET_VERSION

obtaining schema version information

A debug message issued when the server is about to obtain schema version
information from the Cassandra database.

DHCPSRV_CQL_HOST_ADD

Adding host information to the database

An informational message logged when options belonging to any reservation from a
single host are inserted.

DHCPSRV_CQL_HOST_DB

Connecting to CQL hosts database: %1

An informational message logged when the CQL hosts database is about to be
connected to. The parameters of the connection including database name and
username needed to access it (but not the password if any) are logged.

DHCPSRV_CQL_HOST_DB_GET_VERSION

obtaining schema version information for the CQL hosts database

A debug message issued when the server is about to obtain schema version
information from the CQL hosts database.

DHCPSRV_CQL_HOST_GET4

Retrieving one DHCPv4 host from a CQL database

An informational message logged when a DHCP server is about to retrieve one
host from a CQL database by IPv4 criteria.

DHCPSRV_CQL_HOST_GET6

Retrieving one DHCPv6 host from a CQL database

An informational message logged when a DHCP server is about to retrieve one
host from a CQL database by IPv6 criteria.

DHCPSRV_CQL_HOST_GET_ALL

Retrieving multiple hosts from a CQL database

An informational message logged when multiple hosts from a CQL database are retrieved.

DHCPSRV_CQL_LEASE_EXCEPTION_THROWN

Exception thrown during Cassandra operation: %1

DHCPSRV_CQL_ROLLBACK

rolling back Cassandra database.

The code has issued a rollback call. For Cassandra, this is a no-op.

DHCPSRV_CQL_UPDATE_ADDR4

updating IPv4 lease for address %1

A debug message issued when the server is attempting to update IPv4
lease from the Cassandra database for the specified address.

DHCPSRV_CQL_UPDATE_ADDR6

updating IPv6 lease for address %1

A debug message issued when the server is attempting to update IPv6
lease from the Cassandra database for the specified address.

DHCPSRV_DHCP4O6_RECEIVED_BAD_PACKET

received bad DHCPv4o6 packet: %1

A bad DHCPv4o6 packet was received.

DHCPSRV_DHCP_DDNS_ERROR_EXCEPTION

error handler for DHCP_DDNS IO generated an expected exception: %1

This is an error message that occurs when an attempt to send a request to
kea-dhcp-ddns fails there registered error handler threw an uncaught exception.
This is a programmatic error which should not occur. By convention, the error
handler should not propagate exceptions. Please report this error.

DHCPSRV_DHCP_DDNS_HANDLER_NULL

error handler for DHCP_DDNS IO is not set.

This is an error message that occurs when an attempt to send a request to
kea-dhcp-ddns fails and there is no registered error handler. This is a
programmatic error which should never occur and should be reported.

DHCPSRV_DHCP_DDNS_NCR_REJECTED

NameChangeRequest rejected by the sender: %1, ncr: %2

This is an error message indicating that NameChangeSender used to deliver DDNS
update requests to kea-dhcp-ddns rejected the request. This most likely cause
is the sender’s queue has reached maximum capacity. This would imply that
requests are being generated faster than they can be delivered.

DHCPSRV_DHCP_DDNS_NCR_SENT

NameChangeRequest sent to kea-dhcp-ddns: %1

A debug message issued when a NameChangeRequest has been successfully sent to
kea-dhcp-ddns.

DHCPSRV_DHCP_DDNS_SENDER_STARTED

NameChangeRequest sender has been started: %1

A informational message issued when a communications with kea-dhcp-ddns has
been successfully started.

DHCPSRV_DHCP_DDNS_SENDER_STOPPED

NameChangeRequest sender has been stopped.

A informational message issued when a communications with kea-dhcp-ddns has
been stopped. This normally occurs during reconfiguration and as part of normal
shutdown. It may occur if kea-dhcp-ddns communications breakdown.

DHCPSRV_DHCP_DDNS_SUSPEND_UPDATES

DHCP_DDNS updates are being suspended.

This is a warning message indicating the DHCP_DDNS updates have been turned
off. This should only occur if IO errors communicating with kea-dhcp-ddns
have been experienced. Any such errors should have preceding entries in the
log with details. No further attempts to communicate with kea-dhcp-ddns will
be made without intervention.

DHCPSRV_HOOK_LEASE4_RECOVER_SKIP

DHCPv4 lease %1 was not recovered from the declined state because a callout set the skip status.

This debug message is printed when a callout installed on lease4_recover
hook point set the next step status to SKIP. For this particular hook point, this
indicates that the server should not recover the lease from declined state.
The server will leave the lease as it is, in the declined state. The
server will attempt to recover it the next time decline recovery procedure
takes place.

DHCPSRV_HOOK_LEASE4_RENEW_SKIP

DHCPv4 lease was not renewed because a callout set the skip flag.

This debug message is printed when a callout installed on lease4_renew
hook point set the skip flag. For this particular hook point, the setting
of the flag by a callout instructs the server to not renew a lease. The
server will use existing lease as it is, without extending its lifetime.

DHCPSRV_HOOK_LEASE4_SELECT_SKIP

Lease4 creation was skipped, because of callout skip flag.

This debug message is printed when a callout installed on lease4_select
hook point sets the skip flag. It means that the server was told that
no lease4 should be assigned. The server will not put that lease in its
database and the client will get a NAK packet.

DHCPSRV_HOOK_LEASE6_EXTEND_SKIP

DHCPv6 lease lifetime was not extended because a callout set the skip flag for message %1

This debug message is printed when a callout installed on lease6_renew
or the lease6_rebind hook point set the skip flag. For this particular hook
point, the setting of the flag by a callout instructs the server to not
extend the lifetime for a lease. If the client requested renewal of multiple
leases (by sending multiple IA options), the server will skip the renewal
of the one in question and will proceed with other renewals as usual.

DHCPSRV_HOOK_LEASE6_RECOVER_SKIP

DHCPv6 lease %1 was not recovered from declined state because a callout set the skip status.

This debug message is printed when a callout installed on lease6_recover
hook point set the next step status to SKIP. For this particular hook point, this
indicates that the server should not recover the lease from declined state.
The server will leave the lease as it is, in the declined state. The
server will attempt to recover it the next time decline recovery procedure
takes place.

DHCPSRV_HOOK_LEASE6_SELECT_SKIP

Lease6 (non-temporary) creation was skipped, because of callout skip flag.

This debug message is printed when a callout installed on lease6_select
hook point sets the skip flag. It means that the server was told that
no lease6 should be assigned. The server will not put that lease in its
database and the client will get a NoAddrsAvail for that IA_NA option.

DHCPSRV_INVALID_ACCESS

invalid database access string: %1

This is logged when an attempt has been made to parse a database access string
and the attempt ended in error. The access string in question - which
should be of the form ‘keyword=value keyword=value…’ is included in
the message.

DHCPSRV_LEASE_SANITY_FAIL

The lease %1 with subnet-id %2 failed subnet-id checks (%3).

This warning message is printed when the lease being loaded does not match the
configuration. Due to lease-checks value, the lease will be loaded, but
it will most likely be unused by Kea, as there is no subnet that matches
the IP address associated with the lease.

DHCPSRV_LEASE_SANITY_FAIL_DISCARD

The lease %1 with subnet-id %2 failed subnet-id checks (%3) and was dropped.

This warning message is printed when a lease was loaded, but Kea was told
(by setting lease-checks parameter) to discard leases with inconsistent
data. The lease was discarded, because either there is no subnet configured
with matching subnet-id or the address of the lease does not belong to the
subnet.

DHCPSRV_LEASE_SANITY_FIXED

The lease %1 with subnet-id %2 failed subnet-id checks, but was corrected to subnet-id %3.

This informational message is printed when a lease was loaded, but had
incorrect subnet-id value. The lease-checks parameter was set to a value
that told Kea to try to correct the problem. There is a matching subnet,
so Kea updated subnet-id and loaded the lease successfully.

DHCPSRV_MEMFILE_ADD_ADDR4

adding IPv4 lease with address %1

A debug message issued when the server is about to add an IPv4 lease
with the specified address to the memory file backend database.

DHCPSRV_MEMFILE_ADD_ADDR6

adding IPv6 lease with address %1

A debug message issued when the server is about to add an IPv6 lease
with the specified address to the memory file backend database.

DHCPSRV_MEMFILE_BEGIN_TRANSACTION

committing to memory file database

The code has issued a begin transaction call. For the memory file database, this is
a no-op.

DHCPSRV_MEMFILE_COMMIT

committing to memory file database

The code has issued a commit call. For the memory file database, this is
a no-op.

DHCPSRV_MEMFILE_CONVERTING_LEASE_FILES

running LFC now to convert lease files to the current schema: %1.%2

A warning message issued when the server has detected lease files that need
to be either upgraded or downgraded to match the server’s schema, and that
the server is automatically running the LFC process to perform the conversion.
This should only occur the first time the server is launched following a Kea
installation upgrade (or downgrade).

DHCPSRV_MEMFILE_DB

opening memory file lease database: %1

This informational message is logged when a DHCP server (either V4 or
V6) is about to open a memory file lease database. The parameters of
the connection including database name and username needed to access it
(but not the password if any) are logged.

DHCPSRV_MEMFILE_DELETE_ADDR

deleting lease for address %1

A debug message issued when the server is attempting to delete a lease
for the specified address from the memory file database for the specified
address.

DHCPSRV_MEMFILE_DELETE_EXPIRED_RECLAIMED4

deleting reclaimed IPv4 leases that expired more than %1 seconds ago

A debug message issued when the server is removing reclaimed DHCPv4
leases which have expired longer than a specified period of time.
The argument is the amount of time Kea waits after a reclaimed
lease expires before considering its removal.

DHCPSRV_MEMFILE_DELETE_EXPIRED_RECLAIMED6

deleting reclaimed IPv6 leases that expired more than %1 seconds ago

A debug message issued when the server is removing reclaimed DHCPv6
leases which have expired longer than a specified period of time.
The argument is the amount of time Kea waits after a reclaimed
lease expires before considering its removal.

DHCPSRV_MEMFILE_DELETE_EXPIRED_RECLAIMED_START

starting deletion of %1 expired-reclaimed leases

A debug message issued when the server has found expired-reclaimed
leases to be removed. The number of leases to be removed is logged
in the message.

DHCPSRV_MEMFILE_GET4

obtaining all IPv4 leases

A debug message issued when the server is attempting to obtain all IPv4
leases from the memory file database.

DHCPSRV_MEMFILE_GET6

obtaining all IPv6 leases

A debug message issued when the server is attempting to obtain all IPv6
leases from the memory file database.

DHCPSRV_MEMFILE_GET6_DUID

obtaining IPv6 leases for DUID %1

A debug message issued when the server is attempting to obtain IPv6
leases from the memory file database for the DUID.

DHCPSRV_MEMFILE_GET_ADDR4

obtaining IPv4 lease for address %1

A debug message issued when the server is attempting to obtain an IPv4
lease from the memory file database for the specified address.

DHCPSRV_MEMFILE_GET_ADDR6

obtaining IPv6 lease for address %1 and lease type %2

A debug message issued when the server is attempting to obtain an IPv6
lease from the memory file database for the specified address.

DHCPSRV_MEMFILE_GET_CLIENTID

obtaining IPv4 leases for client ID %1

A debug message issued when the server is attempting to obtain a set of
IPv4 leases from the memory file database for a client with the specified
client identification.

DHCPSRV_MEMFILE_GET_CLIENTID_HWADDR_SUBID

obtaining IPv4 lease for client ID %1, hardware address %2 and subnet ID %3

A debug message issued when the server is attempting to obtain an IPv4
lease from the memory file database for a client with the specified
client ID, hardware address and subnet ID.

DHCPSRV_MEMFILE_GET_EXPIRED4

obtaining maximum %1 of expired IPv4 leases

A debug message issued when the server is attempting to obtain expired
IPv4 leases to reclaim them. The maximum number of leases to be retrieved
is logged in the message.

DHCPSRV_MEMFILE_GET_EXPIRED6

obtaining maximum %1 of expired IPv6 leases

A debug message issued when the server is attempting to obtain expired
IPv6 leases to reclaim them. The maximum number of leases to be retrieved
is logged in the message.

DHCPSRV_MEMFILE_GET_HOSTNAME4

obtaining IPv4 leases for hostname %1

A debug message issued when the server is attempting to obtain a set of
IPv4 leases from the memory file database for a client with the specified
hostname.

DHCPSRV_MEMFILE_GET_HOSTNAME6

obtaining IPv6 leases for hostname %1

A debug message issued when the server is attempting to obtain a set of
IPv6 leases from the memory file database for a client with the specified
hostname.

DHCPSRV_MEMFILE_GET_HWADDR

obtaining IPv4 leases for hardware address %1

A debug message issued when the server is attempting to obtain a set of
IPv4 leases from the memory file database for a client with the specified
hardware address.

DHCPSRV_MEMFILE_GET_IAID_DUID

obtaining IPv6 leases for IAID %1 and DUID %2 and lease type %3

A debug message issued when the server is attempting to obtain a set of IPv6
leases from the memory file database for a client with the specified IAID
(Identity Association ID) and DUID (DHCP Unique Identifier).

DHCPSRV_MEMFILE_GET_IAID_SUBID_DUID

obtaining IPv6 leases for IAID %1, Subnet ID %2, DUID %3 and lease type %4

A debug message issued when the server is attempting to obtain an IPv6
lease from the memory file database for a client with the specified IAID
(Identity Association ID), Subnet ID and DUID (DHCP Unique Identifier).

DHCPSRV_MEMFILE_GET_PAGE4

obtaining at most %1 IPv4 leases starting from address %2

A debug message issued when the server is attempting to obtain a page
of leases beginning with the specified address.

DHCPSRV_MEMFILE_GET_PAGE6

obtaining at most %1 IPv6 leases starting from address %2

A debug message issued when the server is attempting to obtain a page
of leases beginning with the specified address.

DHCPSRV_MEMFILE_GET_SUBID4

obtaining IPv4 leases for subnet ID %1

A debug message issued when the server is attempting to obtain all IPv4
leases for a given subnet identifier from the memory file database.

DHCPSRV_MEMFILE_GET_SUBID6

obtaining IPv6 leases for subnet ID %1

A debug message issued when the server is attempting to obtain all IPv6
leases for a given subnet identifier from the memory file database.

DHCPSRV_MEMFILE_GET_SUBID_CLIENTID

obtaining IPv4 lease for subnet ID %1 and client ID %2

A debug message issued when the server is attempting to obtain an IPv4
lease from the memory file database for a client with the specified
subnet ID and client ID.

DHCPSRV_MEMFILE_GET_SUBID_HWADDR

obtaining IPv4 lease for subnet ID %1 and hardware address %2

A debug message issued when the server is attempting to obtain an IPv4
lease from the memory file database for a client with the specified
subnet ID and hardware address.

DHCPSRV_MEMFILE_GET_VERSION

obtaining schema version information

A debug message issued when the server is about to obtain schema version
information from the memory file database.

DHCPSRV_MEMFILE_LEASE_FILE_LOAD

loading leases from file %1

An info message issued when the server is about to start reading DHCP leases
from the lease file. All leases currently held in the memory will be
replaced by those read from the file.

DHCPSRV_MEMFILE_LEASE_LOAD

loading lease %1

A debug message issued when DHCP lease is being loaded from the file to memory.

DHCPSRV_MEMFILE_LEASE_LOAD_ROW_ERROR

discarding row %1, error: %2

An error message issued the the DHCP lease being loaded from the given row of
the lease file fails. The log message should contain the specific reason the
row was discarded. The server will continue loading the remaining data.
This may indicate a corrupt lease file.

DHCPSRV_MEMFILE_LFC_EXECUTE

executing Lease File Cleanup using: %1

An informational message issued when the Memfile lease database backend
starts a new process to perform Lease File Cleanup.

DHCPSRV_MEMFILE_LFC_LEASE_FILE_RENAME_FAIL

failed to rename the current lease file %1 to %2, reason: %3

An error message logged when the Memfile lease database backend fails to
move the current lease file to a new file on which the cleanup should
be performed. This effectively means that the lease file cleanup
will not take place.

DHCPSRV_MEMFILE_LFC_LEASE_FILE_REOPEN_FAIL

failed to reopen lease file %1 after preparing input file for lease file cleanup, reason: %2, new leases will not be persisted!

An error message logged when the Memfile lease database backend
failed to re-open or re-create the lease file after renaming the
lease file for lease file cleanup. The server will continue to
operate but leases will not be persisted to disk.

DHCPSRV_MEMFILE_LFC_SETUP

setting up the Lease File Cleanup interval to %1 sec

An informational message logged when the Memfile lease database backend
configures the LFC to be executed periodically. The argument holds the
interval in seconds in which the LFC will be executed.

DHCPSRV_MEMFILE_LFC_SPAWN_FAIL

lease file cleanup failed to run because kea-lfc process couldn’t be spawned

This error message is logged when the Kea server fails to run kea-lfc,
the program that cleans up the lease file. The server will try again the
next time a lease file cleanup is scheduled. Although this message should
not appear and the reason why it did investigated, the occasional failure
to start the lease file cleanup will not impact operations. Should the
failure persist however, the size of the lease file will increase without bound.

DHCPSRV_MEMFILE_LFC_START

starting Lease File Cleanup

An informational message issued when the Memfile lease database backend
starts the periodic Lease File Cleanup.

DHCPSRV_MEMFILE_LFC_UNREGISTER_TIMER_FAILED

failed to unregister timer ‘memfile-lfc’: %1

This debug message is logged when Memfile backend fails to unregister
timer used for lease file cleanup scheduling. There are several reasons
why this could occur, although the most likely cause is that the system
is being shut down and some other component has unregistered the timer.
The message includes the reason for this error.

DHCPSRV_MEMFILE_NEEDS_DOWNGRADING

version of lease file: %1 schema is later than version %2

A warning message issued when the schema of the lease file loaded by the server
is newer than the memfile schema of the server. The server converts the lease
data from newer schemas to its schema as it is read, therefore the lease
information in use by the server will be correct. Note though, that any data
stored in newer schema fields will be dropped. What remains is for the
file itself to be rewritten using the current schema.

DHCPSRV_MEMFILE_NEEDS_UPGRADING

version of lease file: %1 schema is earlier than version %2

A warning message issued when the schema of the lease file loaded by the server
pre-dates the memfile schema of the server. Note that the server converts the
lease data from older schemas to the current schema as it is read, therefore
the lease information in use by the server will be correct. What remains is
for the file itself to be rewritten using the current schema.

DHCPSRV_MEMFILE_NO_STORAGE

running in non-persistent mode, leases will be lost after restart

A warning message issued when writes of leases to disk have been disabled
in the configuration. This mode is useful for some kinds of performance
testing but should not be enabled in normal circumstances. Non-persistence
mode is enabled when ‘persist4=no persist6=no’ parameters are specified
in the database access string.

DHCPSRV_MEMFILE_READ_HWADDR_FAIL

failed to read hardware address from lease file: %1

A warning message issued when read attempt of the hardware address stored in
a disk file failed. The parameter should provide the exact nature of the failure.
The database read will continue, but that particular lease will no longer
have hardware address associated with it.

DHCPSRV_MEMFILE_ROLLBACK

rolling back memory file database

The code has issued a rollback call. For the memory file database, this is
a no-op.

DHCPSRV_MEMFILE_UPDATE_ADDR4

updating IPv4 lease for address %1

A debug message issued when the server is attempting to update IPv4
lease from the memory file database for the specified address.

DHCPSRV_MEMFILE_UPDATE_ADDR6

updating IPv6 lease for address %1

A debug message issued when the server is attempting to update IPv6
lease from the memory file database for the specified address.

DHCPSRV_MEMFILE_WIPE_LEASES4

removing all IPv4 leases from subnet %1

This informational message is printed when removal of all leases from
specified IPv4 subnet is commencing. This is a result of receiving administrative
command.

DHCPSRV_MEMFILE_WIPE_LEASES4_FINISHED

removing all IPv4 leases from subnet %1 finished, removed %2 leases

This informational message is printed when removal of all leases from
a specified IPv4 subnet has finished. The number of removed leases is
printed.

DHCPSRV_MEMFILE_WIPE_LEASES6

removing all IPv6 leases from subnet %1

This informational message is printed when removal of all leases from
specified IPv6 subnet is commencing. This is a result of receiving administrative
command.

DHCPSRV_MEMFILE_WIPE_LEASES6_FINISHED

removing all IPv6 leases from subnet %1 finished, removed %2 leases

This informational message is printed when removal of all leases from
a specified IPv6 subnet has finished. The number of removed leases is
printed.

DHCPSRV_MULTIPLE_RAW_SOCKETS_PER_IFACE

current configuration will result in opening multiple broadcast capable sockets on some interfaces and some DHCP messages may be duplicated

A warning message issued when the current configuration indicates that multiple
sockets, capable of receiving broadcast traffic, will be opened on some of the
interfaces. It must be noted that this may lead to receiving and processing
the same DHCP message multiple times, as it will be received by each socket
individually.

DHCPSRV_MYSQL_ADD_ADDR4

adding IPv4 lease with address %1

A debug message issued when the server is about to add an IPv4 lease
with the specified address to the MySQL backend database.

DHCPSRV_MYSQL_ADD_ADDR6

adding IPv6 lease with address %1, lease type %2

A debug message issued when the server is about to add an IPv6 lease
with the specified address to the MySQL backend database.

DHCPSRV_MYSQL_BEGIN_TRANSACTION

committing to MySQL database

The code has issued a begin transaction call.

DHCPSRV_MYSQL_COMMIT

committing to MySQL database

The code has issued a commit call. All outstanding transactions will be
committed to the database. Note that depending on the MySQL settings,
the commit may not include a write to disk.

DHCPSRV_MYSQL_DB

opening MySQL lease database: %1

This informational message is logged when a DHCP server (either V4 or
V6) is about to open a MySQL lease database. The parameters of the
connection including database name and username needed to access it
(but not the password if any) are logged.

DHCPSRV_MYSQL_DELETED_EXPIRED_RECLAIMED

deleted %1 reclaimed leases from the database

A debug message issued when the server has removed a number of reclaimed
leases from the database. The number of removed leases is included in the
message.

DHCPSRV_MYSQL_DELETE_ADDR

deleting lease for address %1

A debug message issued when the server is attempting to delete a lease for
the specified address from the MySQL database for the specified address.

DHCPSRV_MYSQL_DELETE_EXPIRED_RECLAIMED4

deleting reclaimed IPv4 leases that expired more than %1 seconds ago

A debug message issued when the server is removing reclaimed DHCPv4
leases which have expired longer than a specified period of time.
The argument is the amount of time Kea waits after a reclaimed
lease expires before considering its removal.

DHCPSRV_MYSQL_DELETE_EXPIRED_RECLAIMED6

deleting reclaimed IPv6 leases that expired more than %1 seconds ago

A debug message issued when the server is removing reclaimed DHCPv6
leases which have expired longer than a specified period of time.
The argument is the amount of time Kea waits after a reclaimed
lease expires before considering its removal.

DHCPSRV_MYSQL_FATAL_ERROR

Unrecoverable MySQL error occurred: %1 for <%2>, reason: %3 (error code: %4).

An error message indicating that communication with the MySQL database server
has been lost. If automatic recovery has been enabled, then the server will
attempt to recover the connectivity. If not the server will exit with a
non-zero exit code. The cause of such an error is most likely a network issue
or the MySQL server has gone down.

DHCPSRV_MYSQL_GET4

obtaining all IPv4 leases

A debug message issued when the server is attempting to obtain all IPv4
leases from the MySQL database.

DHCPSRV_MYSQL_GET6

obtaining all IPv6 leases

A debug message issued when the server is attempting to obtain all IPv6
leases from the MySQL database.

DHCPSRV_MYSQL_GET_ADDR4

obtaining IPv4 lease for address %1

A debug message issued when the server is attempting to obtain an IPv4
lease from the MySQL database for the specified address.

DHCPSRV_MYSQL_GET_ADDR6

obtaining IPv6 lease for address %1, lease type %2

A debug message issued when the server is attempting to obtain an IPv6
lease from the MySQL database for the specified address.

DHCPSRV_MYSQL_GET_CLIENTID

obtaining IPv4 leases for client ID %1

A debug message issued when the server is attempting to obtain a set
of IPv4 leases from the MySQL database for a client with the specified
client identification.

DHCPSRV_MYSQL_GET_DUID

obtaining IPv6 lease for duid %1,

A debug message issued when the server is attempting to obtain an IPv6
lease from the MySQL database for the specified duid.

DHCPSRV_MYSQL_GET_EXPIRED4

obtaining maximum %1 of expired IPv4 leases

A debug message issued when the server is attempting to obtain expired
IPv4 leases to reclaim them. The maximum number of leases to be retrieved
is logged in the message.

DHCPSRV_MYSQL_GET_EXPIRED6

obtaining maximum %1 of expired IPv6 leases

A debug message issued when the server is attempting to obtain expired
IPv6 leases to reclaim them. The maximum number of leases to be retrieved
is logged in the message.

DHCPSRV_MYSQL_GET_HOSTNAME4

obtaining IPv4 leases for hostname %1

A debug message issued when the server is attempting to obtain a set
of IPv4 leases from the MySQL database for a client with the specified
hostname.

DHCPSRV_MYSQL_GET_HOSTNAME6

obtaining IPv6 leases for hostname %1

A debug message issued when the server is attempting to obtain a set
of IPv6 leases from the MySQL database for a client with the specified
hostname.

DHCPSRV_MYSQL_GET_HWADDR

obtaining IPv4 leases for hardware address %1

A debug message issued when the server is attempting to obtain a set
of IPv4 leases from the MySQL database for a client with the specified
hardware address.

DHCPSRV_MYSQL_GET_IAID_DUID

obtaining IPv6 leases for IAID %1, DUID %2, lease type %3

A debug message issued when the server is attempting to obtain a set of IPv6
leases from the MySQL database for a client with the specified IAID (Identity
Association ID) and DUID (DHCP Unique Identifier).

DHCPSRV_MYSQL_GET_IAID_SUBID_DUID

obtaining IPv6 leases for IAID %1, Subnet ID %2, DUID %3, lease type %4

A debug message issued when the server is attempting to obtain an IPv6
lease from the MySQL database for a client with the specified IAID
(Identity Association ID), Subnet ID and DUID (DHCP Unique Identifier).

DHCPSRV_MYSQL_GET_PAGE4

obtaining at most %1 IPv4 leases starting from address %2

A debug message issued when the server is attempting to obtain a page
of leases beginning with the specified address.

DHCPSRV_MYSQL_GET_PAGE6

obtaining at most %1 IPv6 leases starting from address %2

A debug message issued when the server is attempting to obtain a page
of leases beginning with the specified address.

DHCPSRV_MYSQL_GET_SUBID4

obtaining IPv4 leases for subnet ID %1

A debug message issued when the server is attempting to obtain all IPv4
leases for a given subnet identifier from the MySQL database.

DHCPSRV_MYSQL_GET_SUBID6

obtaining IPv6 leases for subnet ID %1

A debug message issued when the server is attempting to obtain all IPv6
leases for a given subnet identifier from the MySQL database.

DHCPSRV_MYSQL_GET_SUBID_CLIENTID

obtaining IPv4 lease for subnet ID %1 and client ID %2

A debug message issued when the server is attempting to obtain an IPv4
lease from the MySQL database for a client with the specified subnet ID
and client ID.

DHCPSRV_MYSQL_GET_SUBID_HWADDR

obtaining IPv4 lease for subnet ID %1 and hardware address %2

A debug message issued when the server is attempting to obtain an IPv4
lease from the MySQL database for a client with the specified subnet ID
and hardware address.

DHCPSRV_MYSQL_GET_VERSION

obtaining schema version information

A debug message issued when the server is about to obtain schema version
information from the MySQL database.

DHCPSRV_MYSQL_HOST_DB

opening MySQL hosts database: %1

This informational message is logged when a DHCP server (either V4 or
V6) is about to open a MySQL hosts database. The parameters of the
connection including database name and username needed to access it
(but not the password if any) are logged.

DHCPSRV_MYSQL_HOST_DB_GET_VERSION

obtaining schema version information for the MySQL hosts database

A debug message issued when the server is about to obtain schema version
information from the MySQL hosts database.

DHCPSRV_MYSQL_HOST_DB_READONLY

MySQL host database opened for read access only

This informational message is issued when the user has configured the MySQL
database in read-only mode. Kea will not be able to insert or modify
host reservations but will be able to retrieve existing ones and
assign them to the clients communicating with the server.

DHCPSRV_MYSQL_ROLLBACK

rolling back MySQL database

The code has issued a rollback call. All outstanding transaction will
be rolled back and not committed to the database.

DHCPSRV_MYSQL_START_TRANSACTION

starting new MySQL transaction

A debug message issued when a new MySQL transaction is being started.
This message is typically not issued when inserting data into a
single table because the server doesn’t explicitly start
transactions in this case. This message is issued when data is
inserted into multiple tables with multiple INSERT statements
and there may be a need to rollback the whole transaction if
any of these INSERT statements fail.

DHCPSRV_MYSQL_UPDATE_ADDR4

updating IPv4 lease for address %1

A debug message issued when the server is attempting to update IPv4
lease from the MySQL database for the specified address.

DHCPSRV_MYSQL_UPDATE_ADDR6

updating IPv6 lease for address %1, lease type %2

A debug message issued when the server is attempting to update IPv6
lease from the MySQL database for the specified address.

DHCPSRV_NOTYPE_DB

no ‘type’ keyword to determine database backend: %1

This is an error message, logged when an attempt has been made to access
a database backend, but where no ‘type’ keyword has been included in
the access string. The access string (less any passwords) is included
in the message.

DHCPSRV_NO_SOCKETS_OPEN

no interface configured to listen to DHCP traffic

This warning message is issued when the current server configuration specifies
no interfaces that the server should listen on, or when the specified interfaces are not
configured to receive the traffic.

DHCPSRV_OPEN_SOCKET_FAIL

failed to open socket: %1

A warning message issued when IfaceMgr fails to open and bind a socket.
The reason for the failure is appended as an argument of the log message.

DHCPSRV_PGSQL_ADD_ADDR4

adding IPv4 lease with address %1

A debug message issued when the server is about to add an IPv4 lease
with the specified address to the PostgreSQL backend database.

DHCPSRV_PGSQL_ADD_ADDR6

adding IPv6 lease with address %1, lease type %2

A debug message issued when the server is about to add an IPv6 lease
with the specified address to the PostgreSQL backend database.

DHCPSRV_PGSQL_BEGIN_TRANSACTION

committing to PostgreSQL database

The code has issued a begin transaction call.

DHCPSRV_PGSQL_COMMIT

committing to PostgreSQL database

The code has issued a commit call. All outstanding transactions will be
committed to the database. Note that depending on the PostgreSQL settings,
the commit may not include a write to disk.

DHCPSRV_PGSQL_DB

opening PostgreSQL lease database: %1

This informational message is logged when a DHCP server (either V4 or
V6) is about to open a PostgreSQL lease database. The parameters of the
connection including database name and username needed to access it
(but not the password if any) are logged.

DHCPSRV_PGSQL_DEALLOC_ERROR

An error occurred deallocating SQL statements while closing the PostgreSQL lease database: %1

This is an error message issued when a DHCP server (either V4 or V6) experienced
and error freeing database SQL resources as part of closing its connection to
the PostgreSQL database. The connection is closed as part of normal server
shutdown. This error is most likely a programmatic issue that is highly
unlikely to occur or negatively impact server operation.

DHCPSRV_PGSQL_DELETE_ADDR

deleting lease for address %1

A debug message issued when the server is attempting to delete a lease for
the specified address from the PostgreSQL database for the specified address.

DHCPSRV_PGSQL_DELETE_EXPIRED_RECLAIMED4

deleting reclaimed IPv4 leases that expired more than %1 seconds ago

A debug message issued when the server is removing reclaimed DHCPv4
leases which have expired longer than a specified period of time.
The argument is the amount of time Kea waits after a reclaimed
lease expires before considering its removal.

DHCPSRV_PGSQL_DELETE_EXPIRED_RECLAIMED6

deleting reclaimed IPv6 leases that expired more than %1 seconds ago

A debug message issued when the server is removing reclaimed DHCPv6
leases which have expired longer than a specified period of time.
The argument is the amount of time Kea waits after a reclaimed
lease expires before considering its removal.

DHCPSRV_PGSQL_FATAL_ERROR

Unrecoverable PostgreSQL error occurred: Statement: <%1>, reason: %2 (error code: %3).

An error message indicating that communication with the PostgreSQL database server
has been lost. If automatic recovery has been enabled, then the server will
attempt to recover the connectivity. If not the server will exit with a
non-zero exit code. The cause of such an error is most likely a network issue
or the PostgreSQL server has gone down.

DHCPSRV_PGSQL_GET4

obtaining all IPv4 leases

A debug message issued when the server is attempting to obtain all IPv4
leases from the PostgreSQL database.

DHCPSRV_PGSQL_GET6

obtaining all IPv6 leases

A debug message issued when the server is attempting to obtain all IPv6
leases from the PostgreSQL database.

DHCPSRV_PGSQL_GET_ADDR4

obtaining IPv4 lease for address %1

A debug message issued when the server is attempting to obtain an IPv4
lease from the PostgreSQL database for the specified address.

DHCPSRV_PGSQL_GET_ADDR6

obtaining IPv6 lease for address %1 (lease type %2)

A debug message issued when the server is attempting to obtain an IPv6
lease from the PostgreSQL database for the specified address.

DHCPSRV_PGSQL_GET_CLIENTID

obtaining IPv4 leases for client ID %1

A debug message issued when the server is attempting to obtain a set
of IPv4 leases from the PostgreSQL database for a client with the specified
client identification.

DHCPSRV_PGSQL_GET_DUID

obtaining IPv6 leases for DUID %1,

A debug message issued when the server is attempting to obtain a set of IPv6
leases from the PostgreSQL database for a client with the specified DUID (DHCP Unique Identifier).

DHCPSRV_PGSQL_GET_EXPIRED4

obtaining maximum %1 of expired IPv4 leases

A debug message issued when the server is attempting to obtain expired
IPv4 leases to reclaim them. The maximum number of leases to be retrieved
is logged in the message.

DHCPSRV_PGSQL_GET_EXPIRED6

obtaining maximum %1 of expired IPv6 leases

A debug message issued when the server is attempting to obtain expired
IPv6 leases to reclaim them. The maximum number of leases to be retrieved
is logged in the message.

DHCPSRV_PGSQL_GET_HOSTNAME4

obtaining IPv4 leases for hostname %1

A debug message issued when the server is attempting to obtain a set
of IPv4 leases from the PostgreSQL database for a client with the specified
hostname.

DHCPSRV_PGSQL_GET_HOSTNAME6

obtaining IPv6 leases for hostname %1

A debug message issued when the server is attempting to obtain a set
of IPv6 leases from the PostgreSQL database for a client with the specified
hostname.

DHCPSRV_PGSQL_GET_HWADDR

obtaining IPv4 leases for hardware address %1

A debug message issued when the server is attempting to obtain a set
of IPv4 leases from the PostgreSQL database for a client with the specified
hardware address.

DHCPSRV_PGSQL_GET_IAID_DUID

obtaining IPv4 leases for IAID %1 and DUID %2, lease type %3

A debug message issued when the server is attempting to obtain a set of IPv6
leases from the PostgreSQL database for a client with the specified IAID
(Identity Association ID) and DUID (DHCP Unique Identifier).

DHCPSRV_PGSQL_GET_IAID_SUBID_DUID

obtaining IPv4 leases for IAID %1, Subnet ID %2, DUID %3, and lease type %4

A debug message issued when the server is attempting to obtain an IPv6
lease from the PostgreSQL database for a client with the specified IAID
(Identity Association ID), Subnet ID and DUID (DHCP Unique Identifier).

DHCPSRV_PGSQL_GET_PAGE4

obtaining at most %1 IPv4 leases starting from address %2

A debug message issued when the server is attempting to obtain a page
of leases beginning with the specified address.

DHCPSRV_PGSQL_GET_PAGE6

obtaining at most %1 IPv6 leases starting from address %2

A debug message issued when the server is attempting to obtain a page
of leases beginning with the specified address.

DHCPSRV_PGSQL_GET_SUBID4

obtaining IPv4 leases for subnet ID %1

A debug message issued when the server is attempting to obtain all IPv4
leases for a given subnet identifier from the PostgreSQL database.

DHCPSRV_PGSQL_GET_SUBID6

obtaining IPv6 leases for subnet ID %1

A debug message issued when the server is attempting to obtain all IPv6
leases for a given subnet identifier from the PostgreSQL database.

DHCPSRV_PGSQL_GET_SUBID_CLIENTID

obtaining IPv4 lease for subnet ID %1 and client ID %2

A debug message issued when the server is attempting to obtain an IPv4
lease from the PostgreSQL database for a client with the specified subnet ID
and client ID.

DHCPSRV_PGSQL_GET_SUBID_HWADDR

obtaining IPv4 lease for subnet ID %1 and hardware address %2

A debug message issued when the server is attempting to obtain an IPv4
lease from the PostgreSQL database for a client with the specified subnet ID
and hardware address.

DHCPSRV_PGSQL_GET_VERSION

obtaining schema version information

A debug message issued when the server is about to obtain schema version
information from the PostgreSQL database.

DHCPSRV_PGSQL_HOST_DB

opening PostgreSQL hosts database: %1

This informational message is logged when a DHCP server (either V4 or
V6) is about to open a PostgreSQL hosts database. The parameters of the
connection including database name and username needed to access it
(but not the password if any) are logged.

DHCPSRV_PGSQL_HOST_DB_GET_VERSION

obtaining schema version information for the PostgreSQL hosts database

A debug message issued when the server is about to obtain schema version
information from the PostgreSQL hosts database.

DHCPSRV_PGSQL_HOST_DB_READONLY

PostgreSQL host database opened for read access only

This informational message is issued when the user has configured the PostgreSQL
database in read-only mode. Kea will not be able to insert or modify
host reservations but will be able to retrieve existing ones and
assign them to the clients communicating with the server.

DHCPSRV_PGSQL_ROLLBACK

rolling back PostgreSQL database

The code has issued a rollback call. All outstanding transaction will
be rolled back and not committed to the database.

DHCPSRV_PGSQL_START_TRANSACTION

starting a new PostgreSQL transaction

A debug message issued when a new PostgreSQL transaction is being started.
This message is typically not issued when inserting data into a
single table because the server doesn’t explicitly start
transactions in this case. This message is issued when data is
inserted into multiple tables with multiple INSERT statements
and there may be a need to rollback the whole transaction if
any of these INSERT statements fail.

DHCPSRV_PGSQL_UPDATE_ADDR4

updating IPv4 lease for address %1

A debug message issued when the server is attempting to update IPv4
lease from the PostgreSQL database for the specified address.

DHCPSRV_PGSQL_UPDATE_ADDR6

updating IPv6 lease for address %1, lease type %2

A debug message issued when the server is attempting to update IPv6
lease from the PostgreSQL database for the specified address.

DHCPSRV_QUEUE_NCR

%1: name change request to %2 DNS entry queued: %3

A debug message which is logged when the NameChangeRequest to add or remove
a DNS entries for a particular lease has been queued. The first argument
includes the client identification information. The second argument
indicates whether the DNS entry is to be added or removed. The third
argument carries the details of the NameChangeRequest.

DHCPSRV_QUEUE_NCR_FAILED

%1: queuing %2 name change request failed for lease %3: %4

This error message is logged when sending a name change request
to DHCP DDNS failed. The first argument includes the client identification
information. The second argument indicates whether the DNS entry is to be
added or removed. The third argument specifies the leased address. The
last argument provides the reason for failure.

DHCPSRV_QUEUE_NCR_SKIP

%1: skip queuing name change request for lease: %2

This debug message is issued when the server decides to not queue the name
change request because the lease doesn’t include the FQDN, the forward and
reverse update is disabled for this lease or the DNS updates are disabled
in the configuration. The first argument includes the client identification
information. The second argument includes the leased address.

DHCPSRV_TIMERMGR_CALLBACK_FAILED

running handler for timer %1 caused exception: %2

This error message is emitted when the timer elapsed and the
operation associated with this timer has thrown an exception.
The timer name and the reason for exception is logged.

DHCPSRV_TIMERMGR_REGISTER_TIMER

registering timer: %1, using interval: %2 ms

A debug message issued when the new interval timer is registered in
the Timer Manager. This timer will have a callback function
associated with it, and this function will be executed according
to the interval specified. The unique name of the timer and the
interval at which the callback function will be executed is
included in the message.

DHCPSRV_TIMERMGR_RUN_TIMER_OPERATION

running operation for timer: %1

A debug message issued when the Timer Manager is about to
run a periodic operation associated with the given timer.
An example of such operation is a periodic cleanup of
expired leases. The name of the timer is included in the
message.

DHCPSRV_TIMERMGR_START_TIMER

starting timer: %1

A debug message issued when the registered interval timer is
being started. If this operation is successful the timer will
periodically execute the operation associated with it. The
name of the started timer is included in the message.

DHCPSRV_TIMERMGR_STOP_TIMER

stopping timer: %1

A debug message issued when the registered interval timer is
being stopped. The timer remains registered and can be restarted
if necessary. The name of the timer is included in the message.

DHCPSRV_TIMERMGR_UNREGISTER_ALL_TIMERS

unregistering all timers

A debug message issued when all registered interval timers are
being unregistered from the Timer Manager.

DHCPSRV_TIMERMGR_UNREGISTER_TIMER

unregistering timer: %1

A debug message issued when one of the registered interval timers
is unregistered from the Timer Manager. The name of the timer is
included in the message.

DHCPSRV_UNEXPECTED_NAME

database access parameters passed through ‘%1’, expected ‘lease-database’

The parameters for access the lease database were passed to the server through
the named configuration parameter, but the code was expecting them to be
passed via the parameter named “lease-database”. If the database opens
successfully, there is no impact on server operation. However, as this does
indicate an error in the source code, please submit a bug report.

DHCP

DHCP_DDNS_ADD_FAILED

DHCP_DDNS Request ID %1: Transaction outcome %2

This is an error message issued after DHCP_DDNS attempts to submit DNS mapping
entry additions have failed. The precise reason for the failure should be
documented in preceding log entries.

DHCP_DDNS_ADD_SUCCEEDED

DHCP_DDNS Request ID %1: successfully added the DNS mapping addition for this request: %2

This is an informational message issued after DHCP_DDNS has submitted DNS
mapping additions which were received and accepted by an appropriate DNS server.

DHCP_DDNS_ALREADY_RUNNING

%1 already running? %2

This is an error message that occurs when DHCP_DDNS encounters a pre-existing
PID file which contains the PID of a running process. This most likely
indicates an attempt to start a second instance of DHCP_DDNS using the
same configuration file. It is possible, though unlikely, that the PID file
is a remnant left behind by a server crash or power failure and the PID
it contains refers to a process other than DHCP_DDNS. In such an event,
it would be necessary to manually remove the PID file. The first argument is
the DHCP_DDNS process name, the second contains the PID and PID file.

DHCP_DDNS_AT_MAX_TRANSACTIONS

application has %1 queued requests but has reached maximum number of %2 concurrent transactions

This is a debug message that indicates that the application has DHCP_DDNS
requests in the queue but is working as many concurrent requests as allowed.

DHCP_DDNS_CLEARED_FOR_SHUTDOWN

application has met shutdown criteria for shutdown type: %1

This is a debug message issued when the application has been instructed
to shutdown and has met the required criteria to exit.

DHCP_DDNS_COMMAND

command directive received, command: %1 - args: %2

This is a debug message issued when the DHCP-DDNS application command method
has been invoked.

DHCP_DDNS_CONFIGURE

configuration %1 received: %2

This is a debug message issued when the DHCP-DDNS application configure method
has been invoked.

DHCP_DDNS_CONFIG_CHECK_FAIL

DHCP-DDNS server configuration check failed: %1

This error message indicates that the DHCP-DDNS had failed configuration
check. Details are provided. Additional details may be available
in earlier log entries, possibly on lower levels.

DHCP_DDNS_CONFIG_FAIL

DHCP-DDNS server configuration failed: %1

This error message indicates that the DHCP-DDNS had failed configuration
attempt. Details are provided. Additional details may be available
in earlier log entries, possibly on lower levels.

DHCP_DDNS_FAILED

application experienced a fatal error: %1

This is a debug message issued when the DHCP-DDNS application encounters an
unrecoverable error from within the event loop.

DHCP_DDNS_FORWARD_ADD_BAD_DNSCLIENT_STATUS

DHCP_DDNS Request ID %1: received an unknown DNSClient status: %2, while adding a forward address mapping for FQDN %3 to DNS server %4

This is an error message issued when DNSClient returns an unrecognized status
while DHCP_DDNS was adding a forward address mapping. The request will be
aborted. This is most likely a programmatic issue and should be reported.

DHCP_DDNS_FORWARD_ADD_BUILD_FAILURE

DNS Request ID %1: update message to add a forward DNS entry could not be constructed for this request: %2, reason: %3

This is an error message issued when an error occurs attempting to construct
the server bound packet requesting a forward address addition. This is due
to invalid data contained in the NameChangeRequest. The request will be aborted.
This is most likely a configuration issue.

DHCP_DDNS_FORWARD_ADD_IO_ERROR

DHCP_DDNS Request ID %1: encountered an IO error sending a forward mapping add for FQDN %2 to DNS server %3

This is an error message issued when a communication error occurs while
DHCP_DDNS is carrying out a forward address update. The application will
retry against the same server or others as appropriate.

DHCP_DDNS_FORWARD_ADD_REJECTED

DNS Request ID %1: Server, %2, rejected a DNS update request to add the address mapping for FQDN, %3, with an RCODE: %4

This is an error message issued when an update was rejected by the DNS server
it was sent to for the reason given by the RCODE. The rcode values are defined
in RFC 2136.

DHCP_DDNS_FORWARD_ADD_RESP_CORRUPT

DHCP_DDNS Request ID %1: received a corrupt response from the DNS server, %2, while adding forward address mapping for FQDN, %3

This is an error message issued when the response received by DHCP_DDNS, to a
update request to add a forward address mapping, is mangled or malformed.
The application will retry against the same server or others as appropriate.

DHCP_DDNS_FORWARD_REMOVE_ADDRS_BAD_DNSCLIENT_STATUS

DHCP_DDNS Request ID %1: received an unknown DNSClient status: %2, while removing a forward address mapping for FQDN %3 to DNS server %4

This is an error message issued when DNSClient returns an unrecognized status
while DHCP_DDNS was removing a forward address mapping. The request will be
aborted. This is most likely a programmatic issue and should be reported.

DHCP_DDNS_FORWARD_REMOVE_ADDRS_BUILD_FAILURE

DNS Request ID %1: update message to remove a forward DNS Address entry could not be constructed for this request: %2, reason: %3

This is an error message issued when an error occurs attempting to construct
the server bound packet requesting a forward address (A or AAAA) removal. This
is due to invalid data contained in the NameChangeRequest. The request will be
aborted. This is most likely a configuration issue.
/sar/

DHCP_DDNS_FORWARD_REMOVE_ADDRS_IO_ERROR

DHCP_DDNS Request ID %1: encountered an IO error sending a forward mapping address removal for FQDN %2 to DNS server %3

This is an error message issued when a communication error occurs while
DHCP_DDNS is carrying out a forward address remove. The application will retry
against the same server or others as appropriate.

DHCP_DDNS_FORWARD_REMOVE_ADDRS_REJECTED

DNS Request ID %1: Server, %2, rejected a DNS update request to remove the forward address mapping for FQDN, %3, with an RCODE: %4

This is an error message issued when an update was rejected by the DNS server
it was sent to for the reason given by the RCODE. The rcode values are defined
in RFC 2136.

DHCP_DDNS_FORWARD_REMOVE_ADDRS_RESP_CORRUPT

DHCP_DDNS Request ID %1: received a corrupt response from the DNS server, %2, while removing forward address mapping for FQDN, %3

This is an error message issued when the response received by DHCP_DDNS, to a
update request to remove a forward address mapping, is mangled or malformed.
The application will retry against the same server or others as appropriate.

DHCP_DDNS_FORWARD_REMOVE_RRS_BAD_DNSCLIENT_STATUS

DHCP_DDNS Request ID %1: received an unknown DNSClient status: %2, while removing forward RRs for FQDN %3 to DNS server %4

This is an error message issued when DNSClient returns an unrecognized status
while DHCP_DDNS was removing forward RRs. The request will be aborted. This is
most likely a programmatic issue and should be reported.

DHCP_DDNS_FORWARD_REMOVE_RRS_BUILD_FAILURE

DNS Request ID %1: update message to remove forward DNS RR entries could not be constructed for this request: %2, reason: %3

This is an error message issued when an error occurs attempting to construct
the server bound packet requesting forward RR (DHCID RR) removal. This is due
to invalid data contained in the NameChangeRequest. The request will be aborted.
This is most likely a configuration issue.

DHCP_DDNS_FORWARD_REMOVE_RRS_IO_ERROR

DHCP_DDNS Request ID %1: encountered an IO error sending a forward RR removal for FQDN %2 to DNS server %3

This is an error message issued when a communication error occurs while
DHCP_DDNS is carrying out a forward RR remove. The application will retry
against the same server.

DHCP_DDNS_FORWARD_REMOVE_RRS_REJECTED

DNS Request ID %1: Server, %2, rejected a DNS update request to remove forward RR entries for FQDN, %3, with an RCODE: %4

This is an error message issued when an update was rejected by the DNS server
it was sent to for the reason given by the RCODE. The rcode values are defined
in RFC 2136.

DHCP_DDNS_FORWARD_REMOVE_RRS_RESP_CORRUPT

DHCP_DDNS Request ID %1: received a corrupt response from the DNS server, %2, while removing forward RRs for FQDN, %3

This is an error message issued when the response received by DHCP_DDNS, to a
update request to remove forward RRs mapping, is mangled or malformed.
The application will retry against the same server or others as appropriate.
/sar/

DHCP_DDNS_FORWARD_REPLACE_BAD_DNSCLIENT_STATUS

DHCP_DDNS Request ID %1: received an unknown DNSClient status: %2, while replacing forward address mapping for FQDN %3 to DNS server %4

This is an error message issued when DNSClient returns an unrecognized status
while DHCP_DDNS was replacing a forward address mapping. The request will be
aborted. This is most likely a programmatic issue and should be reported.

DHCP_DDNS_FORWARD_REPLACE_BUILD_FAILURE

DNS Request ID %1: update message to replace a forward DNS entry could not be constructed from this request: %2, reason: %3

This is an error message issued when an error occurs attempting to construct
the server bound packet requesting a forward address replacement. This is
due to invalid data contained in the NameChangeRequest. The request will be
aborted. This is most likely a configuration issue.

DHCP_DDNS_FORWARD_REPLACE_IO_ERROR

DHCP_DDNS Request ID %1: encountered an IO error sending a forward mapping replace for FQDN %2 to DNS server %3

This is an error message issued when a communication error occurs while
DHCP_DDNS is carrying out a forward address update. The application will
retry against the same server or others as appropriate.

DHCP_DDNS_FORWARD_REPLACE_REJECTED

DNS Request ID %1: Server, %2, rejected a DNS update request to replace the address mapping for FQDN, %3, with an RCODE: %4

This is an error message issued when an update was rejected by the DNS server
it was sent to for the reason given by the RCODE. The rcode values are defined
in RFC 2136.

DHCP_DDNS_FORWARD_REPLACE_RESP_CORRUPT

DHCP_DDNS Request ID %1: received a corrupt response from the DNS server, %2, while replacing forward address mapping for FQDN, %3

This is an error message issued when the response received by DHCP_DDNS, to a
update request to replace a forward address mapping, is mangled or malformed.
The application will retry against the same server or others as appropriate.

DHCP_DDNS_FWD_REQUEST_IGNORED

Request ID %1: Forward updates are disabled, the forward portion of request will be ignored: %2

This is a debug message issued when forward DNS updates are disabled and
DHCP_DDNS receives an update request containing a forward DNS update. The
forward update will not performed.

DHCP_DDNS_INVALID_NCR

application received an invalid DNS update request: %1

This is an error message that indicates that an invalid request to update
a DNS entry was received by the application. Either the format or the content
of the request is incorrect. The request will be ignored.

DHCP_DDNS_INVALID_RESPONSE

received response to DNS Update message is malformed: %1

This is a debug message issued when the DHCP-DDNS application encountered an
error while decoding a response to DNS Update message. Typically, this error
will be encountered when a response message is malformed.

DHCP_DDNS_NCR_FLUSH_IO_ERROR

DHCP-DDNS Last send before stopping did not complete successfully: %1

This is an error message that indicates the DHCP-DDNS client was unable to
complete the last send prior to exiting send mode. This is a programmatic
error, highly unlikely to occur, and should not impair the application’s ability
to process requests.

DHCP_DDNS_NCR_LISTEN_CLOSE_ERROR

application encountered an error while closing the listener used to receive NameChangeRequests : %1

This is an error message that indicates the application was unable to close the
listener connection used to receive NameChangeRequests. Closure may occur
during the course of error recovery or during normal shutdown procedure. In
either case the error is unlikely to impair the application’s ability to
process requests but it should be reported for analysis.

DHCP_DDNS_NCR_RECV_NEXT_ERROR

application could not initiate the next read following a request receive.

This is a error message indicating that NameChangeRequest listener could not
start another read after receiving a request. While possible, this is highly
unlikely and is probably a programmatic error. The application should recover
on its own.

DHCP_DDNS_NCR_SEND_CLOSE_ERROR

DHCP-DDNS client encountered an error while closing the sender connection used to send NameChangeRequests: %1

This is an error message that indicates the DHCP-DDNS client was unable to
close the connection used to send NameChangeRequests. Closure may occur during
the course of error recovery or during normal shutdown procedure. In either
case the error is unlikely to impair the client’s ability to send requests but
it should be reported for analysis.

DHCP_DDNS_NCR_SEND_NEXT_ERROR

DHCP-DDNS client could not initiate the next request send following send completion: %1

This is a error message indicating that NameChangeRequest sender could not
start another send after completing the send of the previous request. While
possible, this is highly unlikely and is probably a programmatic error. The
application should recover on its own.

DHCP_DDNS_NCR_UDP_CLEAR_READY_ERROR

NCR UDP watch socket failed to clear: %1

This is an error message that indicates the application was unable to reset the
UDP NCR sender ready status after completing a send. This is programmatic error
that should be reported. The application may or may not continue to operate
correctly.

DHCP_DDNS_NCR_UDP_RECV_CANCELED

UDP socket receive was canceled while listening for DNS Update requests

This is a debug message indicating that the listening on a UDP socket
for DNS update requests has been canceled. This is a normal part of
suspending listening operations.

DHCP_DDNS_NCR_UDP_RECV_ERROR

UDP socket receive error while listening for DNS Update requests: %1

This is an error message indicating that an I/O error occurred while listening
over a UDP socket for DNS update requests. This could indicate a network
connectivity or system resource issue.

DHCP_DDNS_NCR_UDP_SEND_CANCELED

UDP socket send was canceled while sending a DNS Update request to DHCP_DDNS: %1

This is an informational message indicating that sending requests via UDP
socket to DHCP_DDNS has been interrupted. This is a normal part of suspending
send operations.

DHCP_DDNS_NCR_UDP_SEND_ERROR

UDP socket send error while sending a DNS Update request: %1

This is an error message indicating that an IO error occurred while sending a
DNS update request to DHCP_DDNS over a UDP socket. This could indicate a
network connectivity or system resource issue.

DHCP_DDNS_NOT_ON_LOOPBACK

the DHCP-DDNS server has been configured to listen on %1 which is not the local loopback. This is an insecure configuration supported for testing purposes only

This is a warning message issued when the DHCP-DDNS server is configured to
listen at an address other than the loopback address (127.0.0.1 or ::1). It is
possible for a malicious attacker to send bogus NameChangeRequests to it and
change entries in the DNS. For this reason, addresses other than the IPv4 or
IPv6 loopback addresses should only be used for testing purposes. A future
version of Kea will implement authentication to guard against such attacks.

DHCP_DDNS_NO_ELIGIBLE_JOBS

although there are queued requests, there are pending transactions for each, Queue count: %1 Transaction count: %2

This is a debug message issued when all of the queued requests represent clients
for which there is a an update already in progress. This may occur under
normal operations but should be temporary situation.

DHCP_DDNS_NO_FWD_MATCH_ERROR

Request ID %1: the configured list of forward DDNS domains does not contain a match for: %2 The request has been discarded.

This is an error message that indicates that DHCP_DDNS received a request to
update a the forward DNS information for the given FQDN but for which there are
no configured DDNS domains in the DHCP_DDNS configuration. Either the DHCP_DDNS
configuration needs to be updated or the source of the FQDN itself should be
investigated.

DHCP_DDNS_NO_MATCH

No DNS servers match FQDN %1

This is warning message issued when there are no domains in the configuration
which match the cited fully qualified domain name (FQDN). The DNS Update
request for the FQDN cannot be processed.

DHCP_DDNS_NO_REV_MATCH_ERROR

Request ID %1: the configured list of reverse DDNS domains does not contain a match for: %2 The request has been discarded.

This is an error message that indicates that DHCP_DDNS received a request to
update a the reverse DNS information for the given FQDN but for which there are
no configured DDNS domains in the DHCP_DDNS configuration. Either the DHCP_DDNS
configuration needs to be updated or the source of the FQDN itself should be
investigated.

DHCP_DDNS_PROCESS_INIT

application init invoked

This is a debug message issued when the DHCP-DDNS application enters
its initialization method.

DHCP_DDNS_QUEUE_MGR_QUEUE_FULL

application request queue has reached maximum number of entries %1

This an error message indicating that DHCP-DDNS is receiving DNS update
requests faster than they can be processed. This may mean the maximum queue
needs to be increased, the DHCP-DDNS clients are simply generating too many
requests too quickly, or perhaps upstream DNS servers are experiencing
load issues.

DHCP_DDNS_QUEUE_MGR_QUEUE_RECEIVE

Request ID %1: received and queued a request.

This is an informational message indicating that the NameChangeREquest listener used
by DHCP-DDNS to receive a request has received a request and queued it for further
processing.

DHCP_DDNS_QUEUE_MGR_RECONFIGURING

application is reconfiguring the queue manager

This is an informational message indicating that DHCP_DDNS is reconfiguring the queue manager as part of normal startup or in response to a new configuration.

DHCP_DDNS_QUEUE_MGR_RECOVERING

application is attempting to recover from a queue manager IO error

This is an informational message indicating that DHCP_DDNS is attempting to
restart the queue manager after it suffered an IO error while receiving
requests.

DHCP_DDNS_QUEUE_MGR_RECV_ERROR

application’s queue manager was notified of a request receive error by its listener.

This is an error message indicating that the NameChangeRequest listener used by
DHCP-DDNS to receive requests encountered an IO error. There should be
corresponding log messages from the listener layer with more details. This may
indicate a network connectivity or system resource issue.

DHCP_DDNS_QUEUE_MGR_RESUME_ERROR

application could not restart the queue manager, reason: %1

This is an error message indicating that DHCP_DDNS’s Queue Manager could not
be restarted after stopping due to a full receive queue. This means that
the application cannot receive requests. This is most likely due to DHCP_DDNS
configuration parameters referring to resources such as an IP address or port,
that is no longer unavailable. DHCP_DDNS will attempt to restart the queue
manager if given a new configuration.

DHCP_DDNS_QUEUE_MGR_RESUMING

application is resuming listening for requests now that the request queue size has reached %1 of a maximum %2 allowed

This is an informational message indicating that DHCP_DDNS, which had stopped
accepting new requests, has processed enough entries from the receive queue to
resume accepting requests.

DHCP_DDNS_QUEUE_MGR_STARTED

application’s queue manager has begun listening for requests.

This is a debug message indicating that DHCP_DDNS’s Queue Manager has
successfully started and is now listening for NameChangeRequests.

DHCP_DDNS_QUEUE_MGR_START_ERROR

application could not start the queue manager, reason: %1

This is an error message indicating that DHCP_DDNS’s Queue Manager could not
be started. This means that the application cannot receive requests. This is
most likely due to DHCP_DDNS configuration parameters referring to resources
such as an IP address or port, that are unavailable. DHCP_DDNS will attempt to
restart the queue manager if given a new configuration.

DHCP_DDNS_QUEUE_MGR_STOPPED

application’s queue manager has stopped listening for requests.

This is a debug message indicating that DHCP_DDNS’s Queue Manager has
stopped listening for NameChangeRequests. This may be because of normal event
such as reconfiguration or as a result of an error. There should be log
messages preceding this one to indicate why it has stopped.

DHCP_DDNS_QUEUE_MGR_STOPPING

application is stopping the queue manager for %1

This is an informational message indicating that DHCP_DDNS is stopping the
queue manager either to reconfigure it or as part of application shutdown.

DHCP_DDNS_QUEUE_MGR_STOP_ERROR

application encountered an error stopping the queue manager: %1

This is an error message indicating that DHCP_DDNS encountered an error while
trying to stop the queue manager. This error is unlikely to occur or to
impair the application’s ability to function but it should be reported for
analysis.

DHCP_DDNS_QUEUE_MGR_UNEXPECTED_HANDLER_ERROR

application’s queue manager request receive handler experienced an unexpected exception %1:

This is an error message indicating that an unexpected error occurred within the
DHCP_DDNS’s Queue Manager request receive completion handler. This is most
likely a programmatic issue that should be reported. The application may
recover on its own.

DHCP_DDNS_QUEUE_MGR_UNEXPECTED_STOP

application’s queue manager receive was

aborted unexpectedly while queue manager state is: %1
This is an error message indicating that DHCP_DDNS’s Queue Manager request
receive was unexpected interrupted. Normally, the read is receive is only
interrupted as a normal part of stopping the queue manager. This is most
likely a programmatic issue that should be reported.

DHCP_DDNS_REMOVE_FAILED

DHCP_DDNS Request ID %1: Transaction outcome: %2

This is an error message issued after DHCP_DDNS attempts to submit DNS mapping
entry removals have failed. The precise reason for the failure should be
documented in preceding log entries.

DHCP_DDNS_REMOVE_SUCCEEDED

DHCP_DDNS Request ID %1: successfully removed the DNS mapping addition for this request: %2

This is an informational message issued after DHCP_DDNS has submitted DNS
mapping removals which were received and accepted by an appropriate DNS server.

DHCP_DDNS_REQUEST_DROPPED

Request ID %1: Request contains no enabled update requests and will be dropped: %2

This is a debug message issued when DHCP_DDNS receives a request which does not
contain updates in a direction that is enabled. In other words, if only forward
updates are enabled and request is received that asks only for reverse updates
then the request is dropped.

DHCP_DDNS_REVERSE_REMOVE_BAD_DNSCLIENT_STATUS

DHCP_DDNS Request ID %1: received an unknown DNSClient status: %2, while removing reverse address mapping for FQDN %3 to DNS server %4

This is an error message issued when DNSClient returns an unrecognized status
while DHCP_DDNS was removing a reverse address mapping. The request will be
aborted. This is most likely a programmatic issue and should be reported.

DHCP_DDNS_REVERSE_REMOVE_BUILD_FAILURE

DNS Request ID %1: update message to remove a reverse DNS entry could not be constructed from this request: %2, reason: %3

This is an error message issued when an error occurs attempting to construct
the server bound packet requesting a reverse PTR removal. This is
due to invalid data contained in the NameChangeRequest. The request will be
aborted. This is most likely a configuration issue.

DHCP_DDNS_REVERSE_REMOVE_IO_ERROR

DHCP_DDNS Request ID %1: encountered an IO error sending a reverse mapping remove for FQDN %2 to DNS server %3

This is an error message issued when a communication error occurs while
DHCP_DDNS is carrying out a reverse address update. The application will
retry against the same server or others as appropriate.

DHCP_DDNS_REVERSE_REMOVE_REJECTED

DNS Request ID %1: Server, %2, rejected a DNS update request to remove the reverse mapping for FQDN, %3, with an RCODE: %4

This is an error message issued when an update was rejected by the DNS server
it was sent to for the reason given by the RCODE. The rcode values are defined
in RFC 2136.

DHCP_DDNS_REVERSE_REMOVE_RESP_CORRUPT

DHCP_DDNS Request ID %1: received a corrupt response from the DNS server, %2, while removing reverse address mapping for FQDN, %3

This is an error message issued when the response received by DHCP_DDNS, to a
update request to remove a reverse address, is mangled or malformed.
The application will retry against the same server or others as appropriate.

DHCP_DDNS_REVERSE_REPLACE_BAD_DNSCLIENT_STATUS

DHCP_DDNS Request ID %1: received an unknown DNSClient status: %2, while replacing reverse address mapping for FQDN %3 to DNS server %4

This is an error message issued when DNSClient returns an unrecognized status
while DHCP_DDNS was replacing a reverse address mapping. The request will be
aborted. This is most likely a programmatic issue and should be reported.

DHCP_DDNS_REVERSE_REPLACE_BUILD_FAILURE

DNS Request ID %1: update message to replace a reverse DNS entry could not be constructed from this request: %2, reason: %3

This is an error message issued when an error occurs attempting to construct
the server bound packet requesting a reverse PTR replacement. This is
due to invalid data contained in the NameChangeRequest. The request will be
aborted. This is most likely a configuration issue.

DHCP_DDNS_REVERSE_REPLACE_IO_ERROR

DHCP_DDNS Request ID %1: encountered an IO error sending a reverse mapping replacement for FQDN %2 to DNS server %3

This is an error message issued when a communication error occurs while
DHCP_DDNS is carrying out a reverse address update. The application will
retry against the same server or others as appropriate.

DHCP_DDNS_REVERSE_REPLACE_REJECTED

DNS Request ID %1: Server, %2, rejected a DNS update request to replace the reverse mapping for FQDN, %3, with an RCODE: %4

This is an error message issued when an update was rejected by the DNS server
it was sent to for the reason given by the RCODE. The rcode values are defined
in RFC 2136.

DHCP_DDNS_REVERSE_REPLACE_RESP_CORRUPT

DHCP_DDNS Request ID %1: received a corrupt response from the DNS server, %2, while replacing reverse address mapping for FQDN, %3

This is an error message issued when the response received by DHCP_DDNS, to a
update request to replace a reverse address, is mangled or malformed.
The application will retry against the same server or others as appropriate.

DHCP_DDNS_REV_REQUEST_IGNORED

Request ID %1: Reverse updates are disabled, the reverse portion of request will be ignored: %2

This is a debug message issued when reverse DNS updates are disabled and
DHCP_DDNS receives an update request containing a reverse DNS update. The
reverse update will not performed.

DHCP_DDNS_RUN_EXIT

application is exiting the event loop

This is a debug message issued when the DHCP-DDNS server exits its
event lo

DHCP_DDNS_SHUTDOWN_COMMAND

application received shutdown command with args: %1

This is a debug message issued when the application has been instructed
to shut down by the controller.

DHCP_DDNS_STARTED

Kea DHCP-DDNS server version %1 started

This informational message indicates that the DHCP-DDNS server has
processed all configuration information and is ready to begin processing.
The version is also printed.

DHCP_DDNS_STARTING_TRANSACTION

Request ID %1:

This is a debug message issued when DHCP-DDNS has begun a transaction for
a given request.

DHCP_DDNS_STATE_MODEL_UNEXPECTED_ERROR

Request ID %1: application encountered an unexpected error while carrying out a NameChangeRequest: %2

This is error message issued when the application fails to process a
NameChangeRequest correctly. Some or all of the DNS updates requested as part
of this update did not succeed. This is a programmatic error and should be
reported.

DHCP_DDNS_TRANS_SEND_ERROR

Request ID %1: application encountered an unexpected error while attempting to send a DNS update: %2

This is error message issued when the application is able to construct an update
message but the attempt to send it suffered an unexpected error. This is most
likely a programmatic error, rather than a communications issue. Some or all
of the DNS updates requested as part of this request did not succeed.

DHCP_DDNS_UDP_SENDER_WATCH_SOCKET_CLOSE_ERROR

watch socket failed to close: %1

This is an error message that indicates the application was unable to close
the inbound or outbound side of a NCR sender’s watch socket. While technically
possible the error is highly unlikely to occur and should not impair the
application’s ability to process requests.

DHCP_DDNS_UNCAUGHT_NCR_RECV_HANDLER_ERROR

unexpected exception thrown from the application receive completion handler: %1

This is an error message that indicates that an exception was thrown but not
caught in the application’s request receive completion handler. This is a
programmatic error that needs to be reported. Dependent upon the nature of
the error the application may or may not continue operating normally.

DHCP_DDNS_UPDATE_REQUEST_SENT

Request ID %1: %2 to server: %3

This is a debug message issued when DHCP_DDNS sends a DNS request to a DNS
server.

EVAL

EVAL_DEBUG_AND

Popping %1 and %2 pushing %3

This debug message indicates that two values are popped from
the value stack. Then are then combined via logical and and
the result is pushed onto the value stack.

EVAL_DEBUG_CONCAT

Popping %1 and %2 pushing %3

This debug message indicates that the two strings are being popped off
of the stack. They are then concatenated and the resulting string is
pushed onto the stack. The strings are displayed in hex.

EVAL_DEBUG_EQUAL

Popping %1 and %2 pushing result %3

This debug message indicates that the two strings are being popped off
of the value stack and the result of comparing them is being pushed onto
the value stack. The strings are displayed in hex.

EVAL_DEBUG_HEXSTRING

Pushing hex string %1

This debug message indicates that the given binary string is being pushed
onto the value stack. The string is displayed in hex.

EVAL_DEBUG_IFELSE_FALSE

Popping %1 (false) and %2, leaving %3

This debug message indicates that the condition is false so
the iftrue branch value is removed and the ifelse branch value
is left on the value stack.

EVAL_DEBUG_IFELSE_TRUE

Popping %1 (true) and %2, leaving %3

This debug message indicates that the condition is true so
the ifelse branch value is removed and the iftrue branch value
is left on the value stack.

EVAL_DEBUG_IPADDRESS

Pushing IPAddress %1

This debug message indicates that the given binary string is being pushed
onto the value stack. This represents either an IPv4 or IPv6 address.
The string is displayed in hex.

EVAL_DEBUG_MEMBER

Checking membership of ‘%1’, pushing result %2

This debug message indicates that the membership of the packet for
the client class was checked.

EVAL_DEBUG_NOT

Popping %1 pushing %2

This debug message indicates that the first value is popped from
the value stack, negated and then pushed onto the value stack.
The string is displayed in text.

EVAL_DEBUG_OPTION

Pushing option %1 with value %2

This debug message indicates that the given string representing the
value of the requested option is being pushed onto the value stack.
The string may be the text or binary value of the string based on the
representation type requested (.text or .hex) or “true” or “false” if
the requested type is .exists. The option code may be for either an
option or a sub-option as requested in the classification statement.

EVAL_DEBUG_OR

Popping %1 and %2 pushing %3

This debug message indicates that two values are popped from
the value stack. Then are then combined via logical or and
the result is pushed onto the value stack. The string is displayed
in text.

EVAL_DEBUG_PKT

Pushing PKT meta data %1 with value %2

This debug message indicates that the given binary string representing
the value of the requested meta data is being pushed onto the value stack.
The string is displayed in hex at the exception of interface name.

EVAL_DEBUG_PKT4

Pushing PKT4 field %1 with value %2

This debug message indicates that the given binary string representing
the value of the requested field is being pushed onto the value stack.
The string is displayed in hex.

EVAL_DEBUG_PKT6

Pushing PKT6 field %1 with value %2

This debug message indicates that the given binary string representing
the value of the requested field is being pushed onto the value stack.
The string is displayed in hex.

EVAL_DEBUG_RELAY6

Pushing PKT6 relay field %1 nest %2 with value %3

This debug message indicates that the given binary string representing
the value of the requested fied is being pushed onto the value stack.
The string is displayed in hex.

EVAL_DEBUG_RELAY6_RANGE

Pushing PKT6 relay field %1 nest %2 with value %3

This debug message is generated if the nest field is out of range. The
empty string will always be the value pushed onto the stack.

EVAL_DEBUG_STRING

Pushing text string %1

This debug message indicates that the given text string is being pushed
onto the value stack. The string is displayed in text.

EVAL_DEBUG_SUBSTRING

Popping length %1, start %2, string %3 pushing result %4

This debug message indicates that three values are being popped from
the value stack and a result is being pushed onto the value stack. The
values being popped are the starting point and length of a substring to
extract from the given string. The resulting string is pushed onto
the stack. The strings are displayed in hex.

EVAL_DEBUG_SUBSTRING_EMPTY

Popping length %1, start %2, string %3 pushing result %4

This debug message indicates that the string popped from the stack was empty
and so the result will also be empty. The start, length and string are
still popped from the stack and the result is still pushed.

EVAL_DEBUG_SUBSTRING_RANGE

Popping length %1, start %2, string %3 pushing result %4

This debug message indicates that the value of start is outside of the
string and an empty result will be pushed onto the stack. The start,
length and string are still popped from the stack and the result is
still pushed. The strings are displayed in hex.

EVAL_DEBUG_SUB_OPTION

Pushing option %1 sub-option %2 with value %3

This debug message indicates that the given string representing the
value of the requested sub-option of the requested parent option is
being pushed onto the value stack. The string may be the text or
binary value of the string based on the representation type requested
(.text or .hex) or “true” or “false” if the requested type is .exists.
The codes are the parent option and the sub-option codes as requested
in the classification statement.

EVAL_DEBUG_SUB_OPTION_NO_OPTION

Requested option %1 sub-option %2, but the parent option is not present, pushing result %3

This debug message indicates that the parent option was not found.
The codes are the parent option and the sub-option codes as requested
in the classification statement.

EVAL_DEBUG_TOHEXSTRING

Popping binary value %1 and separator %2, pushing result %3

This debug message indicates that two values are being popped from
the value stack and a result is being pushed onto the value stack.
The values being popped are the binary value to convert and the separator.
The binary value is converted to its hexadecimal string representation
and pushed onto the stack. The binary value is displayed in hex.

EVAL_DEBUG_VENDOR_CLASS_DATA

Data %1 (out of %2 received) in vendor class found, pushing result ‘%3’

This debug message indicates that vendor class option was found and passed
enterprise-id checks and has sufficient number of data chunks. The total number
of chunks and value pushed are reported as debugging aid.

EVAL_DEBUG_VENDOR_CLASS_DATA_NOT_FOUND

Requested data index %1, but option with enterprise-id %2 has only %3 data tuple(s), pushing result ‘%4’

This debug message indicates that vendor class option was found and passed
enterprise-id checks, but does not have sufficient number of data chunks.
Note that the index starts at 0, so there has to be at least (index + 1)
data chunks.

EVAL_DEBUG_VENDOR_CLASS_ENTERPRISE_ID

Pushing enterprise-id %1 as result 0x%2

This debug message indicates that the expression has been evaluated and vendor
class option was found and its enterprise-id is being reported.

EVAL_DEBUG_VENDOR_CLASS_ENTERPRISE_ID_MISMATCH

Was looking for %1, option had %2, pushing result ‘%3’

This debug message indicates that the expression has been evaluated
and vendor class option was found, but has different enterprise-id than specified
in the expression.

EVAL_DEBUG_VENDOR_CLASS_EXISTS

Option with enterprise-id %1 found, pushing result ‘%2’

This debug message indicates that the expression has been evaluated and vendor
class option was found.

EVAL_DEBUG_VENDOR_CLASS_NO_OPTION

Option with code %1 missing, pushing result ‘%2’

This debug message indicates that the expression has been evaluated
and vendor class option was not found.

EVAL_DEBUG_VENDOR_ENTERPRISE_ID

Pushing enterprise-id %1 as result 0x%2

This debug message indicates that the expression has been evaluated and vendor
option was found and its enterprise-id is being reported.

EVAL_DEBUG_VENDOR_ENTERPRISE_ID_MISMATCH

Was looking for %1, option had %2, pushing result ‘%3’

This debug message indicates that the expression has been evaluated
and vendor option was found, but has different enterprise-id than specified
in the expression.

EVAL_DEBUG_VENDOR_EXISTS

Option with enterprise-id %1 found, pushing result ‘%2’

This debug message indicates that the expression has been evaluated and vendor
option was found.

EVAL_DEBUG_VENDOR_NO_OPTION

Option with code %1 missing, pushing result ‘%2’

This debug message indicates that the expression has been evaluated
and vendor option was not found.

FLEX

FLEX_OPTION_LOAD_ERROR

loading Flex Option hooks library failed: %1

This error message indicates an error during loading the Flex Option
hooks library. The details of the error are provided as argument of
the log message.

FLEX_OPTION_PROCESS_ADD

Added the option code %1 value by %2

This debug message is printed when an option was added into the response
packet. The option code and the value (between quotes if printable, in
hexadecimal is not) are provided.

FLEX_OPTION_PROCESS_ERROR

An error occurred processing query %1: %2

This error message indicates an error during processing of a query
by the Flex Option hooks library. The client identification information
from the query and the details of the error are provided as arguments
of the log message.

FLEX_OPTION_PROCESS_REMOVE

Removed option code %1

This debug message is printed when an option was removed from the response
packet. The option code is provided.

FLEX_OPTION_PROCESS_SUPERSEDE

Supersedes the value of option code %1 by %2

This debug message is printed when an option was superseded into the response
packet. The option code and the value (between quotes if printable, in
hexadecimal is not) are provided.

HA

HA_BUFFER4_RECEIVE_FAILED

buffer4_receive callout failed: %1

This error message is issued when the callout for the buffer4_receive hook
point failed. This may occur as a result of an internal server error.
The argument contains a reason for the error.

HA_BUFFER4_RECEIVE_NOT_FOR_US

%1: dropping query to be processed by another server

This debug message is issued when the received DHCPv4 query is dropped
by this server because it should be served by another server. This
is the case when the remote server was designated to process the packet
as a result of load balancing or because it is a primary server in the
hot standby configuration. The argument provides client identification
information retrieved from the query.

HA_BUFFER4_RECEIVE_PACKET_OPTIONS_SKIPPED

an error upacking an option, caused subsequent options to be skipped: %1

A debug message issued when an option failed to unpack correctly, making it
impossible to unpack the remaining options in the DHCPv4 query. The server
will still attempt to service the packet. The sole argument provides a
reason for unpacking error.

HA_BUFFER4_RECEIVE_UNPACK_FAILED

failed to parse query from %1 to %2, received over interface %3, reason: %4

This debug message is issued when received DHCPv4 query is malformed and
can’t be parsed by the buffer4_receive callout. The query will be
dropped by the server. The first three arguments specify source IP address,
destination IP address and the interface. The last argument provides a
reason for failure.

HA_BUFFER6_RECEIVE_FAILED

buffer6_receive callout failed: %1

This error message is issued when the callout for the buffer6_receive hook
point failed. This may occur as a result of an internal server error.
The argument contains a reason for the error.

HA_BUFFER6_RECEIVE_NOT_FOR_US

%1: dropping query to be processed by another server

This debug message is issued when the received DHCPv6 query is dropped
by this server because it should be served by another server. This
is the case when the remote server was designated to process the packet
as a result of load balancing or because it is a primary server in the
hot standby configuration. The argument provides client identification
information retrieved from the query.

HA_BUFFER6_RECEIVE_PACKET_OPTIONS_SKIPPED

an error upacking an option, caused subsequent options to be skipped: %1

A debug message issued when an option failed to unpack correctly, making it
impossible to unpack the remaining options in the DHCPv6 query. The server
will still attempt to service the packet. The sole argument provides a
reason for unpacking error.

HA_BUFFER6_RECEIVE_UNPACK_FAILED

failed to parse query from %1 to %2, received over interface %3, reason: %4

This debug message is issued when received DHCPv6 query is malformed and
can’t be parsed by the buffer6_receive callout. The query will be
dropped by the server. The first three arguments specify source IP address,
destination IP address and the interface. The last argument provides a
reason for failure.

HA_COMMAND_PROCESSED_FAILED

command_processed callout failed: %1

This error message is issued when the callout for the command_processed hook
point failed. The argument contains a reason for the error.

HA_COMMUNICATION_INTERRUPTED

communication with %1 is interrupted

This warning message is issued by the server which discovered that the
communication to the active partner has been interrupted for a time
period longer than the configured heartbeat-delay time. At this stage
the server starts the failover procedure by monitoring the DHCP traffic
sent to the partner and checking whether the partner server responds to
this traffic. If the max-unacked-clients value is set to 0 such
verification is disabled in which case the server will transition to
the partner-down state.

HA_COMMUNICATION_INTERRUPTED_CLIENT4

%1: new client attempting to get a lease from the partner

This informational message is issued when the surviving server observes
a DHCP packet sent to the partner with which the commuication is interrupted.
The client whose packet is observed is not yet considered “unacked” because
the secs field value does not exceed the configured threshold specified
with max-ack-delay.

HA_COMMUNICATION_INTERRUPTED_CLIENT4_UNACKED

%1: partner server failed to respond, %2 clients unacked so far, %3 clients left before transitioning to the partner-down state

This informational message is issued when the surviving server determines
that its partner failed to respond to the DHCP query and that this client
is considered to not be served by the partner. The surviving server counts
such clients and if the number of such clients exceeds the max-unacked-clients
threshold, the server will transition to the partner-down state. The first
argument contains client identification information. The second argument
specifies the number of clients to which the server has failed to respond.
The third argument specifies the number of additional clients which, if not
provisioned, will cause the server to transition to the partner-down state.

HA_COMMUNICATION_INTERRUPTED_CLIENT6

%1: new client attempting to get a lease from the partner

This informational message is issued when the surviving server observes
a DHCP packet sent to the partner with which the commuication is interrupted.
The client whose packet is observed is not yet considered “unacked” because
the elapsed time option value does not exceed the configured threshold
specified with max-ack-delay. The sole argument specifies client
identification information.

HA_COMMUNICATION_INTERRUPTED_CLIENT6_UNACKED

%1: partner server failed to respond, %2 clients unacked so far, %3 clients left before transitioning to the partner-down state

This informational message is issued when the surviving server determines
that its partner failed to respond to the DHCP query and that this client
is considered to not be served by the partner. The surviving server counts
such clients and if the number of such clients exceeds the max-unacked-clients
threshold, the server will transition to the partner-down state. The first
argument contains client identification information. The second argument
specifies the number of clients to which the server has failed to respond.
The third argument specifies the number of additional clients which, if not
provisioned, will cause the server to transition to the partner-down state.

HA_CONFIGURATION_FAILED

failed to configure High Availability hooks library: %1

This error message is issued when there is an error configuring the HA hooks
library. The argument provides the detailed error message.

HA_CONFIGURATION_SUCCESSFUL

HA hook library has been successfully configured

This informational message is issued when the HA hook library configuration
parser successfully parses and validates the new configuration.

HA_CONFIG_AUTO_FAILOVER_DISABLED

auto-failover disabled for %1

This warning message is issued to indicate that the ‘auto-failover’ parameter
was administratively disabled for the specified server. The server will not
automatically start serving partner’s scope when the partner failure is detected.
The server administrator will need to enable this scope manually by
sending appropriate ha-scopes command.

HA_CONFIG_LEASE_SYNCING_DISABLED

lease database synchronization between HA servers is disabled

This warning message is issued when the lease database synchronization is
administratively disabled. This is valid configuration if the leases are
replicated between lease databases via some other mechanism, e.g. SQL
database replication.

HA_CONFIG_LEASE_SYNCING_DISABLED_REMINDER

bypassing SYNCING state because lease database synchronization is administratively disabled

This informational message is issued as a reminder that lease database
synchronization is administratively disabled and therefore the server
transitions directly from the “waiting” to “ready” state.

HA_CONFIG_LEASE_UPDATES_AND_SYNCING_DIFFER

unusual configuration where “send-lease-updates”: %1 and “sync-leases”: %2

This warning message is issued when the configuration values of the
send-lease-updates and sync-leases parameters differ. This may be a
valid configuration but is unusual. Normally, if the lease database
with replication is in use, both values are set to false. If a lease
database without replication is in use (e.g. memfile), both values
are set to true. Providing different values for those parameters means
that an administrator either wants the server to not synchronize
leases upon startup but later send lease updates to the partner, or
the lease database should be synchronized upon startup, but no lease
updates are later sent as a result of leases allocation.

HA_CONFIG_LEASE_UPDATES_DISABLED

lease updates will not be generated

This warning message is issued when the lease updates are administratively
disabled. This is valid configuration if the leases are replicated to the
partner’s database via some other mechanism, e.g. SQL database replication.

HA_CONFIG_LEASE_UPDATES_DISABLED_REMINDER

lease updates are administratively disabled and will not be generated while in %1 state

This informational message is issued as a reminder that the lease updates
are administratively disabled and will not be issued in the HA state to
which the server has transitioned. The sole argument specifies the state
into which the server has transitioned.

HA_CONTINUE_HANDLER_FAILED

ha-continue command failed: %1

This error message is issued to indicate that the ha-continue command handler
failed while processing the command. The argument provides the reason for
failure.

HA_DEINIT_OK

unloading High Availability hooks library successful

This informational message indicates that the High Availability hooks library
has been unloaded successfully.

HA_DHCP4_START_SERVICE_FAILED

failed to start DHCPv4 HA service in dhcp4_srv_configured callout: %1

This error message is issued when an attempt to start High Availability service
for the DHCPv4 server failed in the dhcp4_srv_configured callout. This
is internal server error and a bug report should be created.

HA_DHCP6_START_SERVICE_FAILED

failed to start DHCPv4 HA service in dhcp6_srv_configured callout: %1

This error message is issued when an attempt to start High Availability service
for the DHCPv4 server failed in the dhcp4_srv_configured callout. This
is internal server error and a bug report should be created.

HA_DHCP_DISABLE_COMMUNICATIONS_FAILED

failed to send request to disable DHCP service of %1: %2

This warning message indicates that there was a problem in communication with a
HA peer while sending the dhcp-disable command. The first argument provides the
remote server’s name. The second argument provides a reason for failure.

HA_DHCP_DISABLE_FAILED

failed to disable DHCP service of %1: %2

This warning message indicates that a peer returned an error status code
in response to a dhcp-disable command. The first argument provides the
remote server’s name. The second argument provides a reason for failure.

HA_DHCP_ENABLE_COMMUNICATIONS_FAILED

failed to send request to enable DHCP service of %1: %2

This warning message indicates that there was a problem in communication with a
HA peer while sending the dhcp-enable command. The first argument provides the
remote server’s name. The second argument provides a reason for failure.

HA_DHCP_ENABLE_FAILED

failed to enable DHCP service of %1: %2

This warning message indicates that a peer returned an error status code
in response to a dhcp-enable command. The first argument provides the
remote server’s name. The second argument provides a reason for failure.

HA_HEARTBEAT_COMMUNICATIONS_FAILED

failed to send heartbeat to %1: %2

This warning message indicates that there was a problem in communication with a
HA peer while sending a heartbeat. This is a first sign that the peer may be
down. The server will keep trying to send heartbeats until it considers that
communication is interrupted.

HA_HEARTBEAT_FAILED

heartbeat to %1 failed: %2

This warning message indicates that a peer returned an error status code
in response to a heartbeat. This is the sign that the peer may not function
properly. The server will keep trying to send heartbeats until it considers
that communication is interrupted.

HA_HEARTBEAT_HANDLER_FAILED

heartbeat command failed: %1

This error message is issued to indicate that the heartbeat command handler
failed while processing the command. The argument provides the reason for
failure.

HA_HIGH_CLOCK_SKEW

%1, please synchronize clocks!

This warning message is issued when the clock skew between the active servers
exceeds 30 seconds. The HA service continues to operate but may not function
properly, especially for low lease lifetimes. The administrator should
should synchronize the clocks, e.g. using NTP. If the clock skew exceeds
60 seconds, the HA service will terminate.

HA_HIGH_CLOCK_SKEW_CAUSES_TERMINATION

%1, causing HA service to terminate

This warning message is issued when the clock skew between the active servers
exceeds 60 seconds. The HA service stops. The servers will continue to respond
to the DHCP queries but won’t exchange lease updates or send heartbeats.
The administrator is required to synchronize the clocks and then restart the
servers to resume the HA service.

HA_INIT_OK

loading High Availability hooks library successful

This informational message indicates that the High Availability hooks library
has been loaded successfully.

HA_LEASES4_COMMITTED_FAILED

leases4_committed callout failed: %1

This error message is issued when the callout for the leases4_committed hook
point failed. This includes unexpected errors like wrong arguments provided to
the callout by the DHCP server (unlikely internal server error).
The argument contains a reason for the error.

HA_LEASES4_COMMITTED_NOTHING_TO_UPDATE

%1: leases4_committed callout was invoked without any leases

This debug message is issued when the “leases4_committed” callout returns
because there are neither new leases nor deleted leases for which updates
should be sent. The sole argument specifies the details of the client
which sent the packet.

HA_LEASES6_COMMITTED_FAILED

leases6_committed callout failed: %1

This error message is issued when the callout for the leases6_committed hook
point failed. This includes unexpected errors like wrong arguments provided to
the callout by the DHCP server (unlikely internal server error).
The argument contains a reason for the error.

HA_LEASES6_COMMITTED_NOTHING_TO_UPDATE

%1: leases6_committed callout was invoked without any leases

This debug message is issued when the “leases6_committed” callout returns
because there are neither new leases nor deleted leases for which updates
should be sent. The sole argument specifies the details of the client
which sent the packet.

HA_LEASES_SYNC_COMMUNICATIONS_FAILED

failed to communicate with %1 while syncing leases: %2

This error message is issued to indicate that there was a communication error
with a partner server while trying to fetch leases from its lease database.
The argument contains a reason for the error.

HA_LEASES_SYNC_FAILED

failed to synchronize leases with %1: %2

This error message is issued to indicate that there was a problem while
parsing a response from the server from which leases have been fetched for
local database synchronization. The argument contains a reason for the error.

HA_LEASES_SYNC_LEASE_PAGE_RECEIVED

received %1 leases from %2

This informational message is issued during lease database synchronization
to indicate that a bulk of leases have been received. The first argument
holds the count of leases received. The second argument specifies the
partner server name.

HA_LEASE_SYNC_FAILED

synchronization failed for lease: %1, reason: %2

This warning message is issued when creating or updating a lease in the
local lease database fails. The lease information in the JSON format is
provided as a first argument. The second argument provides a reason for
the failure.

HA_LEASE_SYNC_STALE_LEASE4_SKIP

skipping stale lease %1 in subnet %2

This debug message is issued during lease database synchronization, when
fetched IPv4 lease instance appears to be older than the instance in the
local database. The newer instance is left in the database and the fetched
lease is dropped. The remote server will still hold the older lease instance
until it synchronizes its database with this server. The first argument specifies
leased address. The second argument specifies a subnet to which the lease
belongs.

HA_LEASE_SYNC_STALE_LEASE6_SKIP

skipping stale lease %1 in subnet %2

This debug message is issued during lease database synchronization, when
fetched IPv6 lease instance appears to be older than the instance in the
local database. The newer instance is left in the database and the fetched
lease is dropped. The remote server will still hold the older lease instance
until it synchronizes its database with this server. The first argument specifies
leased address. The second argument specifies a subnet to which the lease
belongs.

HA_LEASE_UPDATES_DISABLED

lease updates will not be sent to the partner while in %1 state

This informational message is issued to indicate that lease updates will
not be sent to the partner while the server is in the current state. The
argument specifies the server’s current state name. The lease updates
are still sent to the backup servers if they are configured but any
possible errors in communication with the backup servers are ignored.

HA_LEASE_UPDATES_ENABLED

lease updates will be sent to the partner while in %1 state

This informational message is issued to indicate that lease updates will
be sent to the partner while the server is in the current state. The
argument specifies the server’s current state name.

HA_LEASE_UPDATE_COMMUNICATIONS_FAILED

%1: failed to communicate with %2: %3

This warning message indicates that there was a problem in communication with a
HA peer while processing a DHCP client query and sending lease update. The
client’s DHCP message will be dropped.

HA_LEASE_UPDATE_CREATE_UPDATE_FAILED_ON_PEER

%1: failed to create or update the lease having type %2 for address %3, reason: %4

This informational message is issued when one of the leases failed to be
created or updated on the HA peer whilw processing the lease updates sent
from this server. This may indicate an issue with communication between
the peer and its lease database.

HA_LEASE_UPDATE_DELETE_FAILED_ON_PEER

%1: failed to delete the lease having type %2 for address %3, reason: %4

This informational message is issued when one of the leases failed to delete
on the HA peer while processing lease updates sent from this server. Typically,
the lease fails to delete when it doesn’t exist in the peer’s database.

HA_LEASE_UPDATE_FAILED

%1: lease update to %2 failed: %3

This warning message indicates that a peer returned an error status code
in response to a lease update. The client’s DHCP message will be dropped.

HA_LOAD_BALANCING_DUID_MISSING

load balancing failed for the DHCPv6 message (transaction id: %1) because DUID is missing

This debug message is issued when the HA hook library was unable to load
balance an incoming DHCPv6 query because neither client identifier nor
HW address was included in the query. The query will be dropped. The
sole argument contains transaction id.

HA_LOAD_BALANCING_IDENTIFIER_MISSING

load balancing failed for the DHCPv4 message (transaction id: %1) because HW address and client identifier are missing

This debug message is issued when the HA hook library was unable to load
balance an incoming DHCPv4 query because neither client identifier nor
HW address was included in the query. The query will be dropped. The
sole argument contains transaction id.

HA_LOCAL_DHCP_DISABLE

local DHCP service is disabled while the %1 is in the %2 state

This informational message is issued to indicate that the local DHCP service
is disabled because the server remains in a state in which the server
should not respond to DHCP clients, e.g. the server hasn’t synchronized
its lease database. The first argument specifies server name. The second
argument specifies server’s state.

HA_LOCAL_DHCP_ENABLE

local DHCP service is enabled while the %1 is in the %2 state

This informational message is issued to indicate that the local DHCP service
is enabled because the server remains in a state in which it should
respond to the DHCP clients. The first argument specifies server name.
The second argument specifies server’s state.

HA_MAINTENANCE_CANCEL_HANDLER_FAILED

ha-maintenance-cancel command failed: %1

This error message is issued to indicate that the ha-maintenance-cancel command
handler failed while processing the command. The argument provides the reason for
failure.

HA_MAINTENANCE_NOTIFY_CANCEL_COMMUNICATIONS_FAILED

failed to send ha-maintenance-notify to %1 in attempt to cancel its maintenance: %2

This warning message indicates that there was a problem in communication with a
HA peer while sending the ha-maintenance-notify command with the cancel flag
set to true. The first argument provides the remote server’s name. The second
argument provides a reason for failure.

HA_MAINTENANCE_NOTIFY_CANCEL_FAILED

error returned while processing ha-maintenance-notify by %1 in attempt to cancel its maintenance: %2

This warning message indicates that a peer returned an error status code
in response to a ha-maintenance-notify command with the cancel flag set to
true. The first argument provides the remote server’s name. The second
argument provides a reason for failure.

HA_MAINTENANCE_NOTIFY_COMMUNICATIONS_FAILED

failed to send ha-maintenance-notify to %1: %2

This warning message indicates that there was a problem in communication with a
HA peer while sending the ha-maintenance-notify command. The first argument provides the
remote server’s name. The second argument provides a reason for failure.

HA_MAINTENANCE_NOTIFY_FAILED

error returned while processing ha-maintenance-notify by %1: %2

This warning message indicates that a peer returned an error status code
in response to a ha-maintenance-notify command. The first argument provides the
remote server’s name. The second argument provides a reason for failure.

HA_MAINTENANCE_NOTIFY_HANDLER_FAILED

ha-maintenance-notify command failed: %1

This error message is issued to indicate that the ha-maintenance-notify command
handler failed while processing the command. The argument provides the reason for
failure.

HA_MAINTENANCE_SHUTDOWN_SAFE

the server can now be shutdown for maintenance as the partner has taken over the DHCP traffic

This informational message is displayed after the server transitions to the
in-maintenance state. This server no longer responds to any DHCP queries and its
partner being in the partner-in-maintenance state has taken over the DHCP traffic.
When the server in-maintenance state is shut down, the partner will move to
the partner-down imediatelly.

HA_MAINTENANCE_STARTED

the server is now in the partner-in-maintenance state and the partner is in-maintenance state

This informational message is displayed when the server receiving the
ha-maintenance-start command transitions to the partner-in-maintenance
state. The server does it after sending the ha-maintenance-notify to
its partner to put the partner in the in-maintenance state. From now on,
the server in the partner-in-maintenance state will be responding to all
queries and the partner will respond to no queries. The partner may be
safely shut down for maintenance in which case this server will
automatically transition from the partner-in-maintenance state to the
partner-down state.

HA_MAINTENANCE_STARTED_IN_PARTNER_DOWN

the server is now in the partner-down mode as a result of requested maintenance

This informational message is displayed when the server receiving the
ha-maintenance-start command transitions to the partner-down state
because it was unable to communicate with the partner while receiving
the command. It is assumed that in such situation the partner is
already offline for the maintenance. Note that in this case the
normal failover procedure does not take place. The server does not wait
for a heartbeat to fail several times, nor it monitors the DHCP traffic
for not responded queries. In the maintenance case the server transitions
to the partner-down state when it first encounters a communication
problem with the partner.

HA_MAINTENANCE_START_HANDLER_FAILED

ha-maintenance-start command failed: %1

This error message is issued to indicate that the ha-maintenance-start command
handler failed while processing the command. The argument provides the reason for
failure.

HA_MISSING_CONFIGURATION

high-availability parameter not specified for High Availability hooks library

This error message is issued to indicate that the configuration for the
High Availability hooks library hasn’t been specified. The ‘high-availability’
parameter must be specified for the hooks library to load properly.

HA_SCOPES_HANDLER_FAILED

ha-scopes command failed: %1

This error message is issued to indicate that the ha-scopes command handler
failed while processing the command. The argument provides reason for
the failure.

HA_SERVICE_STARTED

started high availability service in %1 mode as %2 server

This informational message is issued when the HA service is started as a result
of server startup or reconfiguration. The first argument provides the HA mode.
The second argument specifies the role of this server instance in this
configuration.

HA_STATE_MACHINE_CONTINUED

state machine is un-paused

This informational message is issued when the HA state machine is un-paused.
This unlocks the server from the current state. It may transition to any
other state if it needs to do so, e.g. ‘partner-down’ if its partner appears
to be offline. The server may also remain in the current state if the HA
setup state warrants such behavior.

HA_STATE_MACHINE_PAUSED

state machine paused in state %1

This informational message is issued when the HA state machine is paused.
HA state machine may be paused in certain states specified in the HA hooks library
confuguration. When the state machine is paused, the server remains in the given
state until it is explicitly unpaused (via ha-continue command). If the state
machine is paused, the server operates normally but can’t transition to any
other state.

HA_STATE_TRANSITION

server transitions from %1 to %2 state, partner state is %3

This informational message is issued when the server transitions to a new
state as a result of some interaction (or lack of thereof) with its partner.
The arguments specify initial server state, new server state and the partner’s
state.

HA_STATE_TRANSITION_PASSIVE_BACKUP

server transitions from %1 to %2 state

This informational message is issued when the server being in the passive-backup
mode transitions to a new state. The arguments specify initial server state and
a new server state.

HA_SYNC_FAILED

lease database synchronization with %1 failed: %2

This error message is issued to indicate that the lease database synchronization
failed. The first argument provides partner server’s name. The second argument
provides a reason for the failure.

HA_SYNC_HANDLER_FAILED

ha-sync command failed: %1

This error message is issued to indicate that the ha-sync command handler
failed while processing the command. The argument provides the reason for
failure.

HA_SYNC_START

starting lease database synchronization with %1

This informational message is issued when the server starts lease database
synchronization with a partner. The name of the partner is specified with the
sole argument.

HA_SYNC_SUCCESSFUL

lease database synchronization with %1 completed successfully in %2

This informational message is issued when the server successfully completed
lease database synchronization with the partner. The first argument specifies
the name of the partner server. The second argument specifies the duration of
the synchronization.

HA_TERMINATED

HA service terminated due to an unrecoverable condition. Check previous error message(s), address the problem and restart!

This error message is issued to indicate that the HA service has been stopped
due to an unacceptable condition (e.g. too large of a clock skew). The exact
cause should appear in a previous error message. Address the condition
reported then restart the servers to resume service.

HOOKS

HOOKS_ALL_CALLOUTS_DEREGISTERED

hook library at index %1 removed all callouts on hook %2

A debug message issued when all callouts on the specified hook registered
by the library with the given index were removed. This is similar to
the HOOKS_CALLOUTS_REMOVED message (and the two are likely to be seen
together), but is issued at a lower-level in the hook framework.

HOOKS_CALLOUTS_BEGIN

begin all callouts for hook %1

This debug message is issued when callout manager begins to invoke callouts
for the hook. The argument specifies the hook name.

HOOKS_CALLOUTS_COMPLETE

completed callouts for hook %1 (total callouts duration: %2)

This debug message is issued when callout manager has completed execution
of all callouts for the particular hook. The arguments specify the hook
name and total execution time for all callouts in milliseconds.

HOOKS_CALLOUTS_REMOVED

callouts removed from hook %1 for library %2

This is a debug message issued during library unloading. It notes that
one of more callouts registered by that library have been removed from
the specified hook. This is similar to the HOOKS_DEREGISTER_ALL_CALLOUTS
message (and the two are likely to be seen together), but is issued at a
higher-level in the hook framework.

HOOKS_CALLOUT_CALLED

hooks library with index %1 has called a callout on hook %2 that has address %3 (callout duration: %4)

Only output at a high debugging level, this message indicates that
a callout on the named hook registered by the library with the given
index (in the list of loaded libraries) has been called and returned a
success state. The address of the callout is given in the message.
The message includes the callout execution time in milliseconds.

HOOKS_CALLOUT_DEREGISTERED

hook library at index %1 deregistered a callout on hook %2

A debug message issued when all instances of a particular callouts on
the hook identified in the message that were registered by the library
with the given index have been removed.

HOOKS_CALLOUT_ERROR

error returned by callout on hook %1 registered by library with index %2 (callout address %3) (callout duration %4)

If a callout returns an error status when called, this error message
is issued. It identifies the hook to which the callout is attached, the
index of the library (in the list of loaded libraries) that registered
it and the address of the callout. The error is otherwise ignored.
The error message includes the callout execution time in milliseconds.

HOOKS_CALLOUT_EXCEPTION

exception thrown by callout on hook %1 registered by library with index %2 (callout address %3): %4 (callout duration: %5)

If a callout throws an exception when called, this error message is
issued. It identifies the hook to which the callout is attached, the
index of the library (in the list of loaded libraries) that registered
it and the address of the callout. The error is otherwise ignored.
The error message includes the callout execution time in milliseconds.

HOOKS_CALLOUT_REGISTRATION

hooks library with index %1 registering callout for hook ‘%2’

This is a debug message, output when a library (whose index in the list
of libraries (being) loaded is given) registers a callout.

HOOKS_CLOSE_ERROR

failed to close hook library %1: %2

Kea has failed to close the named hook library for the stated reason.
Although this is an error, this should not affect the running system
other than as a loss of resources. If this error persists, you should
restart Kea.

HOOKS_HOOK_LIST_RESET

the list of hooks has been reset

This is a message indicating that the list of hooks has been reset.
While this is usual when running the Kea test suite, it should not be
seen when running Kea in a production environment. If this appears,
please report a bug through the usual channels.

HOOKS_INCORRECT_VERSION

hook library %1 is at version %2, require version %3

Kea has detected that the named hook library has been built against
a version of Kea that is incompatible with the version of Kea
running on your system. It has not loaded the library.
This is most likely due to the installation of a new version of Kea
without rebuilding the hook library. A rebuild and re-install of the
library should fix the problem in most cases.

HOOKS_LIBRARY_LOADED

hooks library %1 successfully loaded

This information message is issued when a user-supplied hooks library
has been successfully loaded.

HOOKS_LIBRARY_LOADING

loading hooks library %1

This is a debug message output just before the specified library is loaded.
If the action is successfully, it will be followed by the
HOOKS_LIBRARY_LOADED informational message.

HOOKS_LIBRARY_MULTI_THREADING_COMPATIBLE

hooks library %1 reports its multi-threading compatibility as %2

A debug message issued when the “multi_threading_compatible” function was
called. The returned value (0 means not compatible, others compatible)
is displayed.

HOOKS_LIBRARY_MULTI_THREADING_NOT_COMPATIBLE

hooks library %1 is not compatible with multi-threading

When multi-threading is enabled and the library is not compatible (either
because the “multi_threading_compatible” function returned 0 or was not
implemented) this error message is issued. The library must be removed
from the configuration or the multi-threading disabled.

HOOKS_LIBRARY_UNLOADED

hooks library %1 successfully unloaded

This information message is issued when a user-supplied hooks library
has been successfully unloaded.

HOOKS_LIBRARY_UNLOADING

unloading library %1

This is a debug message called when the specified library is
being unloaded. If all is successful, it will be followed by the
HOOKS_LIBRARY_UNLOADED informational message.

HOOKS_LIBRARY_VERSION

hooks library %1 reports its version as %2

A debug message issued when the version check on the hooks library
has succeeded.

HOOKS_LOAD_ERROR

‘load’ function in hook library %1 returned error %2

A “load” function was found in the library named in the message and
was called. The function returned a non-zero status (also given in
the message) which was interpreted as an error. The library has been
unloaded and no callouts from it will be installed.

HOOKS_LOAD_EXCEPTION

‘load’ function in hook library %1 threw an exception

A “load” function was found in the library named in the message and
was called. The function threw an exception (an error indication)
during execution, which is an error condition. The library has been
unloaded and no callouts from it will be installed.

HOOKS_LOAD_FRAMEWORK_EXCEPTION

‘load’ function in hook library %1 threw an exception: reason %2

A “load” function was found in the library named in the message and
was called. Either the hooks framework or the function threw an
exception (an error indication) during execution, which is an error
condition; the cause of the exception is recorded in the message.
The library has been unloaded and no callouts from it will be
installed.

HOOKS_LOAD_SUCCESS

‘load’ function in hook library %1 returned success

This is a debug message issued when the “load” function has been found
in a hook library and has been successfully called.

HOOKS_MULTI_THREADING_COMPATIBLE_EXCEPTION

‘multi_threading_compatible’ function in hook library %1 threw an exception

This error message is issued if the multi_threading_compatible()
function in the specified hooks library was called and generated an
exception. The library is considered unusable and will not be loaded.

HOOKS_NO_LOAD

no ‘load’ function found in hook library %1

This is a debug message saying that the specified library was loaded
but no function called “load” was found in it. Providing the library
contained some “standard” functions (i.e. functions with the names of
the hooks for the given server), this is not an issue.

HOOKS_NO_UNLOAD

no ‘unload’ function found in hook library %1

This is a debug message issued when the library is being unloaded.
It merely states that the library did not contain an “unload” function.

HOOKS_NO_VERSION

no ‘version’ function found in hook library %1

The shared library named in the message was found and successfully loaded,
but Kea did not find a function named “version” in it. This function
is required and should return the version of Kea against which the
library was built. The value is used to check that the library was built
against a compatible version of Kea. The library has not been loaded.

HOOKS_OPEN_ERROR

failed to open hook library %1: %2

Kea failed to open the specified hook library for the stated
reason. The library has not been loaded. Kea will continue to
function, but without the services offered by the library.

HOOKS_STD_CALLOUT_REGISTERED

hooks library %1 registered standard callout for hook %2 at address %3

This is a debug message, output when the library loading function has
located a standard callout (a callout with the same name as a hook point)
and registered it. The address of the callout is indicated.

HOOKS_UNLOAD_ERROR

‘unload’ function in hook library %1 returned error %2

During the unloading of a library, an “unload” function was found.
It was called, but returned an error (non-zero) status, resulting in
the issuing of this message. The unload process continued after this
message and the library has been unloaded.

HOOKS_UNLOAD_EXCEPTION

‘unload’ function in hook library %1 threw an exception

During the unloading of a library, an “unload” function was found. It was
called, but in the process generated an exception (an error indication).
The unload process continued after this message and the library has
been unloaded.

HOOKS_UNLOAD_FRAMEWORK_EXCEPTION

‘unload’ function in hook library %1 threw an exception, reason %2

During the unloading of a library, an “unload” function was found.
It was called, but in the process either it or the hooks framework
generated an exception (an error indication); the cause of the error
is recorded in the message. The unload process continued after
this message and the library has been unloaded.

HOOKS_UNLOAD_SUCCESS

‘unload’ function in hook library %1 returned success

This is a debug message issued when an “unload” function has been found
in a hook library during the unload process, called, and returned success.

HOSTS

HOSTS_BACKENDS_REGISTERED

the following host backend types are available: %1

This informational message lists all possible host backends that could
be used in hosts-database[s].

HOSTS_BACKEND_DEREGISTER

deregistered host backend type: %1

This debug message is issued when a backend factory was deregistered.
It is no longer possible to use host backend of this type.

HOSTS_BACKEND_REGISTER

registered host backend type: %1

This debug message is issued when a backend factory was successfully
registered. It is now possible to use host backend of this type.

HOSTS_CFG_ADD_HOST

add the host for reservations: %1

This debug message is issued when new host (with reservations) is added to
the server’s configuration. The argument describes the host and its
reservations in detail.

HOSTS_CFG_CACHE_HOST_DATA_SOURCE

get host cache data source: %1

This informational message is issued when a host cache data source is
detected by the host manager.

HOSTS_CFG_CLOSE_HOST_DATA_SOURCE

Closing host data source: %1

This is a normal message being printed when the server closes host data
source connection.

HOSTS_CFG_DEL_ALL_SUBNET4

deleted all %1 host(s) for subnet id %2

This debug message is issued when all IPv4 reservations are deleted for
the specified subnet. The first argument specifies how many reservations
have been deleted. The second argument is the subnet identifier.

HOSTS_CFG_DEL_ALL_SUBNET6

deleted all %1 host(s) including %2 IPv6 reservation(s) for subnet id %3

This debug message is issued when all IPv6 reservations are deleted for
the specified subnet. The first argument specifies how many hosts
have been deleted. The second argument specifies how many IPv6
(addresses and prefixes) have been deleted. The third argument is the
subnet identifier.

HOSTS_CFG_GET_ALL_ADDRESS4

get all hosts with reservations for IPv4 address %1

This debug message is issued when starting to retrieve all hosts, holding the
reservation for the specific IPv4 address, from the configuration. The
argument specifies the IPv4 address used to search the hosts.

HOSTS_CFG_GET_ALL_ADDRESS4_COUNT

using address %1, found %2 host(s)

This debug message logs the number of hosts found using the specified
IPv4 address. The arguments specify the IPv4 address used and the number
of hosts found respectively.

HOSTS_CFG_GET_ALL_ADDRESS4_HOST

using address %1 found host: %2

This debug message is issued when found host with the reservation
for the specified IPv4 address. The arguments specify the IPv4 address
and the detailed description of the host found.

HOSTS_CFG_GET_ALL_ADDRESS6

get all hosts with reservations for IPv6 address %1

This debug message is issued when starting to retrieve all hosts, holding the
reservation for the specific IPv6 address, from the configuration.
The argument specifies the IPv6 address used to search the hosts.

HOSTS_CFG_GET_ALL_ADDRESS6_COUNT

using address %1, found %2 host(s)

This debug message logs the number of hosts found using the specified
IPv6 address. The arguments specify the IPv6 address used and the number
of hosts found respectively.

HOSTS_CFG_GET_ALL_ADDRESS6_HOST

using address %1 found host: %2

This debug message is issued when found host with the reservation
for the specified IPv6 address. The arguments specify the IPv6 address
and the detailed description of the host found.

HOSTS_CFG_GET_ALL_HOSTNAME

get all hosts with reservations for hostname %1

This debug message is issued when starting to retrieve all hosts with
the specific hostname. The argument specifies hostname.

HOSTS_CFG_GET_ALL_HOSTNAME_COUNT

using hostname %1, found %2 host(s)

This debug message include the details of the host found using the
hostname. The arguments specify hostname and the number of hosts found
respectively.

HOSTS_CFG_GET_ALL_HOSTNAME_HOST

using hostname %1, found host: %2

This debug message includes the details of the host found using the hostname.
The arguments specify hostname and found host details respectively.

HOSTS_CFG_GET_ALL_HOSTNAME_SUBNET_ID4

get all hosts with reservations for hostname %1 and IPv4 subnet %2

This debug message is issued when starting to retrieve all hosts with
the specific hostname connected to the specific DHCPv4 subnet. The argument
specifies hostname and subnet id.

HOSTS_CFG_GET_ALL_HOSTNAME_SUBNET_ID4_COUNT

using hostname %1 and IPv4 subnet %2, found %3 host(s)

This debug message include the details of the host found using the
hostname and the DHCPv4 subnet id. The arguments specify hostname,
subnet id and the number of hosts found respectively.

HOSTS_CFG_GET_ALL_HOSTNAME_SUBNET_ID4_HOST

using hostname %1 and IPv4 subnet %2, found host: %3

This debug message includes the details of the host found using the
hostname and the DHCPv4 subnet id. The arguments specify hostname,
subnet id and found host details respectively.

HOSTS_CFG_GET_ALL_HOSTNAME_SUBNET_ID6

get all hosts with reservations for hostname %1 and IPv6 subnet %2

This debug message is issued when starting to retrieve all hosts with
the specific hostname connected to the specific DHCPv6 subnet. The argument
specifies hostname and subnet id.

HOSTS_CFG_GET_ALL_HOSTNAME_SUBNET_ID6_COUNT

using hostname %1 and IPv6 subnet %2, found %3 host(s)

This debug message include the details of the host found using the
hostname and the DHCPv6 subnet id. The arguments specify hostname,
subnet id and the number of hosts found respectively.

HOSTS_CFG_GET_ALL_HOSTNAME_SUBNET_ID6_HOST

using hostname %1 and IPv6 subnet %2, found host: %3

This debug message includes the details of the host found using the
hostname and the DHCPv6 subnet id. The arguments specify hostname,
subnet id and found host details respectively.

HOSTS_CFG_GET_ALL_IDENTIFIER

get all hosts with reservations using identifier: %1

This debug message is issued when starting to retrieve reservations for all hosts
identified by HW address or DUID. The argument holds both the identifier
type and the value.

HOSTS_CFG_GET_ALL_IDENTIFIER_COUNT

using identifier %1, found %2 host(s)

This debug message logs the number of hosts found using the specified
identifier. The arguments specify the identifier used and the number
of hosts found respectively.

HOSTS_CFG_GET_ALL_IDENTIFIER_HOST

using identifier: %1, found host: %2

This debug message is issued when found host identified by the specific
identifier. The arguments specify the identifier and the detailed
description of the host found.

HOSTS_CFG_GET_ALL_SUBNET_ID4

get all hosts with reservations for IPv4 subnet %1

This debug message is issued when starting to retrieve all hosts connected to
the specific DHCPv4 subnet. The argument specifies subnet id.

HOSTS_CFG_GET_ALL_SUBNET_ID4_COUNT

using IPv4 subnet %1, found %2 host(s)

This debug message include the details of the host found using the DHCPv4
subnet id. The arguments specify subnet id and the number of hosts found
respectively.

HOSTS_CFG_GET_ALL_SUBNET_ID4_HOST

using IPv4 subnet %1, found host: %2

This debug message includes the details of the host found using the DHCPv4
subnet id. The arguments specify subnet id and found host details respectively.

HOSTS_CFG_GET_ALL_SUBNET_ID6

get all hosts with reservations for IPv6 subnet %1

This debug message is issued when starting to retrieve all hosts connected to
the specific DHCPv6 subnet. The argument specifies subnet id.

HOSTS_CFG_GET_ALL_SUBNET_ID6_COUNT

using IPv6 subnet %1, found %2 host(s)

This debug message include the details of the host found using the DHCPv6
subnet id. The arguments specify subnet id and the number of hosts found
respectively.

HOSTS_CFG_GET_ALL_SUBNET_ID6_HOST

using IPv6 subnet %1, found host: %2

This debug message includes the details of the host found using the DHCPv6
subnet id. The arguments specify subnet id and found host details respectively.

HOSTS_CFG_GET_ALL_SUBNET_ID_ADDRESS6

get all hosts with reservations for subnet id %1 and IPv6 address %2

This debug message is issued when starting to retrieve all hosts connected to
the specific subnet and having the specific IPv6 address reserved.
The arguments specify subnet id and IPv6 address respectively.

HOSTS_CFG_GET_ALL_SUBNET_ID_ADDRESS6_COUNT

using subnet id %1 and address %2, found %3 host(s)

This debug message include the details of the host found using the
subnet id and address. The arguments specify subnet id, address and
the number of hosts found respectively.

HOSTS_CFG_GET_ALL_SUBNET_ID_ADDRESS6_HOST

using subnet id %1 and address %2, found host: %3

This debug message includes the details of the host found using the
subnet id and address. The arguments specify subnet id, address and
the number of hosts found respectively.
found host details respectively.

HOSTS_CFG_GET_ONE_PREFIX

get one host with reservation for prefix %1/%2

This debug message is issued when starting to retrieve a host having a
reservation for a specified prefix. The arguments specify a prefix and
prefix length.

HOSTS_CFG_GET_ONE_PREFIX_HOST

using prefix %1/%2, found host: %3

This debug message includes the details of the host found using the
specific prefix/prefix length. The arguments specify prefix, prefix
length and host details respectively.

HOSTS_CFG_GET_ONE_PREFIX_NULL

host not found using prefix %1/%2

This debug message is issued when no host was found for a specified
prefix and prefix length.

HOSTS_CFG_GET_ONE_SUBNET_ID_ADDRESS4

get one host with reservation for subnet id %1 and IPv4 address %2

This debug message is issued when starting to retrieve a host connected to the
specific subnet and having the specific IPv4 address reserved. The
arguments specify subnet id and IPv4 address respectively.

HOSTS_CFG_GET_ONE_SUBNET_ID_ADDRESS4_HOST

using subnet id %1 and address %2, found host: %3

This debug message logs the details of the host found using the
subnet id and IPv4 address.

HOSTS_CFG_GET_ONE_SUBNET_ID_ADDRESS4_NULL

host not found using subnet id %1 and address %2

This debug message is issued when no host was found for the specified
subnet id and IPv4 address.

HOSTS_CFG_GET_ONE_SUBNET_ID_ADDRESS6

get one host with reservation for subnet id %1 and including IPv6 address %2

This debug message is issued when starting to retrieve a host connected to the
specific subnet and having the specific IPv6 address reserved. The
arguments specify subnet id and IPv6 address respectively.

HOSTS_CFG_GET_ONE_SUBNET_ID_ADDRESS6_HOST

using subnet id %1 and address %2, found host: %3

This debug message logs the details of the host found using the
subnet id and IPv6 address.

HOSTS_CFG_GET_ONE_SUBNET_ID_ADDRESS6_NULL

host not found using subnet id %1 and address %2

This debug message is issued when no host was found using the specified
subnet if and IPv6 address.

HOSTS_CFG_GET_ONE_SUBNET_ID_IDENTIFIER

get one host with %1 reservation for subnet id %2, identified by %3

This debug message is issued when starting to retrieve a host holding
IPv4 or IPv6 reservations, which is connected to a specific subnet and
is identified by a specific unique identifier. The first argument
identifies if the IPv4 or IPv6 reservation is desired.

HOSTS_CFG_GET_ONE_SUBNET_ID_IDENTIFIER_HOST

using subnet id %1 and identifier %2, found host: %3

This debug message includes the details of a host found using a
subnet id and specific host identifier.

HOSTS_CFG_GET_ONE_SUBNET_ID_IDENTIFIER_NULL

host not found using subnet id %1 and identifier %2

This debug message is issued when no host was found using the specified
subnet id and host identifier.

HOSTS_MGR_ALTERNATE_GET4_SUBNET_ID_ADDRESS4

trying alternate sources for host using subnet id %1 and address %2

This debug message is issued when the Host Manager doesn’t find the
host connected to the specific subnet and having the reservation for
the specific IPv4 address, and it is starting to search for this host
in alternate host data sources.

HOSTS_MGR_ALTERNATE_GET4_SUBNET_ID_IDENTIFIER

get one host with IPv4 reservation for subnet id %1, identified by %2

This debug message is issued when starting to retrieve a host holding
IPv4 reservation, which is connected to a specific subnet and
is identified by a specific unique identifier.

HOSTS_MGR_ALTERNATE_GET4_SUBNET_ID_IDENTIFIER_HOST

using subnet id %1 and identifier %2, found in %3 host: %4

This debug message includes the details of a host returned by an
alternate hosts data source using a subnet id and specific host
identifier.

HOSTS_MGR_ALTERNATE_GET4_SUBNET_ID_IDENTIFIER_NULL

host not found using subnet id %1 and identifier %2

This debug message is issued when no host was found using the specified
subnet id and host identifier.

HOSTS_MGR_ALTERNATE_GET6_PREFIX

trying alternate sources for host using prefix %1/%2

This debug message is issued when the Host Manager doesn’t find the
host connected to the specific subnet and having the reservation for
the specified prefix, and it is starting to search for this host in
alternate host data sources.

HOSTS_MGR_ALTERNATE_GET6_SUBNET_ID_ADDRESS6

trying alternate sources for host using subnet id %1 and IPv6 address %2

This debug message is issued when the Host Manager doesn’t find the
host connected to the specific subnet and having the reservation for
the specified IPv6 address, and it is starting to search for this
host in alternate host data sources.

HOSTS_MGR_ALTERNATE_GET6_SUBNET_ID_IDENTIFIER

get one host with IPv6 reservation for subnet id %1, identified by %2

This debug message is issued when starting to retrieve a host holding
IPv4 reservation, which is connected to a specific subnet and
is identified by a specific unique identifier.

HOSTS_MGR_ALTERNATE_GET6_SUBNET_ID_IDENTIFIER_HOST

using subnet id %1 and identifier %2, found in %3 host: %4

This debug message includes the details of a host returned by an
alternate host data source using a subnet id and specific host
identifier.

HTTP

HTTP_BAD_CLIENT_REQUEST_RECEIVED

bad request received from %1: %2

This debug message is issued when an HTTP client sends malformed request to
the server. This includes HTTP requests using unexpected content types,
including malformed JSON etc. The first argument specifies an address of
the remote endpoint which sent the request. The second argument provides
a detailed error message.

HTTP_BAD_CLIENT_REQUEST_RECEIVED_DETAILS

detailed information about bad request received from %1:n%2

This debug message is issued when an HTTP client sends malformed request to
the server. It includes detailed information about the received request
rejected by the server. The first argument specifies an address of
the remote endpoint which sent the request. The second argument provides
a request in the textual format. The request is truncated by the logger
if it is too large to be printed.

HTTP_BAD_SERVER_RESPONSE_RECEIVED

bad response received when communicating with %1: %2

This debug message is issued when an HTTP client fails to receive a response
from the server or when this response is malformed. The first argument
specifies the server URL. The second argument provides a detailed error
message.

HTTP_BAD_SERVER_RESPONSE_RECEIVED_DETAILS

detailed information about bad response received from %1:n%2

This debug message is issued when an HTTP client receives malformed response
from the server. The first argument specifies an URL of the server. The
second argument provides a response in the textual format. The request is
truncated by the logger if it is too large to be printed.

HTTP_CLIENT_REQUEST_RECEIVED

received HTTP request from %1

This debug message is issued when the server finished receiving a HTTP
request from the remote endpoint. The address of the remote endpoint is
specified as an argument.

HTTP_CLIENT_REQUEST_RECEIVED_DETAILS

detailed information about well formed request received from %1:n%2

This debug message is issued when the HTTP server receives a well formed
request. It includes detailed information about the received request. The
first argument specifies an address of the remote endpoint which sent the
request. The second argument provides the request in the textual format.
The request is truncated by the logger if it is too large to be printed.

HTTP_CLIENT_REQUEST_SEND

sending HTTP request %1 to %2

This debug message is issued when the client is starting to send a HTTP
request to a server. The first argument holds basic information
about the request (HTTP version number and status code). The second
argument specifies a URL of the server.

HTTP_CLIENT_REQUEST_SEND_DETAILS

detailed information about request sent to %1:n%2

This debug message is issued right before the client sends an HTTP request
to the server. It includes detailed information about the request. The
first argument specifies an URL of the server to which the request is
being sent. The second argument provides the request in the textual form.
The request is truncated by the logger if it is too large to be printed.

HTTP_CLIENT_REQUEST_TIMEOUT_OCCURRED

HTTP request timeout occurred when communicating with %1

This debug message is issued when the HTTP request timeout has occurred and
the server is going to send a response with Http Request timeout status
code.

HTTP_CONNECTION_CLOSE_CALLBACK_FAILED

Connection close callback threw an exception

This is an error message emitted when the close connection callback
registered on the connection failed unexpectedly. This is a programmatic
error that should be submitted as a bug.

HTTP_CONNECTION_STOP

stopping HTTP connection from %1

This debug message is issued when one of the HTTP connections is stopped.
The connection can be stopped as a result of an error or after the
successful message exchange with a client.

HTTP_CONNECTION_STOP_FAILED

stopping HTTP connection failed

This error message is issued when an error occurred during closing a
HTTP connection with a client.

HTTP_DATA_RECEIVED

received %1 bytes from %2

This debug message is issued when the server receives a chunk of data from
the remote endpoint. This may include the whole request or only a part
of the request. The first argument specifies the amount of received data.
The second argument specifies an address of the remote endpoint which
produced the data.

HTTP_IDLE_CONNECTION_TIMEOUT_OCCURRED

closing persistent connection with %1 as a result of a timeout

This debug message is issued when the persistent HTTP connection is being
closed as a result of being idle.

HTTP_PREMATURE_CONNECTION_TIMEOUT_OCCURRED

premature connection timeout occurred, possibly caused by system clock change

This warning message is issued when unexpected timeout occurred during the
transaction. This is proven to occur when the system clock is moved manually
or as a result of synchronization with a time server. Any ongoing transactions
will be interrupted. New transactions should be conducted normally.

HTTP_REQUEST_RECEIVE_START

start receiving request from %1 with timeout %2

This debug message is issued when the server starts receiving new request
over the established connection. The first argument specifies the address
of the remote endpoint. The second argument specifies request timeout in
seconds.

HTTP_SERVER_RESPONSE_RECEIVED

received HTTP response from %1

This debug message is issued when the client finished receiving an HTTP
response from the server. The URL of the server is specified as an argument.

HTTP_SERVER_RESPONSE_RECEIVED_DETAILS

detailed information about well formed response received from %1:n%2

This debug message is issued when the HTTP client receives a well formed
response from the server. It includes detailed information about the
received response. The first argument specifies a URL of the server which
sent the response. The second argument provides the response in the textual
format. The response is truncated by the logger if it is too large to
be printed.

HTTP_SERVER_RESPONSE_SEND

sending HTTP response %1 to %2

This debug message is issued when the server is starting to send a HTTP
response to a remote endpoint. The first argument holds basic information
about the response (HTTP version number and status code). The second
argument specifies an address of the remote endpoint.

LEASE

LEASE_CMDS_ADD4

lease4-add command successful (parameters: %1)

The lease4-add command has been successful. Parameters of the host
added are logged.

LEASE_CMDS_ADD4_FAILED

lease4-add command failed (parameters: %1, reason: %2)

The lease4-add command has failed. Both the reason as well as the
parameters passed are logged.

LEASE_CMDS_ADD6

lease6-add command successful (parameters: %1)

The lease6-add command has been successful. Parameters of the host
added are logged.

LEASE_CMDS_ADD6_FAILED

Lease6-add command failed (parameters: %1, reason: %2)

The lease6-add command has failed. Both the reason as well as the
parameters passed are logged.

LEASE_CMDS_DEINIT_FAILED

unloading Lease Commands hooks library failed: %1

This error message indicates an error during unloading the Lease Commands
hooks library. The details of the error are provided as argument of
the log message.

LEASE_CMDS_DEINIT_OK

unloading Lease Commands hooks library successful

This info message indicates that the Lease Commands hooks library has been
removed successfully.

LEASE_CMDS_DEL4

lease4-del command successful (parameters: %1)

The attempt to delete an IPv4 lease (lease4-del command) has been successful.
Parameters of the host removed are logged.

LEASE_CMDS_DEL4_FAILED

lease4-del command failed (parameters: %1, reason: %2)

The attempt to delete an IPv4 lease (lease4-del command) has failed. Both the
reason as well as the parameters passed are logged.

LEASE_CMDS_DEL6

lease4-del command successful (parameters: %1)

The attempt to delete an IPv4 lease (lease4-del command) has been successful.
Parameters of the host removed are logged.

LEASE_CMDS_DEL6_FAILED

lease6-del command failed (parameters: %1, reason: %2)

The attempt to delete an IPv6 lease (lease4-del command) has failed. Both the
reason as well as the parameters passed are logged.

LEASE_CMDS_INIT_FAILED

loading Lease Commands hooks library failed: %1

This error message indicates an error during loading the Lease Commands
hooks library. The details of the error are provided as argument of
the log message.

LEASE_CMDS_INIT_OK

loading Lease Commands hooks library successful

This info message indicates that the Lease Commands hooks library has been
loaded successfully. Enjoy!

LEASE_CMDS_RESEND_DDNS4

lease4-resend-ddns command successful: %1

A request to update DNS for the requested IPv4 lease has been
successfully queued for transmission to kea-dhcp-ddns.

LEASE_CMDS_RESEND_DDNS4_FAILED

lease4-resend-ddns command failed: %1

A request to update DNS for the requested IPv4 lease has failed. The
reason for the failure is logged.

LEASE_CMDS_RESEND_DDNS6

lease6-resend-ddns command successful: %1

A request to update DNS for the requested IPv6 lease has been
successfully queued for transmission to kea-dhcp-ddns.

LFC

LFC_FAIL_PID_CREATE

: %1

This message is issued if LFC detected a failure when trying
to create the PID file. It includes a more specific error string.

LFC_FAIL_PID_DEL

: %1

This message is issued if LFC detected a failure when trying
to delete the PID file. It includes a more specific error string.

LFC_FAIL_PROCESS

: %1

This message is issued if LFC detected a failure when trying
to process the files. It includes a more specific error string.

LFC_FAIL_ROTATE

: %1

This message is issued if LFC detected a failure when trying
to rotate the files. It includes a more specific error string.

LFC_PROCESSING

Previous file: %1, copy file: %2

This message is issued just before LFC starts processing the
lease files.

LFC_READ_STATS

Leases: %1, attempts: %2, errors: %3.

This message prints out the number of leases that were read, the
number of attempts to read leases and the number of errors
encountered while reading.

LFC_ROTATING

LFC rotating files

This message is issued just before LFC starts rotating the
lease files - removing the old and replacing them with the new.

LFC_RUNNING

LFC instance already running

This message is issued if LFC detects that a previous copy of LFC
may still be running via the PID check.

LFC_START

Starting lease file cleanup

This message is issued as the LFC process starts.

LFC_TERMINATE

LFC finished processing

This message is issued when the LFC process completes. It does not
indicate that the process was successful only that it has finished.

LOGIMPL

LOGIMPL_ABOVE_MAX_DEBUG

debug level of %1 is too high and will be set to the maximum of %2

A message from the interface to the underlying logger implementation reporting
that the debug level (as set by an internally-created string DEBUGn, where n
is an integer, e.g. DEBUG22) is above the maximum allowed value and has
been reduced to that value. The appearance of this message may indicate
a programming error - please submit a bug report.

LOGIMPL_BAD_DEBUG_STRING

debug string ‘%1’ has invalid format

A message from the interface to the underlying logger implementation
reporting that an internally-created string used to set the debug level
is not of the correct format (it should be of the form DEBUGn, where n
is an integer, e.g. DEBUG22). The appearance of this message indicates
a programming error - please submit a bug report.

LOG

LOG_BAD_DESTINATION

unrecognized log destination: %1

A logger destination value was given that was not recognized. The
destination should be one of “console”, “file”, or “syslog”.

LOG_BAD_SEVERITY

unrecognized log severity: %1

A logger severity value was given that was not recognized. The severity
should be one of “DEBUG”, “INFO”, “WARN”, “ERROR”, “FATAL” or “NONE”.

LOG_BAD_STREAM

bad log console output stream: %1

Logging has been configured so that output is written to the terminal
(console) but the stream on which it is to be written is not recognized.
Allowed values are “stdout” and “stderr”.

LOG_DUPLICATE_MESSAGE_ID

duplicate message ID (%1) in compiled code

During start-up, Kea detected that the given message identification
had been defined multiple times in the Kea code. This indicates a
programming error; please submit a bug report.

LOG_DUPLICATE_NAMESPACE

line %1: duplicate $NAMESPACE directive found

When reading a message file, more than one $NAMESPACE directive was found.
(This directive is used to set a C++ namespace when generating header
files during software development.) Such a condition is regarded as an
error and the read will be abandoned.

LOG_INPUT_OPEN_FAIL

unable to open message file %1 for input: %2

The program was not able to open the specified input message file for
the reason given.

LOG_INVALID_MESSAGE_ID

line %1: invalid message identification ‘%2’

An invalid message identification (ID) has been found during the read of
a message file. Message IDs should comprise only alphanumeric characters
and the underscore, and should not start with a digit.

LOG_NAMESPACE_EXTRA_ARGS

line %1: $NAMESPACE directive has too many arguments

The $NAMESPACE directive in a message file takes a single argument, a
namespace in which all the generated symbol names are placed. This error
is generated when the compiler finds a $NAMESPACE directive with more
than one argument.

LOG_NAMESPACE_INVALID_ARG

line %1: $NAMESPACE directive has an invalid argument (‘%2’)

The $NAMESPACE argument in a message file should be a valid C++ namespace.
This message is output if the simple check on the syntax of the string
carried out by the reader fails.

LOG_NAMESPACE_NO_ARGS

line %1: no arguments were given to the $NAMESPACE directive

The $NAMESPACE directive in a message file takes a single argument,
a C++ namespace in which all the generated symbol names are placed.
This error is generated when the compiler finds a $NAMESPACE directive
with no arguments.

LOG_NO_MESSAGE_ID

line %1: message definition line found without a message ID

Within a message file, message are defined by lines starting with a “%”.
The rest of the line should comprise the message ID and text describing
the message. This error indicates the message compiler found a line in
the message file comprising just the “%” and nothing else.

LOG_NO_MESSAGE_TEXT

line %1: line found containing a message ID (‘%2’) and no text

Within a message file, message are defined by lines starting with a “%”.
The rest of the line should comprise the message ID and text describing
the message. This error indicates the message compiler found a line
in the message file comprising just the “%” and message identification,
but no text.

LOG_NO_SUCH_MESSAGE

could not replace message text for ‘%1’: no such message

During start-up a local message file was read. A line with the listed
message identification was found in the file, but the identification is
not one contained in the compiled-in message dictionary. This message
may appear a number of times in the file, once for every such unknown
message identification.
There may be several reasons why this message may appear:
- The message ID has been mis-spelled in the local message file.
- The program outputting the message may not use that particular message
(e.g. it originates in a module not used by the program).
- The local file was written for an earlier version of the Kea software
and the later version no longer generates that message.
Whatever the reason, there is no impact on the operation of Kea.

LOG_OPEN_OUTPUT_FAIL

unable to open %1 for output: %2

Originating within the logging code, the program was not able to open
the specified output file for the reason given.

LOG_PREFIX_EXTRA_ARGS

line %1: $PREFIX directive has too many arguments

Within a message file, the $PREFIX directive takes a single argument,
a prefix to be added to the symbol names when a C++ file is created.
This error is generated when the compiler finds a $PREFIX directive with
more than one argument.
Note: the $PREFIX directive is deprecated and will be removed in a future
version of Kea.

LOG_PREFIX_INVALID_ARG

line %1: $PREFIX directive has an invalid argument (‘%2’)

Within a message file, the $PREFIX directive takes a single argument,
a prefix to be added to the symbol names when a C++ file is created.
As such, it must adhere to restrictions on C++ symbol names (e.g. may
only contain alphanumeric characters or underscores, and may nor start
with a digit). A $PREFIX directive was found with an argument (given
in the message) that violates those restrictions.
Note: the $PREFIX directive is deprecated and will be removed in a future
version of Kea.

LOG_READING_LOCAL_FILE

reading local message file %1

This is an informational message output by Kea when it starts to read
a local message file. (A local message file may replace the text of
one or more messages; the ID of the message will not be changed though.)

LOG_READ_ERROR

error reading from message file %1: %2

The specified error was encountered reading from the named message file.

LOG_UNRECOGNIZED_DIRECTIVE

line %1: unrecognized directive ‘%2’

Within a message file, a line starting with a dollar symbol was found
(indicating the presence of a directive) but the first word on the line
(shown in the message) was not recognized.

MYSQL

MYSQL_CB_CREATE_UPDATE_BY_POOL_OPTION4

create or update option pool start: %1 pool end: %2

Debug message issued when triggered an action to create or update option by pool

MYSQL_CB_CREATE_UPDATE_BY_POOL_OPTION6

create or update option pool start: %1 pool end: %2

Debug message issued when triggered an action to create or update option by pool

MYSQL_CB_CREATE_UPDATE_BY_PREFIX_OPTION6

create or update option prefix: %1 prefix len: %2

Debug message issued when triggered an action to create or update option by prefix

MYSQL_CB_CREATE_UPDATE_BY_SUBNET_ID_OPTION4

create or update option by subnet id: %1

Debug message issued when triggered an action to create or update option by subnet id

MYSQL_CB_CREATE_UPDATE_BY_SUBNET_ID_OPTION6

create or update option by subnet id: %1

Debug message issued when triggered an action to create or update option by subnet id

MYSQL_CB_CREATE_UPDATE_GLOBAL_PARAMETER4

create or update global parameter: %1

Debug message issued when triggered an action to create or update global parameter

MYSQL_CB_CREATE_UPDATE_GLOBAL_PARAMETER6

create or update global parameter: %1

Debug message issued when triggered an action to create or update global parameter

MYSQL_CB_CREATE_UPDATE_OPTION4

create or update option

Debug message issued when triggered an action to create or update option

MYSQL_CB_CREATE_UPDATE_OPTION6

create or update option

Debug message issued when triggered an action to create or update option

MYSQL_CB_CREATE_UPDATE_OPTION_DEF4

create or update option definition: %1 code: %2

Debug message issued when triggered an action to create or update option definition

MYSQL_CB_CREATE_UPDATE_OPTION_DEF6

create or update option definition: %1 code: %2

Debug message issued when triggered an action to create or update option definition

MYSQL_CB_CREATE_UPDATE_SERVER4

create or update server: %1

Debug message issued when triggered an action to create or update a DHCPv4
server information.

MYSQL_CB_CREATE_UPDATE_SERVER6

create or update server: %1

Debug message issued when triggered an action to create or update a DHCPv6
server information.

MYSQL_CB_CREATE_UPDATE_SHARED_NETWORK4

create or update shared network: %1

Debug message issued when triggered an action to create or update shared network

MYSQL_CB_CREATE_UPDATE_SHARED_NETWORK6

create or update shared network: %1

Debug message issued when triggered an action to create or update shared network

MYSQL_CB_CREATE_UPDATE_SHARED_NETWORK_OPTION4

create or update shared network: %1 option

Debug message issued when triggered an action to create or update shared network option

MYSQL_CB_CREATE_UPDATE_SHARED_NETWORK_OPTION6

create or update shared network: %1 option

Debug message issued when triggered an action to create or update shared network option

MYSQL_CB_CREATE_UPDATE_SUBNET4

create or update subnet: %1

Debug message issued when triggered an action to create or update subnet

MYSQL_CB_CREATE_UPDATE_SUBNET6

create or update subnet: %1

Debug message issued when triggered an action to create or update subnet

MYSQL_CB_DEINIT_OK

unloading MYSQL CB hooks library successful

This informational message indicates that the MySQL Configuration Backend hooks
library has been unloaded successfully.

MYSQL_CB_DELETE_ALL_GLOBAL_PARAMETERS4

delete all global parameters

Debug message issued when triggered an action to delete all global parameters

MYSQL_CB_DELETE_ALL_GLOBAL_PARAMETERS4_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete all global parameters

MYSQL_CB_DELETE_ALL_GLOBAL_PARAMETERS6

delete all global parameters

Debug message issued when triggered an action to delete all global parameters

MYSQL_CB_DELETE_ALL_GLOBAL_PARAMETERS6_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete all global parameters

MYSQL_CB_DELETE_ALL_OPTION_DEFS4

delete all option definitions

Debug message issued when triggered an action to delete all option definitions

MYSQL_CB_DELETE_ALL_OPTION_DEFS4_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete all option definitions

MYSQL_CB_DELETE_ALL_OPTION_DEFS6

delete all option definitions

Debug message issued when triggered an action to delete all option definitions

MYSQL_CB_DELETE_ALL_OPTION_DEFS6_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete all option definitions

MYSQL_CB_DELETE_ALL_SERVERS4

delete all DHCPv4 servers

Debug message issued when triggered an action to delete all servers.

MYSQL_CB_DELETE_ALL_SERVERS4_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete all servers.

MYSQL_CB_DELETE_ALL_SERVERS6

delete all DHCPv6 servers

Debug message issued when triggered an action to delete all servers.

MYSQL_CB_DELETE_ALL_SERVERS6_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete all servers.

MYSQL_CB_DELETE_ALL_SHARED_NETWORKS4

delete all shared networks

Debug message issued when triggered an action to delete all shared networks

MYSQL_CB_DELETE_ALL_SHARED_NETWORKS4_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete all shared networks

MYSQL_CB_DELETE_ALL_SHARED_NETWORKS6

delete all shared networks

Debug message issued when triggered an action to delete all shared networks

MYSQL_CB_DELETE_ALL_SHARED_NETWORKS6_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete all shared networks

MYSQL_CB_DELETE_ALL_SUBNETS4

delete all subnets

Debug message issued when triggered an action to delete all subnets

MYSQL_CB_DELETE_ALL_SUBNETS4_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete all subnets

MYSQL_CB_DELETE_ALL_SUBNETS6

delete all subnets

Debug message issued when triggered an action to delete all subnets

MYSQL_CB_DELETE_ALL_SUBNETS6_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete all subnets

MYSQL_CB_DELETE_BY_POOL_OPTION4

delete pool start: %1 pool end: %2 option code: %3 space: %4

Debug message issued when triggered an action to delete option by pool

MYSQL_CB_DELETE_BY_POOL_OPTION4_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete option by pool

MYSQL_CB_DELETE_BY_POOL_OPTION6

delete pool start: %1 pool end: %2 option code: %3 space: %4

Debug message issued when triggered an action to delete option by pool

MYSQL_CB_DELETE_BY_POOL_OPTION6_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete option by pool

MYSQL_CB_DELETE_BY_POOL_PREFIX_OPTION6

delete prefix: %1 prefix len: %2 option code: %3 space: %4

Debug message issued when triggered an action to delete option by prefix

MYSQL_CB_DELETE_BY_POOL_PREFIX_OPTION6_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete option by prefix

MYSQL_CB_DELETE_BY_PREFIX_SUBNET4

delete subnet by prefix: %1

Debug message issued when triggered an action to delete subnet by prefix

MYSQL_CB_DELETE_BY_PREFIX_SUBNET4_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete subnet by prefix

MYSQL_CB_DELETE_BY_PREFIX_SUBNET6

delete subnet by prefix: %1

Debug message issued when triggered an action to delete subnet by prefix

MYSQL_CB_DELETE_BY_PREFIX_SUBNET6_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete subnet by prefix

MYSQL_CB_DELETE_BY_SUBNET_ID_OPTION4

delete by subnet id: %1 option code: %2 space: %3

Debug message issued when triggered an action to delete option by subnet id

MYSQL_CB_DELETE_BY_SUBNET_ID_OPTION4_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete option by subnet id

MYSQL_CB_DELETE_BY_SUBNET_ID_OPTION6

delete by subnet id: %1 option code: %2 space: %3

Debug message issued when triggered an action to delete option by subnet id

MYSQL_CB_DELETE_BY_SUBNET_ID_OPTION6_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete option by subnet id

MYSQL_CB_DELETE_BY_SUBNET_ID_SUBNET4

delete subnet by subnet id: %1

Debug message issued when triggered an action to delete subnet by subnet id

MYSQL_CB_DELETE_BY_SUBNET_ID_SUBNET4_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete subnet by subnet id

MYSQL_CB_DELETE_BY_SUBNET_ID_SUBNET6

delete subnet by subnet id: %1

Debug message issued when triggered an action to delete subnet by subnet id

MYSQL_CB_DELETE_BY_SUBNET_ID_SUBNET6_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete subnet by subnet id

MYSQL_CB_DELETE_GLOBAL_PARAMETER4

delete global parameter: %1

Debug message issued when triggered an action to delete global parameter

MYSQL_CB_DELETE_GLOBAL_PARAMETER4_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete global parameter

MYSQL_CB_DELETE_GLOBAL_PARAMETER6

delete global parameter: %1

Debug message issued when triggered an action to delete global parameter

MYSQL_CB_DELETE_GLOBAL_PARAMETER6_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete global parameter

MYSQL_CB_DELETE_OPTION4

delete option code: %1 space: %2

Debug message issued when triggered an action to delete option

MYSQL_CB_DELETE_OPTION4_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete option

MYSQL_CB_DELETE_OPTION6

delete option code: %1 space: %2

Debug message issued when triggered an action to delete option

MYSQL_CB_DELETE_OPTION6_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete option

MYSQL_CB_DELETE_OPTION_DEF4

delete option definition code: %1 space: %2

Debug message issued when triggered an action to delete option definition

MYSQL_CB_DELETE_OPTION_DEF4_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete option definition

MYSQL_CB_DELETE_OPTION_DEF6

delete option definition code: %1 space: %2

Debug message issued when triggered an action to delete option definition

MYSQL_CB_DELETE_OPTION_DEF6_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete option definition

MYSQL_CB_DELETE_SERVER4

delete DHCPv4 server: %1

Debug message issued when triggered an action to delete a server.

MYSQL_CB_DELETE_SERVER4_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete a server.

MYSQL_CB_DELETE_SERVER6

delete DHCPv6 server: %1

Debug message issued when triggered an action to delete a server.

MYSQL_CB_DELETE_SERVER6_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete a server.

MYSQL_CB_DELETE_SHARED_NETWORK4

delete shared network: %1

Debug message issued when triggered an action to delete shared network

MYSQL_CB_DELETE_SHARED_NETWORK4_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete shared network

MYSQL_CB_DELETE_SHARED_NETWORK6

delete shared network: %1

Debug message issued when triggered an action to delete shared network

MYSQL_CB_DELETE_SHARED_NETWORK6_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete shared network

MYSQL_CB_DELETE_SHARED_NETWORK_OPTION4

delete shared network: %1 option code: %2 space: %3

Debug message issued when triggered an action to delete shared network option

MYSQL_CB_DELETE_SHARED_NETWORK_OPTION4_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete shared network option

MYSQL_CB_DELETE_SHARED_NETWORK_OPTION6

delete shared network: %1 option code: %2 space: %3

Debug message issued when triggered an action to delete shared network option

MYSQL_CB_DELETE_SHARED_NETWORK_OPTION6_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete shared network option

MYSQL_CB_DELETE_SHARED_NETWORK_SUBNETS4

delete shared network: %1 subnets

Debug message issued when triggered an action to delete shared network subnets

MYSQL_CB_DELETE_SHARED_NETWORK_SUBNETS4_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete shared network subnets

MYSQL_CB_DELETE_SHARED_NETWORK_SUBNETS6

delete shared network: %1 subnets

Debug message issued when triggered an action to delete shared network subnets

MYSQL_CB_DELETE_SHARED_NETWORK_SUBNETS6_RESULT

deleted: %1 entries

Debug message indicating the result of an action to delete shared network subnets

MYSQL_CB_GET_ALL_GLOBAL_PARAMETERS4

retrieving all global parameters

Debug message issued when triggered an action to retrieve all global parameters

MYSQL_CB_GET_ALL_GLOBAL_PARAMETERS4_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve all global parameters

MYSQL_CB_GET_ALL_GLOBAL_PARAMETERS6

retrieving all global parameters

Debug message issued when triggered an action to retrieve all global parameters

MYSQL_CB_GET_ALL_GLOBAL_PARAMETERS6_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve all global parameters

MYSQL_CB_GET_ALL_OPTIONS4

retrieving all options

Debug message issued when triggered an action to retrieve all options

MYSQL_CB_GET_ALL_OPTIONS4_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve all options

MYSQL_CB_GET_ALL_OPTIONS6

retrieving all options

Debug message issued when triggered an action to retrieve all options

MYSQL_CB_GET_ALL_OPTIONS6_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve all options

MYSQL_CB_GET_ALL_OPTION_DEFS4

retrieving all option definitions

Debug message issued when triggered an action to retrieve all option definitions

MYSQL_CB_GET_ALL_OPTION_DEFS4_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve all option definitions

MYSQL_CB_GET_ALL_OPTION_DEFS6

retrieving all option definitions

Debug message issued when triggered an action to retrieve all option definitions

MYSQL_CB_GET_ALL_OPTION_DEFS6_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve all option definitions

MYSQL_CB_GET_ALL_SERVERS4

retrieving all servers

Debug message issued when triggered an action to retrieve all DHCPv4
servers

MYSQL_CB_GET_ALL_SERVERS4_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve all DHCPv4
servers

MYSQL_CB_GET_ALL_SERVERS6

retrieving all DHCPv6 servers

Debug message issued when triggered an action to retrieve all DHCPv6
servers

MYSQL_CB_GET_ALL_SERVERS6_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve all DHCPv6
servers

MYSQL_CB_GET_ALL_SHARED_NETWORKS4

retrieving all shared networks

Debug message issued when triggered an action to retrieve all shared networks

MYSQL_CB_GET_ALL_SHARED_NETWORKS4_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve all shared networks

MYSQL_CB_GET_ALL_SHARED_NETWORKS6

retrieving all shared networks

Debug message issued when triggered an action to retrieve all shared networks

MYSQL_CB_GET_ALL_SHARED_NETWORKS6_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve all shared networks

MYSQL_CB_GET_ALL_SUBNETS4

retrieving all subnets

Debug message issued when triggered an action to retrieve all subnets

MYSQL_CB_GET_ALL_SUBNETS4_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve all subnets

MYSQL_CB_GET_ALL_SUBNETS6

retrieving all subnets

Debug message issued when triggered an action to retrieve all subnets

MYSQL_CB_GET_ALL_SUBNETS6_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve all subnets

MYSQL_CB_GET_GLOBAL_PARAMETER4

retrieving global parameter: %1

Debug message issued when triggered an action to retrieve global parameter

MYSQL_CB_GET_GLOBAL_PARAMETER6

retrieving global parameter: %1

Debug message issued when triggered an action to retrieve global parameter

MYSQL_CB_GET_HOST4

get host

Debug message issued when triggered an action to retrieve host

MYSQL_CB_GET_HOST6

get host

Debug message issued when triggered an action to retrieve host

MYSQL_CB_GET_MODIFIED_GLOBAL_PARAMETERS4

retrieving modified global parameters from: %1

Debug message issued when triggered an action to retrieve modified global parameters from specified time

MYSQL_CB_GET_MODIFIED_GLOBAL_PARAMETERS4_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve modified global parameters from specified time

MYSQL_CB_GET_MODIFIED_GLOBAL_PARAMETERS6

retrieving modified global parameters from: %1

Debug message issued when triggered an action to retrieve modified global parameters from specified time

MYSQL_CB_GET_MODIFIED_GLOBAL_PARAMETERS6_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve modified global parameters from specified time

MYSQL_CB_GET_MODIFIED_OPTIONS4

retrieving modified options from: %1

Debug message issued when triggered an action to retrieve modified options from specified time

MYSQL_CB_GET_MODIFIED_OPTIONS4_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve modified options from specified time

MYSQL_CB_GET_MODIFIED_OPTIONS6

retrieving modified options from: %1

Debug message issued when triggered an action to retrieve modified options from specified time

MYSQL_CB_GET_MODIFIED_OPTIONS6_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve modified options from specified time

MYSQL_CB_GET_MODIFIED_OPTION_DEFS4

retrieving modified option definitions from: %1

Debug message issued when triggered an action to retrieve modified option definitions from specified time

MYSQL_CB_GET_MODIFIED_OPTION_DEFS4_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve modified option definitions from specified time

MYSQL_CB_GET_MODIFIED_OPTION_DEFS6

retrieving modified option definitions from: %1

Debug message issued when triggered an action to retrieve modified option definitions from specified time

MYSQL_CB_GET_MODIFIED_OPTION_DEFS6_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve modified option definitions from specified time

MYSQL_CB_GET_MODIFIED_SHARED_NETWORKS4

retrieving modified shared networks from: %1

Debug message issued when triggered an action to retrieve modified shared networks from specified time

MYSQL_CB_GET_MODIFIED_SHARED_NETWORKS4_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve modified shared networks from specified time

MYSQL_CB_GET_MODIFIED_SHARED_NETWORKS6

retrieving modified shared networks from: %1

Debug message issued when triggered an action to retrieve modified shared networks from specified time

MYSQL_CB_GET_MODIFIED_SHARED_NETWORKS6_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve modified shared networks from specified time

MYSQL_CB_GET_MODIFIED_SUBNETS4

retrieving modified subnets from: %1

Debug message issued when triggered an action to retrieve modified subnets from specified time

MYSQL_CB_GET_MODIFIED_SUBNETS4_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve modified subnets from specified time

MYSQL_CB_GET_MODIFIED_SUBNETS6

retrieving modified subnets from: %1

Debug message issued when triggered an action to retrieve modified subnets from specified time

MYSQL_CB_GET_MODIFIED_SUBNETS6_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve modified subnets from specified time

MYSQL_CB_GET_OPTION4

retrieving option code: %1 space: %2

Debug message issued when triggered an action to retrieve option

MYSQL_CB_GET_OPTION6

retrieving option code: %1 space: %2

Debug message issued when triggered an action to retrieve option

MYSQL_CB_GET_OPTION_DEF4

retrieving option definition code: %1 space: %2

Debug message issued when triggered an action to retrieve option definition

MYSQL_CB_GET_OPTION_DEF6

retrieving option definition code: %1 space: %2

Debug message issued when triggered an action to retrieve option definition

MYSQL_CB_GET_PORT4

get port

Debug message issued when triggered an action to retrieve port

MYSQL_CB_GET_PORT6

get port

Debug message issued when triggered an action to retrieve port

MYSQL_CB_GET_RECENT_AUDIT_ENTRIES4

retrieving audit entries from: %1

Debug message issued when triggered an action to retrieve audit entries from specified time

MYSQL_CB_GET_RECENT_AUDIT_ENTRIES4_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve audit entries from specified time

MYSQL_CB_GET_RECENT_AUDIT_ENTRIES6

retrieving audit entries from: %1

Debug message issued when triggered an action to retrieve audit entries from specified time

MYSQL_CB_GET_RECENT_AUDIT_ENTRIES6_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve audit entries from specified time

MYSQL_CB_GET_SERVER4

retrieving DHCPv4 server: %1

Debug message issued when triggered an action to retrieve a DHCPv4 server information.

MYSQL_CB_GET_SERVER6

retrieving DHCPv6 server: %1

Debug message issued when triggered an action to retrieve a DHCPv6 server information.

MYSQL_CB_GET_SHARED_NETWORK4

retrieving shared network: %1

Debug message issued when triggered an action to retrieve shared network

MYSQL_CB_GET_SHARED_NETWORK6

retrieving shared network: %1

Debug message issued when triggered an action to retrieve shared network

MYSQL_CB_GET_SHARED_NETWORK_SUBNETS4

retrieving shared network: %1 subnets

Debug message issued when triggered an action to retrieve shared network subnets

MYSQL_CB_GET_SHARED_NETWORK_SUBNETS4_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve shared network subnets

MYSQL_CB_GET_SHARED_NETWORK_SUBNETS6

retrieving shared network: %1 subnets

Debug message issued when triggered an action to retrieve shared network subnets

MYSQL_CB_GET_SHARED_NETWORK_SUBNETS6_RESULT

retrieving: %1 elements

Debug message indicating the result of an action to retrieve shared network subnets

MYSQL_CB_GET_SUBNET4_BY_PREFIX

retrieving subnet by prefix: %1

Debug message issued when triggered an action to retrieve subnet by prefix

MYSQL_CB_GET_SUBNET4_BY_SUBNET_ID

retrieving subnet by subnet id: %1

Debug message issued when triggered an action to retrieve subnet by subnet id

MYSQL_CB_GET_SUBNET6_BY_PREFIX

retrieving subnet by prefix: %1

Debug message issued when triggered an action to retrieve subnet by prefix

MYSQL_CB_GET_SUBNET6_BY_SUBNET_ID

retrieving subnet by subnet id: %1

Debug message issued when triggered an action to retrieve subnet by subnet id

MYSQL_CB_GET_TYPE4

get type

Debug message issued when triggered an action to retrieve type

MYSQL_CB_GET_TYPE6

get type

Debug message issued when triggered an action to retrieve type

MYSQL_CB_INIT_OK

loading MYSQL CB hooks library successful

This informational message indicates that the MySQL Configuration Backend hooks
library has been loaded successfully.

MYSQL_CB_REGISTER_BACKEND_TYPE4

register backend

Debug message issued when triggered an action to register backend

MYSQL_CB_REGISTER_BACKEND_TYPE6

register backend

Debug message issued when triggered an action to register backend

MYSQL_CB_UNREGISTER_BACKEND_TYPE4

unregister backend

Debug message issued when triggered an action to unregister backend

NETCONF

NETCONF_BOOT_UPDATE_COMPLETED

Boot-update configuration completed for server %1

This informational message is issued when the initial configuration
was retrieved from Netconf and successfully applied to Kea server.

NETCONF_CONFIG_CHANGED_DETAIL

YANG configuration changed: %1

This debug message indicates a YANG configuration change. The format
is the change operation (created, modified, deleted or moved) followed
by xpaths and values of old and new nodes.

NETCONF_CONFIG_CHANGE_EVENT

Received YANG configuration change %1 event

This informational message is issued when Netconf receives a YANG
configuration change event. The type of event is printed.

NETCONF_CONFIG_CHECK_FAIL

Netconf configuration check failed: %1

This error message indicates that Netconf had failed configuration
check. Details are provided. Additional details may be available
in earlier log entries, possibly on lower levels.

NETCONF_CONFIG_FAIL

Netconf configuration failed: %1

This error message indicates that Netconf had failed configuration
attempt. Details are provided. Additional details may be available
in earlier log entries, possibly on lower levels.

NETCONF_FAILED

application experienced a fatal error: %1

This is a fatal error message issued when the Netconf application
got an unrecoverable error from within the event loop.

NETCONF_GET_CONFIG

got configuration from %1 server: %2

This debug message indicates that Netconf got the configuration from a
Kea server. The server name and the retrieved configuration are printed.

NETCONF_GET_CONFIG_FAILED

getting configuration from %1 server failed: %2

The error message indicates that Netconf got an error getting the
configuration from a Kea server. Make sure that the server is up and
running, has appropriate control socket defined and that the controls
socket configuration on the server matches that of kea-netconf. The
name of the server and the error are printed.

NETCONF_GET_CONFIG_STARTED

getting configuration from %1 server

This informational message indicates that Netconf is trying to get the
configuration from a Kea server.

NETCONF_LOG_CHANGE_FAIL

Netconf configuration change logging failed: %1

The warning message indicates that the configuration change logging
encountered an unexpected condition. Details of it will be logged.

NETCONF_MODULE_INSTALL

Sysrepo (un)installs a module: %1 (revision %2)

This warning message indicates that sysrepo reports the installation
or uninstallation of a module used by Kea. The name and revision of
the module are printed.

NETCONF_MODULE_MISSING_ERR

Missing essential module %1 in sysrepo

This fatal error message indicates that a module required by Netconf
configuration is not available in the sysrepo repository. The name of
the module is printed.

NETCONF_MODULE_MISSING_WARN

Missing module %1 in sysrepo

This warning message indicates that a module used by Kea is not
available in the sysrepo repository. The name of the module is printed.

NETCONF_MODULE_REVISION_ERR

Essential module %1 does have the right revision: expected %2, got %3

This fatal error message indicates that a module required by Netconf
configuration is not at the right revision in the sysrepo repository.
The name, expected and available revisions of the module are printed.

NETCONF_MODULE_REVISION_WARN

Module %1 does have the right revision: expected %2, got %3

This warning message indicates that a module used by Kea is not at the
right revision in the sysrepo repository. The name, expected and
available revisions of the module are printed.

NETCONF_RUN_EXIT

application is exiting the event loop

This is a debug message issued when the Netconf application exits its
event loop. This is a normal step during kea-netconf shutdown.

NETCONF_SET_CONFIG

set configuration to %1 server: %2

This debug message indicates that Netconf set the configuration to a
Kea server. The server name and the applied configuration are printed.

NETCONF_SET_CONFIG_FAILED

setting configuration to %1 server failed: %2

The error message indicates that Netconf got an error setting the
configuration to a Kea server. Make sure that the server is up and
running, has appropriate control socket defined and that the controls
socket configuration on the server matches that of kea-netconf. The
name of the server and the error are printed.

NETCONF_SET_CONFIG_STARTED

setting configuration to %1 server

This informational message indicates that Netconf is trying to set the
configuration to a Kea server.

NETCONF_STARTED

Netconf (version %1) started

This informational message indicates that Netconf has processed
all configuration information and is ready to begin processing.
The version is also printed.

NETCONF_SUBSCRIBE_CONFIG

subscribing configuration changes for %1 server with %2 module

This information message indicates that Netconf is trying to subscribe
configuration changes for a Kea server. The names of the server and
the module are printed.

NETCONF_SUBSCRIBE_CONFIG_FAILED

subscribe configuration changes for %1 server with %2 module failed: %3

The error message indicates that Netconf got an error subscribing
configuration changes for a Kea server. The names of the server and
the module, and the error are printed.

NETCONF_UPDATE_CONFIG

updating configuration with %1 server: %2

This debug message indicates that Netconf update the configuration
of a Kea server. The server name and the updated configuration are
printed.

NETCONF_UPDATE_CONFIG_COMPLETED

completed updating configuration for %1 server

This informational message indicates that Netconf updated with success the
configuration of a Kea server.

NETCONF_UPDATE_CONFIG_FAILED

updating configuration with %1 server: %2

The error message indicates that Netconf got an error updating the
configuration of a Kea server. This includes a configuration rejected
by a Kea server when it tried to apply it. The name of the server and
the error are printed.

NETCONF_UPDATE_CONFIG_STARTED

started updating configuration for %1 server

This informational message indicates that Netconf is trying to update the
configuration of a Kea server.

NETCONF_VALIDATE_CONFIG

validating configuration with %1 server: %2

This debug message indicates that Netconf is validating the configuration
with a Kea server. The server name and the validated configuration are
printed.

NETCONF_VALIDATE_CONFIG_COMPLETED

completed validating configuration for %1 server

This informational message indicates that Netconf validated with success the
configuration with a Kea server.

NETCONF_VALIDATE_CONFIG_FAILED

validating configuration with %1 server got an error: %2

The error message indicates that Netconf got an error validating the
configuration with a Kea server. This message is produced when
exception is thrown during an attempt to validate received
configuration. Additional explanation may be provided as a
parameter. You may also take a look at earlier log messages. The name
of the server and the error are printed.

NETCONF_VALIDATE_CONFIG_REJECTED

validating configuration with %1 server was rejected: %2

The warning message indicates that Netconf got an error validating the
configuration with a Kea server. This message is printed when the
configuration was rejected during normal processing. Additional
explanation may be provided as a parameter. You may also take a look
at earlier log messages. The name of the server and the error are
printed.

STAT

STAT_CMDS_DEINIT_FAILED

unloading Stat Commands hooks library failed: %1

This error message indicates an error during unloading the Lease Commands
hooks library. The details of the error are provided as argument of
the log message.

STAT_CMDS_DEINIT_OK

unloading Stat Commands hooks library successful

This info message indicates that the Stat Commands hooks library has been
removed successfully.

STAT_CMDS_INIT_FAILED

loading Stat Commands hooks library failed: %1

This error message indicates an error during loading the Lease Commands
hooks library. The details of the error are provided as argument of
the log message.

STAT_CMDS_INIT_OK

loading Stat Commands hooks library successful

This info message indicates that the Stat Commands hooks library has been
loaded successfully. Enjoy!

STAT_CMDS_LEASE4_GET

stat-lease4-get command successful, parameters: %1 rows found: %2

The stat-lease4-get command has been successful. The log will contain
the parameters supplied and the number of rows found.

STAT_CMDS_LEASE4_GET_FAILED

stat-lease4-get command failed: parameters: %1, reason: %2

The stat-lease4-get command has failed. Both the parameters supplied and
the reason for failure are logged.

STAT_CMDS_LEASE4_GET_INVALID

stat-lease4-get command is malformed or invalid, reason: %1

The stat-lease4-get command was either malformed or contained invalid
parameters. A detailed explanation should be logged.

STAT_CMDS_LEASE4_GET_NO_SUBNETS

stat-lease4-get, parameters: %1, %2”

The parameters submitted with stat-lease4-get were valid but excluded all
known subnets. The parameters supplied along with an explanation should
be logged.

STAT_CMDS_LEASE6_GET

stat-lease6-get command successful, parameters: %1 rows found: %2

The stat-lease6-get command has been successful. The log will contain
the parameters supplied and the number of rows found.

STAT_CMDS_LEASE6_GET_FAILED

stat-lease4-get command failed: parameters: %1, reason: %2

The stat-lease6-get command has failed. Both the parameters supplied and
the reason for failure are logged.

STAT_CMDS_LEASE6_GET_INVALID

stat-lease6-get command is malformed or invalid, reason: %1

The stat-lease6-get command was either malformed or contained invalid
parameters. A detailed explanation should be logged.

USER

USER_CHK_HOOK_LOAD_ERROR

DHCP UserCheckHook could not be loaded: %1

This is an error message issued when the DHCP UserCheckHook could not be loaded.
The exact cause should be explained in the log message. User subnet selection
will revert to default processing.

USER_CHK_HOOK_UNLOAD_ERROR

DHCP UserCheckHook an error occurred unloading the library: %1

This is an error message issued when an error occurs while unloading the
UserCheckHook library. This is unlikely to occur and normal operations of the
library will likely resume when it is next loaded.

USER_CHK_SUBNET4_SELECT_ERROR

DHCP UserCheckHook an unexpected error occurred in subnet4_select callout: %1

This is an error message issued when the DHCP UserCheckHook subnet4_select hook
encounters an unexpected error. The message should contain a more detailed
explanation.

USER_CHK_SUBNET4_SELECT_REGISTRY_NULL

DHCP UserCheckHook UserRegistry has not been created.

This is an error message issued when the DHCP UserCheckHook subnet4_select hook
has been invoked but the UserRegistry has not been created. This is a
programmatic error and should not occur.

USER_CHK_SUBNET6_SELECT_ERROR

DHCP UserCheckHook an unexpected error occurred in subnet6_select callout: %1

This is an error message issued when the DHCP UserCheckHook subnet6_select hook
encounters an unexpected error. The message should contain a more detailed
explanation.

Acknowledgments

Kea is an open source project designed, developed, and maintained by
Internet Systems Consortium, Inc, a 501(c)3 non-profit organization. ISC
is primarily funded by revenues from support subscriptions for our open
source, and we encourage all professional users to consider this option.
To learn more, see https://www.isc.org/support/.

We thank all the organizations and individuals who have helped to make
Kea possible. Comcast [https://www.comcast.com/] and the Comcast
Innovation Fund provided major support for the development of Kea’s
DHCPv4, DHCPv6, and DDNS modules. Mozilla funded initial work on the
REST API via a MOSS award.

Kea was initially implemented as a collection of applications within the
BIND 10 framework. We thank the founding sponsors of the BIND 10
project: Afilias [https://www.afilias.info/],
IIS.SE [https://www.iis.se/],
Nominet [https://www.nominet.uk/],
SIDN [https://www.sidn.nl/], JPRS [https://jprs.co.jp/],
CIRA [https://cira.ca/]; and additional sponsors
AFNIC [https://www.afnic.fr/],
CNNIC [https://www.cnnic.net.cn/], CZ.NIC [https://www.nic.cz/],
DENIC eG [https://www.denic.de/],
Google [https://www.google.com/], RIPE
NCC [https://www.ripe.net/], Registro.br [https://registro.br/],
.nz Registry Services [https://nzrs.net.nz/], and Technical Center
of Internet [https://www.tcinet.ru/].

Index

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/kea-logo-100x70.png

_static/kea-logo-200.png
@

_static/file.png

_static/kea-imageonly-100bw.png
;ﬂ

_static/minus.png

_static/comment-bright.png

_images/kea-logo-200.png
@

_static/ajax-loader.gif

_static/comment-close.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Kea Administrator Reference Manual

 		
 Introduction

 		
 Supported platforms

 		
 Regularly tested platforms

 		
 Best effort

 		
 Community maintained

 		
 Unsupported platforms

 		
 Required Software at Run-Time

 		
 Kea Software

 		
 Quick Start

 		
 Quick Start Guide for using tarball

 		
 Quick Start Guide using native packages

 		
 Quick Start Guide for DHCPv4 and DHCPv6 Services

 		
 Running the Kea Servers Directly

 		
 Installation

 		
 Packages

 		
 Installation Hierarchy

 		
 Build Requirements

 		
 Installation from Source

 		
 Download Tar File

 		
 Retrieve from Git

 		
 Configure Before the Build

 		
 Build

 		
 Install

 		
 DHCP Database Installation and Configuration

 		
 Building with MySQL Support

 		
 Building with PostgreSQL support

 		
 Building with CQL (Cassandra) Support

 		
 Hammer Building Tool

 		
 Running Kea from non-root account on Linux

 		
 Kea Database Administration

 		
 Databases and Database Version Numbers

 		
 The kea-admin Tool

 		
 Supported Backends

 		
 Memfile

 		
 MySQL

 		
 PostgreSQL

 		
 Cassandra

 		
 Using Read-Only Databases with Host Reservations

 		
 Limitations Related to the Use of SQL Databases

 		
 Kea Configuration

 		
 JSON Configuration

 		
 JSON Syntax

 		
 Comments and User Context

 		
 Simplified Notation

 		
 Kea Configuration Backend

 		
 Applicability

 		
 CB Capabilities and Limitations

 		
 CB Components

 		
 Configuration Sharing and Server Tags

 		
 Managing Kea with keactrl

 		
 Overview

 		
 Command Line Options

 		
 The keactrl Configuration File

 		
 Commands

 		
 Overriding the Server Selection

 		
 The Kea Control Agent

 		
 Overview of the Kea Control Agent

 		
 Configuration

 		
 Secure Connections

 		
 Starting the Control Agent

 		
 Connecting to the Control Agent

 		
 The DHCPv4 Server

 		
 Starting and Stopping the DHCPv4 Server

 		
 DHCPv4 Server Configuration

 		
 Introduction

 		
 Lease Storage

 		
 Hosts Storage

 		
 Interface Configuration

 		
 Issues with Unicast Responses to DHCPINFORM

 		
 IPv4 Subnet Identifier

 		
 IPv4 Subnet Prefix

 		
 Configuration of IPv4 Address Pools

 		
 Sending T1 (Option 58) and T2 (Option 59)

 		
 Standard DHCPv4 Options

 		
 Custom DHCPv4 Options

 		
 DHCPv4 Private Options

 		
 DHCPv4 Vendor-Specific Options

 		
 Nested DHCPv4 Options (Custom Option Spaces)

 		
 Unspecified Parameters for DHCPv4 Option Configuration

 		
 Stateless Configuration of DHCPv4 Clients

 		
 Client Classification in DHCPv4

 		
 DDNS for DHCPv4

 		
 Next Server (siaddr)

 		
 Echoing Client-ID (RFC 6842)

 		
 Using Client Identifier and Hardware Address

 		
 Authoritative DHCPv4 Server Behavior

 		
 DHCPv4-over-DHCPv6: DHCPv4 Side

 		
 Sanity Checks in DHCPv4

 		
 Storing Extended Lease Information

 		
 Multi-threading settings

 		
 Host Reservation in DHCPv4

 		
 Address Reservation Types

 		
 Conflicts in DHCPv4 Reservations

 		
 Reserving a Hostname

 		
 Including Specific DHCPv4 Options in Reservations

 		
 Reserving Next Server, Server Hostname, and Boot File Name

 		
 Reserving Client Classes in DHCPv4

 		
 Storing Host Reservations in MySQL, PostgreSQL, or Cassandra

 		
 Fine-Tuning DHCPv4 Host Reservation

 		
 Global Reservations in DHCPv4

 		
 Pool Selection with Client Class Reservations

 		
 Subnet Selection with Client Class Reservations

 		
 Shared Networks in DHCPv4

 		
 Local and Relayed Traffic in Shared Networks

 		
 Client Classification in Shared Networks

 		
 Host Reservations in Shared Networks

 		
 Server Identifier in DHCPv4

 		
 How the DHCPv4 Server Selects a Subnet for the Client

 		
 Using a Specific Relay Agent for a Subnet

 		
 Segregating IPv4 Clients in a Cable Network

 		
 Duplicate Addresses (DHCPDECLINE Support)

 		
 Statistics in the DHCPv4 Server

 		
 Management API for the DHCPv4 Server

 		
 User Contexts in IPv4

 		
 Supported DHCP Standards

 		
 DHCPv4 Server Limitations

 		
 Kea DHCPv4 Server Examples

 		
 Configuration Backend in DHCPv4

 		
 Supported Parameters

 		
 Enabling Configuration Backend

 		
 The DHCPv6 Server

 		
 Starting and Stopping the DHCPv6 Server

 		
 DHCPv6 Server Configuration

 		
 Introduction

 		
 Lease Storage

 		
 Hosts Storage

 		
 Interface Configuration

 		
 IPv6 Subnet Identifier

 		
 IPv6 Subnet Prefix

 		
 Unicast Traffic Support

 		
 Configuration of IPv6 Address Pools

 		
 Subnet and Prefix Delegation Pools

 		
 Prefix Exclude Option

 		
 Standard DHCPv6 Options

 		
 Common Softwire46 Options

 		
 Custom DHCPv6 Options

 		
 DHCPv6 Vendor-Specific Options

 		
 Nested DHCPv6 Options (Custom Option Spaces)

 		
 Unspecified Parameters for DHCPv6 Option Configuration

 		
 Controlling the Values Sent for T1 and T2 Times

 		
 IPv6 Subnet Selection

 		
 Rapid Commit

 		
 DHCPv6 Relays

 		
 Relay-Supplied Options

 		
 Client Classification in DHCPv6

 		
 DDNS for DHCPv6

 		
 DHCPv4-over-DHCPv6: DHCPv6 Side

 		
 Sanity Checks in DHCPv6

 		
 Storing Extended Lease Information

 		
 Multi-threading settings

 		
 Host Reservation in DHCPv6

 		
 Address/Prefix Reservation Types

 		
 Conflicts in DHCPv6 Reservations

 		
 Reserving a Hostname

 		
 Including Specific DHCPv6 Options in Reservations

 		
 Reserving Client Classes in DHCPv6

 		
 Storing Host Reservations in MySQL, PostgreSQL, or Cassandra

 		
 Fine-Tuning DHCPv6 Host Reservation

 		
 Global Reservations in DHCPv6

 		
 Pool Selection with Client Class Reservations

 		
 Subnet Selection with Client Class Reservations

 		
 Shared Networks in DHCPv6

 		
 Local and Relayed Traffic in Shared Networks

 		
 Client Classification in Shared Networks

 		
 Host Reservations in Shared Networks

 		
 Server Identifier in DHCPv6

 		
 DHCPv6 data directory

 		
 Stateless DHCPv6 (Information-Request Message)

 		
 Support for RFC 7550 (now part of RFC 8415)

 		
 Using a Specific Relay Agent for a Subnet

 		
 Segregating IPv6 Clients in a Cable Network

 		
 MAC/Hardware Addresses in DHCPv6

 		
 Duplicate Addresses (DECLINE Support)

 		
 Statistics in the DHCPv6 Server

 		
 Management API for the DHCPv6 Server

 		
 User Contexts in IPv6

 		
 Supported DHCPv6 Standards

 		
 DHCPv6 Server Limitations

 		
 Kea DHCPv6 server examples

 		
 Configuration Backend in DHCPv6

 		
 Supported Parameters

 		
 Enabling Configuration Backend

 		
 Lease Expiration

 		
 Lease Reclamation

 		
 Lease Reclamation Configuration Parameters

 		
 Configuring Lease Reclamation

 		
 Configuring Lease Affinity

 		
 Reclaiming Expired Leases via Command

 		
 Congestion Handling

 		
 What is Congestion?

 		
 Configuring Congestion Handling

 		
 The DHCP-DDNS Server

 		
 Overview

 		
 DNS Server Selection

 		
 Conflict Resolution

 		
 Dual-Stack Environments

 		
 Starting and Stopping the DHCP-DDNS Server

 		
 Configuring the DHCP-DDNS Server

 		
 Global Server Parameters

 		
 Management API for the D2 Server

 		
 TSIG Key List

 		
 Forward DDNS

 		
 Reverse DDNS

 		
 User Contexts in DDNS

 		
 Example DHCP-DDNS Server Configuration

 		
 DHCP-DDNS Server Limitations

 		
 Supported Standards

 		
 The LFC Process

 		
 Overview

 		
 Command-Line Options

 		
 Client Classification

 		
 Client Classification Overview

 		
 Built-in Client Classes

 		
 Using Expressions in Classification

 		
 Logical operators

 		
 Substring

 		
 Concat

 		
 Ifelse

 		
 Hexstring

 		
 Configuring Classes

 		
 Using Static Host Reservations In Classification

 		
 Configuring Subnets With Class Information

 		
 Configuring Pools With Class Information

 		
 Using Classes

 		
 Classes and Hooks

 		
 Debugging Expressions

 		
 Hooks Libraries

 		
 Introduction

 		
 Installing Hook Packages

 		
 Configuring Hooks Libraries

 		
 Available Hooks Libraries

 		
 user_chk: Checking User Access

 		
 legal_log: Forensic Logging Hooks

 		
 Log File Naming

 		
 DHCPv4 Log Entries

 		
 DHCPv6 Log Entries

 		
 Configuring the Forensic Log Hooks

 		
 Database Backend

 		
 flex_id: Flexible Identifiers for Host Reservations

 		
 flex_option Flexible Option for Option value settings

 		
 host_cmds: Host Commands

 		
 The subnet-id Parameter

 		
 The reservation-add Command

 		
 The reservation-get Command

 		
 The reservation-get-all Command

 		
 The reservation-get-page command

 		
 The reservation-get-by-hostname Command

 		
 The reservation-del Command

 		
 lease_cmds: Lease Commands

 		
 The lease4-add, lease6-add Commands

 		
 The lease6-bulk-apply Command

 		
 The lease4-get, lease6-get Commands

 		
 The lease4-get-all, lease6-get-all Commands

 		
 The lease4-get-page, lease6-get-page Commands

 		
 The lease4-get-by-, lease6-get-by- Commands

 		
 The lease4-del, lease6-del Commands

 		
 The lease4-update, lease6-update Commands

 		
 The lease4-wipe, lease6-wipe Commands

 		
 The lease4-resend-ddns, lease6-resend-ddns Commands

 		
 subnet_cmds: Subnet Commands

 		
 The subnet4-list Command

 		
 The subnet6-list Command

 		
 The subnet4-get Command

 		
 The subnet6-get Command

 		
 The subnet4-add Command

 		
 The subnet6-add Command

 		
 The subnet4-update Command

 		
 The subnet6-update Command

 		
 The subnet4-del Command

 		
 The subnet6-del Command

 		
 The network4-list, network6-list Commands

 		
 The network4-get, network6-get Commands

 		
 The network4-add, network6-add Commands

 		
 The network4-del, network6-del Commands

 		
 The network4-subnet-add, network6-subnet-add Commands

 		
 The network4-subnet-del, network6-subnet-del Commands

 		
 BOOTP support

 		
 BOOTP Hooks Limitation

 		
 class_cmds: Class Commands

 		
 The class-add Command

 		
 The class-update Command

 		
 The class-del Command

 		
 The class-list Command

 		
 The class-get Command

 		
 cb_cmds: Configuration Backend Commands

 		
 Commands Structure

 		
 Control Commands for DHCP Servers

 		
 Metadata

 		
 remote-server4-del, remote-server6-del commands

 		
 remote-server4-get, remote-server6-get commands

 		
 remote-server4-get-all, remote-server6-get-all commands

 		
 remote-server4-set, remote-server6-set commands

 		
 The remote-global-parameter4-del, remote-global-parameter6-del Commands

 		
 The remote-global-parameter4-get, remote-global-parameter6-get Commands

 		
 The remote-global-parameter4-get-all, remote-global-parameter6-get-all Commands

 		
 The remote-global-parameter4-set, remote-global-parameter6-set Commands

 		
 The remote-network4-del, remote-network6-del Commands

 		
 The remote-network4-get, remote-network6-get Commands

 		
 The remote-network4-list, remote-network6-list Commands

 		
 The remote-network4-set, remote-network6-set Commands

 		
 The remote-option-def4-del, remote-option-def6-del Commands

 		
 The remote-option-def4-get, remote-option-def6-get Commands

 		
 The remote-option-def4-get-all, remote-option-def6-get-all Commands

 		
 The remote-option-def4-set, remote-option-def6-set Commands

 		
 The remote-option4-global-del, remote-option6-global-del Commands

 		
 The remote-option4-global-get, remote-option6-global-get Commands

 		
 The remote-option4-global-get-all, remote-option6-global-get-all Commands

 		
 The remote-option4-global-set, remote-option6-global-set Commands

 		
 The remote-option4-network-del, remote-option6-network-del Commands

 		
 The remote-option4-network-set, remote-option6-network-set Commands

 		
 The remote-option6-pd-pool-del Command

 		
 The remote-option6-pd-pool-set Command

 		
 The remote-option4-pool-del, remote-option6-pool-del Commands

 		
 The remote-option4-pool-set, remote-option6-pool-set Commands

 		
 The remote-option4-subnet-del, remote-option6-subnet-del Commands

 		
 The remote-option4-subnet-set, remote-option6-subnet-set Commands

 		
 The remote-subnet4-del-by-id, remote-subnet6-del-by-id Commands

 		
 The remote-subnet4-del-by-prefix, remote-subnet6-del-by-prefix Commands

 		
 The remote-subnet4-get-by-id, remote-subnet6-get-by-id Commands

 		
 The remote-subnet4-get-by-prefix, remote-subnet6-get-by-prefix Commands

 		
 The remote-subnet4-list, remote-subnet6-list Commands

 		
 The remote-subnet4-set, remote-subnet6-set Commands

 		
 ha: High Availability

 		
 Supported Configurations

 		
 Clocks on Active Servers

 		
 Server States

 		
 Scope Transition in a Partner-Down Case

 		
 Load-Balancing Configuration

 		
 Load Balancing with Advanced Classification

 		
 Hot-Standby Configuration

 		
 Passive-Backup Configuration

 		
 Lease Information Sharing

 		
 Controlling Lease-Page Size Limit

 		
 Timeouts

 		
 Pausing the HA State Machine

 		
 Control Agent Configuration

 		
 Controlled Shutdown and Maintenance of DHCP servers

 		
 Upgrading from Older HA Versions

 		
 Control Commands for High Availability

 		
 stat_cmds: Supplemental Statistics Commands

 		
 The stat-lease4-get, stat-lease6-get Commands

 		
 radius: RADIUS Server Support

 		
 Compilation and Installation of the RADIUS Hook

 		
 RADIUS Hook Configuration

 		
 host_cache: Caching Host Reservations

 		
 The cache-flush Command

 		
 The cache-clear Command

 		
 The cache-size Command

 		
 The cache-write Command

 		
 The cache-load Command

 		
 The cache-get Command

 		
 The cache-get-by-id Command

 		
 The cache-insert Command

 		
 The cache-remove Command

 		
 lease_query: Leasequery

 		
 DHCPv4 Leasequery

 		
 DHCPv4 Leasequery Configuration

 		
 User Contexts in Hooks

 		
 Statistics

 		
 Statistics Overview

 		
 Statistics Lifecycle

 		
 Commands for Manipulating Statistics

 		
 The statistic-get Command

 		
 The statistic-reset Command

 		
 The statistic-remove Command

 		
 The statistic-get-all Command

 		
 The statistic-reset-all Command

 		
 The statistic-remove-all Command

 		
 The statistic-sample-age-set Command

 		
 The statistic-sample-age-set-all Command

 		
 The statistic-sample-count-set Command

 		
 The statistic-sample-count-set-all Command

 		
 Time series

 		
 Management API

 		
 Data Syntax

 		
 Using the Control Channel

 		
 Commands Supported by Both the DHCPv4 and DHCPv6 Servers

 		
 The build-report Command

 		
 The config-get Command

 		
 The config-reload Command

 		
 The config-test Command

 		
 The config-write Command

 		
 The leases-reclaim Command

 		
 The libreload Command

 		
 The list-commands Command

 		
 The config-set Command

 		
 The shutdown Command

 		
 The dhcp-disable Command

 		
 The dhcp-enable Command

 		
 The status-get Command

 		
 The server-tag-get Command:

 		
 The config-backend-pull Command:

 		
 The version-get Command

 		
 Commands Supported by the D2 Server

 		
 Commands Supported by the Control Agent

 		
 Logging

 		
 Logging Configuration

 		
 Loggers

 		
 Logging Message Format

 		
 Logging During Kea Startup

 		
 The Kea Shell

 		
 Overview of the Kea Shell

 		
 Shell Usage

 		
 YANG/NETCONF Support

 		
 Overview

 		
 Installing NETCONF

 		
 Installing NETCONF on Ubuntu 18.04

 		
 Installing NETCONF on CentOS 7.5

 		
 Quick Sysrepo Overview

 		
 Supported YANG Models

 		
 Using the NETCONF Agent

 		
 Configuration

 		
 A kea-netconf Configuration Example

 		
 Starting and Stopping the NETCONF Agent

 		
 A Step-by-Step NETCONF Agent Operation Example

 		
 Setup of NETCONF Agent Operation Example

 		
 Error Handling in NETCONF Operation Example

 		
 NETCONF Operation Example with Two Pools

 		
 NETCONF Operation Example with Two Subnets

 		
 NETCONF Operation Example with Logging

 		
 Monitoring Kea with Stork

 		
 Kea statistics in Grafana

 		
 API Reference

 		
 build-report

 		
 cache-clear

 		
 cache-get

 		
 cache-get-by-id

 		
 cache-insert

 		
 cache-load

 		
 cache-remove

 		
 cache-size

 		
 cache-write

 		
 class-add

 		
 class-del

 		
 class-get

 		
 class-list

 		
 class-update

 		
 config-backend-pull

 		
 config-get

 		
 config-reload

 		
 config-set

 		
 config-test

 		
 config-write

 		
 dhcp-disable

 		
 dhcp-enable

 		
 ha-continue

 		
 ha-heartbeat

 		
 ha-maintenance-cancel

 		
 ha-maintenance-notify

 		
 ha-maintenance-start

 		
 ha-scopes

 		
 ha-sync

 		
 lease4-add

 		
 lease4-del

 		
 lease4-get

 		
 lease4-get-all

 		
 lease4-get-by-client-id

 		
 lease4-get-by-hostname

 		
 lease4-get-by-hw-address

 		
 lease4-get-page

 		
 lease4-resend-ddns

 		
 lease4-update

 		
 lease4-wipe

 		
 lease6-add

 		
 lease6-bulk-apply

 		
 lease6-del

 		
 lease6-get

 		
 lease6-get-all

 		
 lease6-get-by-duid

 		
 lease6-get-by-hostname

 		
 lease6-get-page

 		
 lease6-resend-ddns

 		
 lease6-update

 		
 lease6-wipe

 		
 leases-reclaim

 		
 libreload

 		
 list-commands

 		
 network4-add

 		
 network4-del

 		
 network4-get

 		
 network4-list

 		
 network4-subnet-add

 		
 network4-subnet-del

 		
 network6-add

 		
 network6-del

 		
 network6-get

 		
 network6-list

 		
 network6-subnet-add

 		
 network6-subnet-del

 		
 remote-global-parameter4-del

 		
 remote-global-parameter4-get

 		
 remote-global-parameter4-get-all

 		
 remote-global-parameter4-set

 		
 remote-global-parameter6-del

 		
 remote-global-parameter6-get

 		
 remote-global-parameter6-get-all

 		
 remote-global-parameter6-set

 		
 remote-network4-del

 		
 remote-network4-get

 		
 remote-network4-list

 		
 remote-network4-set

 		
 remote-network6-del

 		
 remote-network6-get

 		
 remote-network6-list

 		
 remote-network6-set

 		
 remote-option-def4-del

 		
 remote-option-def4-get

 		
 remote-option-def4-get-all

 		
 remote-option-def4-set

 		
 remote-option-def6-del

 		
 remote-option-def6-get

 		
 remote-option-def6-get-all

 		
 remote-option-def6-set

 		
 remote-option4-global-del

 		
 remote-option4-global-get

 		
 remote-option4-global-get-all

 		
 remote-option4-global-set

 		
 remote-option4-network-del

 		
 remote-option4-network-set

 		
 remote-option4-pool-del

 		
 remote-option4-pool-set

 		
 remote-option4-subnet-del

 		
 remote-option4-subnet-set

 		
 remote-option6-global-del

 		
 remote-option6-global-get

 		
 remote-option6-global-get-all

 		
 remote-option6-global-set

 		
 remote-option6-network-del

 		
 remote-option6-network-set

 		
 remote-option6-pd-pool-del

 		
 remote-option6-pd-pool-set

 		
 remote-option6-pool-del

 		
 remote-option6-pool-set

 		
 remote-option6-subnet-del

 		
 remote-option6-subnet-set

 		
 remote-server4-del

 		
 remote-server4-get

 		
 remote-server4-get-all

 		
 remote-server4-set

 		
 remote-server6-del

 		
 remote-server6-get

 		
 remote-server6-get-all

 		
 remote-server6-set

 		
 remote-subnet4-del-by-id

 		
 remote-subnet4-del-by-prefix

 		
 remote-subnet4-get-by-id

 		
 remote-subnet4-get-by-prefix

 		
 remote-subnet4-list

 		
 remote-subnet4-set

 		
 remote-subnet6-del-by-id

 		
 remote-subnet6-del-by-prefix

 		
 remote-subnet6-get-by-id

 		
 remote-subnet6-get-by-prefix

 		
 remote-subnet6-list

 		
 remote-subnet6-set

 		
 reservation-add

 		
 reservation-del

 		
 reservation-get

 		
 reservation-get-all

 		
 reservation-get-by-hostname

 		
 reservation-get-page

 		
 server-tag-get

 		
 shutdown

 		
 stat-lease4-get

 		
 stat-lease6-get

 		
 statistic-get

 		
 statistic-get-all

 		
 statistic-remove

 		
 statistic-remove-all

 		
 statistic-reset

 		
 statistic-reset-all

 		
 statistic-sample-age-set

 		
 statistic-sample-age-set-all

 		
 statistic-sample-count-set

 		
 statistic-sample-count-set-all

 		
 status-get

 		
 subnet4-add

 		
 subnet4-del

 		
 subnet4-get

 		
 subnet4-list

 		
 subnet4-update

 		
 subnet6-add

 		
 subnet6-del

 		
 subnet6-get

 		
 subnet6-list

 		
 subnet6-update

 		
 version-get

 		
 Manual Pages

 		
 kea-dhcp4 - DHCPv4 server in Kea

 		
 Synopsis

 		
 Description

 		
 Arguments

 		
 Documentation

 		
 Mailing Lists and Support

 		
 History

 		
 See Also

 		
 kea-dhcp6 - DHCPv6 server in Kea

 		
 Synopsis

 		
 Description

 		
 Arguments

 		
 Documentation

 		
 Mailing Lists and Support

 		
 History

 		
 See Also

 		
 kea-ctrl-agent - Control Agent process in Kea

 		
 Synopsis

 		
 Description

 		
 Arguments

 		
 Documentation

 		
 Mailing Lists and Support

 		
 History

 		
 See Also

 		
 keactrl - Shell script for managing Kea

 		
 Synopsis

 		
 Description

 		
 Configuration File

 		
 Options

 		
 Documentation

 		
 Mailing Lists and Support

 		
 See Also

 		
 kea-admin - Shell script for managing Kea databases

 		
 Synopsis

 		
 Description

 		
 Arguments

 		
 Documentation

 		
 Mailing Lists and Support

 		
 See Also

 		
 kea-dhcp-ddns - DHCP-DDNS process in Kea

 		
 Synopsis

 		
 Description

 		
 Arguments

 		
 Documentation

 		
 Mailing Lists and Support

 		
 History

 		
 See Also

 		
 kea-lfc - Lease File Cleanup process in Kea

 		
 Synopsis

 		
 Description

 		
 Arguments

 		
 Documentation

 		
 Mailing Lists and Support

 		
 History

 		
 See Also

 		
 kea-shell - Text client for Control Agent process

 		
 Synopsis

 		
 Description

 		
 Arguments

 		
 Documentation

 		
 Mailing Lists and Support

 		
 History

 		
 See Also

 		
 kea-netconf - NETCONF agent for Kea environment

 		
 Synopsis

 		
 Description

 		
 Arguments

 		
 Documentation

 		
 Mailing Lists and Support

 		
 History

 		
 See Also

 		
 perfdhcp - DHCP benchmarking tool

 		
 Synopsis

 		
 Description

 		
 Templates

 		
 Options

 		
 DHCPv4-Only Options

 		
 DHCPv6-Only Options

 		
 Template-Related Options

 		
 Options Controlling a Test

 		
 Arguments

 		
 Errors

 		
 Exit Status

 		
 Mailing Lists and Support

 		
 History

 		
 See Also

 		
 Kea Messages Manual

 		
 ALLOC

 		
 ASIODNS

 		
 BOOTP

 		
 COMMAND

 		
 CTRL

 		
 DATABASE

 		
 DCTL

 		
 DHCP4

 		
 DHCP6

 		
 DHCPSRV

 		
 DHCP

 		
 EVAL

 		
 FLEX

 		
 HA

 		
 HOOKS

 		
 HOSTS

 		
 HTTP

 		
 LEASE

 		
 LFC

 		
 LOGIMPL

 		
 LOG

 		
 MYSQL

 		
 NETCONF

 		
 STAT

 		
 USER

 		
 Acknowledgments

_static/up.png

_static/up-pressed.png

